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Figure 5.5: Dispersion relations and linewidths for a one-dimensional magnonic crystal
with a periodic variation in magnetic properties and a uniform applied electric field of
E = 0 (left) and E = 5 · 107V/m (right).

5.2.2 Periodic Electric Field

The frequencies and linewidths are obtained from the complex eigenvalues of

Eq. 5.94. In calculating these, we use an external field µ0H0 = 0.27T, filling fraction

f = 0.5, saturation magnetization Ms = 1.4 · 105A/m, exchange length λex = 16.1nm,

and damping parameter α = 0.0006. From the dispersion relations (Fig. 5.6) we see

that the YIG slab has no band gaps when there is no electric field. This is to be

expected, as a uniform structure does not allow for gaps to appear. However, when

a periodic electric field is applied, the band levels begin to split, opening multiple

band gaps within the first few modes. We previously mentioned the importance of

comparing band gap widths to the linewidth to ensure that the gap can be seen
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(section 4.2.2). Doing that here, we see that we have a quality factor, which is the

gap width over the linewidth, on the order of 100, indicating that these gaps are

sufficiently wide.

An additional effect is that the wave vector of the dispersion curves is phase

shifted due to the electric field breaking the rotational symmetry of the system. By

looking at the density of states of the spin waves (Fig. 5.7), we see that the appearance

of the band gaps relies on the electric field having a periodic variation. A uniform

electric field only shifts the band levels to a lower frequency.
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Figure 5.6: Spin wave dispersions of YIG with a = 200 nm, EA = 0, and EB = 0 (top)
and EB = 8 · 107 V/m (bottom).

Both the width and location of the band gaps can be controlled by adjusting

various parameters of the system (Fig. 5.8). Since the electric field introduces the band

gaps into the system, increasing its magnitude has the expected effect of increasing
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the width of the band gap. Additionally, due to the overall effect of the electric field

lowering the spin wave frequency (Fig. 5.7), increasing the strength of the electric field

will also lower the position of the band gap. The lattice constant has a comparatively

smaller effect on the band gap width, but can have a significant impact on its location,

with the frequency rapidly increasing when the lattice constant is below 100 nm. This

variation of frequency with lattice constant is the same affect that has been seen

throughout this paper, and while it is not as easy to perform dynamic adjustments on

the lattice constant as it is with the electric field strength, it can still be used, when

the device is created, to put the band gap in the desired frequency range.
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Figure 5.7: Density of States for zero electric field (bottom), uniform electric field(
middle), and periodic electric field (top).

We will also mention here that this technique could be used to control the Suhl

instability in a material ( section 1.1.2). The uniform mode of spin waves in a film is
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given by [121]

fFMR =
γµ0

2π
(H0 −Ms) . (5.98)

The Suhl instability can only occur if a magnon excitation exists at half this frequency.

Since the FMR frequency is only dependent on the saturation magnetization and the

applied magnetic field, the electric field can be used to shift the dispersion frequencies

without affecting the FMR frequency. By making half the FMR frequency appear

within a band gap, the Suhl instability can effectively be turned on or off by varying

the strength of the electric field.
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Figure 5.8: Variation of band gap width and center between the first two modes at
a = 200nm (top) and E = 8 · 107V/m (bottom).
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5.2.3 Transverse Modes

In section 5.1.3 we obtained the boundary conditions for the slab in the y and z

directions (Eqs. 5.78 and 5.79). Here we will demonstrate that if the width of the

slab in these directions is sufficiently small, then these modes will not interfere with

the band gaps produced in the previous sections. For YIG, the pinning parameter, β,

is on the order of 107m−1 [122]. With a width of 10 nm in the z-direction and 100 nm

in the y-direction, the smallest nonzero spin wave vectors allowed by Eqs. 5.78 and

5.79 are roughly kz = 4.4 · 107m−1 and ky = 2.3 · 107m−1. The resulting modification

to the dispersions is shown in Figs. 5.9 and 5.10 (compare with Fig. 5.6). With wave

vectors of this magnitude, the band levels are shifted up in frequency so that they are

above the band gap shown in Fig. 5.6. If the width of the slab is any larger than this,

then there would be smaller allowed wave vectors and the transverse modes could

produce band levels that would interfere with the gap created by the electric field.
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Figure 5.9: Modification of spin wave dispersion relations when kz = 4.4 · 107m−1.
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Figure 5.10: Modification of spin wave dispersion relations when ky = 2.3 · 107m−1.

5.3 Summary

In summary, I have calculated the band structures for a slab of YIG in the

presence of a periodically varying electric field. This field opens band gaps in the

dispersion relations whose frequency and width can be adjusted by modifying the

strength of the electric field and the length scale of the periodicity. This principle

could be used in the development of a magnon transistor and is more efficient than

other proposed methods of controlling the spin wave band structure [111, 114, 123]

since power is required only when switching the electric field on or off. The band

gaps obtained by this method are also much larger than those obtained via other

methods. For spin waves with a similar frequency as described here, band gaps of

tens of MHz were reported [111,114], whereas we obtained gap widths on the order of

several hundred MHz.
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CHAPTER 6

CONCLUSION

6.1 Summary

In this work we have studied the properties of spin waves in both two-dimensional

and one-dimensional magnonic crystals. Modeling spin waves with the LLG equation,

we have investigated spin wave dispersion relations and propagation patterns for

various systems.

6.1.1 The Landau-Lifshitz-Gilbert Equation

We began by modeling the spin waves with the LLG equation. This included

a description of the terms in the effective magnetic field and how they influence the

calculations. The effective field here consisted of an external magnetic field, the

dynamic dipolar field, and the effective exchange field.

The dipolar field comes from the necessity of satisfying Maxwell’s equations and

resulted in a breaking of the lattice symmetry. Namely, in the presence of the dipolar

field, there can be no reflection symmetry.

The exchange field was shown to be an effective magnetic field arising from the

exchange interaction of neighboring spins. For homogeneous materials, the equation

for the exchange field is well known. However, the materials investigated here were

inhomogeneous, and the current literature in this field showed two different forms of

effective field that were being used. In order to determine the correct form to be used

here, we returned to the Heisenberg model of the spin interaction and obtained the

effective field directly from the exchange energy.

The plane-wave expansion method was then used to express the LLG equation

as a matrix equation with the eigenvalues giving the allowed spin wave frequencies,

and the eigenvectors giving the magnetization vectors.
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6.1.2 Dispersion Relations

Next we examined the dispersion relations obtained from the LLG equation for

two-dimensional magnonic crystals. The band structure was found to be dependent

on the magnetic properties of the two chosen materials, with a particularly large

dependence on their relative magnetization. A larger difference in magnetization was

shown to contribute to the opening of band gaps in the dispersion relations, but only

when the magnetization is larger in the cylinders than in the host. The reverse of this

situation resulted in no band gaps appearing.

We continued the investigation of the symmetry breaking caused by the dipolar

field, showing that both the dispersions and linewidths had broken reflection sym-

metries. The strength of this symmetry breaking was shown to be dependent on the

relative strengths of the exchange and dipolar fields. Having the dipolar field larger

than the exchange field resulted in a much larger symmetry breaking than when the

dipolar field was smaller than the exchange field. We also demonstrated that removing

the dipolar field would restore the reflection symmetries, further proving that it is the

source of the loss of symmetry in the results.

6.1.3 Propagation Patterns

Next we investigated the properties of propagating spin waves in the two-

dimensional magnonic crystals. This was done by calculating the Green’s function

for the spin waves using the eigenvalues and eigenvectors of the LLG equation. The

Green’s function was then used to construct the time-dependent response of the system

to a spin wave pulse.

Here we found that the directionality of the spin wave varied greatly with the

frequency. When in the middle of a band level, the spin wave exhibited propagation

in all directions, although at different speeds to the variation of the group velocity

with wave vector. Near the edge of a band level, where there is only a single wave
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vector, resulted propagation solely along the x and y axes. Lastly, when in a band

gap, the spin wave was unable to propagate due to their being no wave vectors at that

frequency.

6.1.4 Modifying Dispersion Relations with Electric Field

Lastly we looked at the effects an electric field would have on the spin wave

dispersions. In order to find ways to control the band gaps, we considered two different

situations. The first case consisted of a one-dimensional magnonic crystal with a

periodic variation in the magnetic parameters. Here we found that the application

of the electric field produced two major effects. It broke the symmetry of the spin

waves, resulting in different dispersions for waves traveling in opposite directions, and

it lowered the frequency of all spin wave modes. Neither of these effects were found to

be capable of opening band gaps in the dispersions. However, it was shown that if a

band gap already exists, the electric field can be used to shift its location, effectively

turning the band gap at a particular frequency on or off.

For the second situation, we took a uniform slab of YIG and applied a periodically

varying electric field to it. Since the magnetic slab has no periodic structure itself,

there are no band gaps when the electric field is off. The periodic structure is now

contained in the field, so when it is turned on, band gaps are opened and begin to

widen as the strength of the field is increases. This was shown to be a more effective

method of controlling the band gaps with an electric field as it does not rely on the

magnetic structure in order for the gaps to appear. The gaps are instead controlled

completely by the periodically varying electric field.
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6.2 Possible Extensions of this Work to Additional Situations

6.2.1 Enhance Symmetry Breaking

As discussed in section 1.1.4, non-reciprocal properties in materials can be

useful, and even necessary for some devices. The symmetry breaking effect of spin

wave propagation caused by the dipolar field (section 3.2) is another example of a

non-reciprocal effect. Since the reflection symmetry is broken, spin waves traveling in

opposite directions will behave differently. However, the symmetry breaking caused

by the dipolar field is relatively small, and in order for it to be significant, its effects

would have to be amplified. In order for this to occur, the dipolar field must be

at least on the same order of magnitude as the exchange field, if not larger. One

possible way of doing this is to increase the crystal’s lattice constant, resulting in

a transition from the exchange regime to the dipolar regime. At this small scale

the exchange field, which is largely a surface effect caused by the rapid change in

magnetic properties at the boundary between the two materials, dominates over the

dipolar field, which scales by the volume of the material. By increasing the lattice

constant, the volume-dependent dipolar field should increase, while the average value

of the exchange field should decrease. The electric field was also shown to result in

symmetry breaking (section 5.2.1), and could also be further investigated for potential

application in non-reciprocal devices.

6.2.2 Large Differences in Magnetic Properties

The results in this paper were all obtained from the LLG equation using the

plane wave expansion method (section 2.2.4). In doing this, the magnetic properties of

the crystals were represented using a truncated Fourier series. One of the advantages

of using this method is that the interface between the two materials is a continuous

function, and as a result, there is no need to worry about boundary conditions at these

interfaces. The drawback is that if there is a large difference in magnetic properties
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between the two materials, then more terms will need to be included in the Fourier

series in order to give a decent approximation of the structure. More terms, means

the calculation will take longer to complete, and eventually it reaches a point were

the calculation cannot be finished in a reasonable amount of time with this method.

In the course of this research, the most extreme case that was considered was

having the cylinders replaced with empty space, meaning that the magnetic properties

in those regions are zero. When calculations were performed for these parameters,

there were places where the material functions produced by the Fourier series dipped

below zero, even when using the highest reasonable number of terms. This resulted in

the appearance of modes with negative linewidths, which would give spin waves that

had an exponential growth in time instead of an exponential decay. In order to look

at the propagation of spin waves in situations like this, wither the above plane wave

expansion method would have to be modified in some way to give physical results in a

reasonable amount of time, or an entirely different method would have to be used.

6.2.3 Two-Dimensional Magnonic Crystal Slab

The calculations on two-dimensional magnonic crystals was performed under

the assumption that the crystal was infinite in extent in all three directions. Since any

physical device that might be created using these structures would likely by in the

form of a slab, it would be useful for the calculations to reflect that. The consequences

of having a slab geometry would result in a demagnetization field, as was discussed

in section 5.1.2 for the one-dimensional case. This could be extended fairly easily

to the two-dimensional case and results compared with the current data. Since the

demagnetization field opposes the applied bias field, it would likely by necessary to

increase the strength of the bias field for the slab in order to get similar results.
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6.2.4 Tunability of Band Gap

Another direction to take would be to look at photonic crystals and see if some

of their discovered properties could be recreated in magnonic crystals. Some of the

more interesting examples include lossless waveguides [107], beam steering [124,125],

and cavities created with defects [126,127]. Replicating these effects with spin waves

could be advantageous, since the spin waves would be confined to the magnonic crystal,

unlike light waves in a photonic crystal.

6.2.5 Dependence of Propagation on Cylinder Cross Section

Another consideration for controlling the propagation of spin waves would be

to look at the effects of changing the cross section of the cylinders. In this work we

only looked at circular cross sections. Perhaps by changing the cross sections to an

ellipse, or some form of polygon could influence the propagation patterns in a desirable

manner. While there have been investigations performed on the effects of differently

shaped cross sections in two dimensional magnonic crystals [101,110], these studies

were primarily looking at the dispersion relations, and did not consider the effects on

the propagation.

6.2.6 Spin Wave Propagation with Electric Fields

The studies conducted here on one-dimensional magnonic crystals were restricted

to looking at the dispersion relations. An extension on this work could involve

calculating response functions as was done in chapter 4. The properties of spin wave

propagation as a function of the electric field strength could then be investigated.

Similarly, the effects of an electric field on spin waves in a two-dimensional magnonic

crystal could also be studied. These results would be interesting as the electric field

has been shown to break some of the symmetries of the spin wave, which could be

useful in non-reciprocal spin wave devices.
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[70] V. Kamberský. On ferromagnetic resonance damping in metals. Czechoslovak
Journal of Physics B, 26(12):1366–1383, 1976.
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