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In order to investigate the efficiency of using the Amicon® Ultra-15 centrifugal 

tube for collecting the nanoparticles, the percent yield was calculated for three batches of 

nanoparticles collected with the Amicon tube and three batches of nanoparticles collected 

with standard 50 ml polypropylene tube. The average percent yield was compared 

between the two different techniques. In addition, the percent yield was compared among 

the batches prepared using the same method to compare the reproducibility between 

triplicates in each collection technique. 

3.3.4 Calculation of Nanoparticle Loading  

 Nile Red loading in the nanoparticles was calculated by measuring the amount of 

Nile Red recovered from a sample of prepared nanoparticles and comparing the results to 

the original amount of Nile Red added to the PLGA solution prior to nanoprecipitation         

(in this study the amount of Nile Red was 10 μg of Nile Red per 5 mg of PLGA) 

according to the following equation: 

 

   Equation (2) 

 

In order to calculate the amount of the Nile Red remaining in the nanoparticles 

after preparation, 1 ml of the nanoparticle suspension was partially dried with a gentle 

stream of nitrogen gas (TurboVap® LV, Caliper Life Science, MI, USA) in a 37 °C water 

bath to remove the most of the water in order to increase the quantification sensitivity. 

Then the particles were incubated for ~8 hours with 1 ml of Cellosolve® Acetate to 

loading % =

amount of Nile Red recovered following
nanoparticles preparation

amount of Nile Red used in initial PLGA
solution

∗ 100%  
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completely dissolve the PLGA nanoparticles and release the entrapped Nile Red dye.     

A particle size measurement was performed to confirm complete dissolution of the 

nanoparticles. The fluorescent intensity of the Nile Red in the Cellosolve® Acetate 

solution was measured and the dye concentration was calculated using the appropriate 

standard curve (Appendix A). The total amount of Nile Red recovered after nanoparticle 

preparation was calculated by multiplying the amount in 1 ml by the total volume of 

nanoparticles suspension remaining after dialysis (in this study, the total volume of 

nanoparticles suspension after dialysis was ~ 30 – 32 ml). 

Cellosolve® Acetate (2-ethoxyethyl acetate, C6H12O3) was chosen as a solvent to 

extract the Nile Red entrapped in the nanoparticles due to its water immiscibility and its 

ability to dissolve both the Nile Red dye and the PLGA polymer. Cellosolve® Acetate 

was used previously in our laboratory to dissolve polystyrene nanoparticles, and it was 

observed to dissolve PLGA nanoparticles. The water immiscibility of Cellosolve® 

Acetate allows for rapid separation of the nanoparticle and the dye from the aqueous 

medium to recover the maximum amount of the dye. 

3.4 Preparation of Nanoparticle Dispersion for Tissue Uptake 

In order to deliver nanoparticles to the nasal mucosal tissues, nanoparticles need 

to be suspended in a medium that maintains tissue viability and does not cause any 

nanoparticle aggregation6. Solutions including buffers (with pH ~ 7) or alternative 

solutions such as glucose 5 % (w/v) solution were used in this study as a suspension 

medium to maintain tissue viability during the incubation of nasal mucosal tissues with 
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the nanoparticle suspensions. In this study we used three buffer solutions (pH ~ 7):         

1) KRB (Krebs-Ringer Bicarbonate Buffer) with added glucose, 2) PBS (Phosphate 

Buffered Saline) and 3) TBS (Tris Buffered Saline). These buffers were prepared as 

shown in Appendix D. In addition to buffer solutions, glucose 5 % (w/v) solution was 

also investigated in this study as an alternative incubation medium. 

 In these studies, nanoparticles prepared with the surfactant-free nanoprecipitation 

method were lyophilized to provide a nanoparticle powder or nanoparticles suspension 

was used immediately after preparation without lyophilization to decrease any particle 

aggregation resulting from freeze drying process. In cases where lyophilization was used, 

the nanoparticle powder was resuspended in the buffer solution by vortexing. In the case 

of the nanoparticles suspension without lyophilization, a small amount of glucose 

equivalent to 5 % (w/v) of the nanoparticle suspension volume was added slowly to the 

suspension under medium speed vortexing until the glucose powder was dissolved 

completely.  

In order to test the effect of the suspension medium on nanoparticles 

characteristics, nanoparticle suspension was investigated for any visual aggregation and 

then it was investigated using dynamic light scattering for any changes in the 

nanoparticles’ average size range. The effect of the dispersion medium on the viability of 

the nasal mucosa was investigated as described in Section 3.4.1. 
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3.4.1 Test of Tissue Integrity in Incubation Medium 

The integrity of the nasal mucosal tissues exposed to KRB buffer solution with 

added glucose as an incubation medium was previously tested in our laboratory and 

results showed the tissues were viable for at least 3-4 h after harvest16,45.  

In order to study the time period over which the excised tissues remained viable 

when using glucose 5 % (w/v) as the incubation medium, the transport of Lucifer Yellow 

VS Dilithium salt was measured during an experiment where the donor and receiver 

solutions contained 5 % glucose in water and were oxygenated using Carbogen.  

Lucifer Yellow VS, (4-Amino-N-[3-(vinylsulfonyl) phenyl] naphthalimide-3,6-

disulfonate) Dilithium salt), is a widely used permeability marker to evaluate paracellular 

permeability through cell monolayers and mucosal tissues 46-50. Lucifer yellow VS 

(Figure 7) is a non-permeable, auto-fluorescent dye. It can only be transported between 

cells, so intact, viable tissues exclude the transport of drug quantities of dye. The 

detection of greater than 1 % of the donor concentration of Lucifer Yellow in the receiver 

chamber is an indication of damage to the tissue or of increased paracellular permeability 

due to the loss of tight junctional adhesion48. 

The concentration of Lucifer Yellow was quantified by measuring the 

fluorescence intensity using a SpectraMax® M5 Multi-Mode Microplate Reader 

(Molecular Devices, Sunnyvale CA, UAS) at 430 – 530 nm for excitation and emission 

wavelengths, respectively. A Lucifer Yellow VS standard curve was prepared by 

measuring the fluorescence intensity of Lucifer Yellow VS solutions of various 

concentrations. The fluorescence measurements were performed in triplicate and in three 
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different wells for each concentration (in order to account for instrument and well to well 

variability) in a 96-well polypropylene plate, and the average intensity of the three 

measurements was calculated. A linear regression of the fluorescence intensity versus 

concentration was performed and the detection limit of Lucifer Yellow VS was 

performed using Minitab 17 software (licensed by the University of Iowa). The detailed 

calculations and the linear regression equation are explained in detail in Appendix A. 

 

 

Figure 7. Chemical structure of Lucifer yellow VS di-lithium salt (molecular weight= 

550.4 g/mole, adapted from PubChem)14. 

 

Three vertical Navicyte® diffusion chambers (Harvard Apparatus, Holliston, MA, 

USA) were prepared for each type of mucosal tissues (respiratory, olfactory). Tissue 

collection and diffusion chamber setting are described in Section 3.6. The donor side was 

incubated with a pre-warmed (1 ml) solution containing 55 µg/ml (100 µM) of Lucifer 

yellow VS in glucose 5 % (w/v) solution and the receiver side was incubated with 1 ml 

glucose 5 % (w/v). Uptake studies were performed on the same day using two 

techniques: 



27 

 

 

I: Measuring the cumulative amount of Lucifer Yellow VS transported at various 

time points during the 1.5 h incubation. 

 Aliquots (300 μl) were taken from the receiver side at 15 min time intervals for 

up to 90 min and replaced by the same volume of glucose 5 % (w/v) solution. The 

amount of Lucifer Yellow VS in the receiver side was calculated by comparing the 

fluorescent intensity with the appropriate standard curve. The percent transported was 

calculated by comparing the receiver side concentration at each sampling time point with 

the starting Lucifer Yellow VS concentration in the donor side (55 µg/ml in this study). 

The cumulative amount was calculated by measuring the dye concentration at each time 

point and adjusting for the amount withdrawn for fluorescence measurement (amount of 

Lucifer Yellow in the 300 µl aliquot used for measurements). 

 II: Three transport chambers for each tissue type were incubated with a pre-

warmed 1 ml solution containing 55 μg/ml (100 μM) Lucifer Yellow VS in glucose         

5 % (w/v) solution in the donor side and 5 % glucose in the receiver. After 1.5 h receiver 

sides were collected and the fluorescence intensities were measured with a SpectraMax® 

M5 Multi-Mode Micro Plate Reader. The Lucifer Yellow concentration was calculated 

using the appropriate standard curve.  
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Size measurement for experiment 5A (average size =163 nm) 

 

 

 

Size measurement for experiment 6A (average size d =178 nm, PDI= 0.056) 
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Size measurement for experiment 7A (average size =137 nm, PDI= 0.038) 

 

 

 

Size measurement for experiment 8A (average size =162 nm, PDI= 0.018) 
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Size measurement for  experiment 9A (average size = 100.5 nm) 

 

 

 

Size measurement for experiment 10A (average size =161 nm, PDI= 0.022) 
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Size measurement for experiment 11A (average size = 98 nm, PDI= 0.033) 

 

 

 

Size measurement for experiment 12A (average size =146 nm, PDI= 0.064) 
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Size measurement for experiment 13A (average size =164.7 nm, PDI= 0.078) 

 

 

 

Size measurement for experiment 14A (average size =173.4 nm, PDI= 0.015) 
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Size measurement for experiment 15A (average size =157 nm, PDI= 0.082) 

 

 

Size measurement for experiment 16A (average size =162 nm, PDI= 0.072) 
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Nanoparticles Prepared with the Surfactant-Free Nanoprecipitation Method 

Table F 1. Data for individual nanoparticle batches prepared by surfactant-free 

nanoprecipitation method 

Code 

Name 

Order PLGA 

(mg±0.5) 

DMF 

(ml) 

Aqueous 

phase (ml) 

Temp. 

(℃) 

 

Needle 

Gauge 

(G) 

Particle size 

(nm) 

1B 1 10 2 20 25 27 94 

 2 10 2 20 25 27 92 

 3 10 2 20 25 27 79 

2B 4 10 2 20 40 27 68 

 5 10 2 20 40 27 68 

 6 10 2 20 40 27 72 

 7 10 2 20 40 27 62 

 8 10 2 20 40 27 64 

 9 10 2 20 40 27 71 

3B 10 10 2 40 75 27 82 

 11 10 2 40 75 27 77 

 12 10 2 40 75 27 62 

7B 13 36 5 30 40 27 57 

 14 36 5 30 40 27 66 

 15 36 5 30 40 27 64 

8B 16 36 5 30 40 20 50 

 17 36 5 30 40 20 57 

 18 36 5 30 40 20 53 

 19 36 5 30 40 20 51 

 20 36 5 30 40 20 57 

 21 36 5 30 40 20 54 

 22 36 5 30 40 20 61 

 23 36 5 30 40 20 61 
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Note: Graphs are coded by the group name and order number, for example (1B 1) 

 

 

Size measurement for experiment 1B 1 (average size = 94.1 nm) 

 

 

Size measurement for experiment 1B 2 (average size = 91.6 nm) 
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Size measurement for experiment 1B 3 (average size = 79 nm) 

 

 

 

 

Size measurement for experiment 2B 4 (average size = 67.64 nm, PDI= 0.153) 
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Size measurement for experiment 2B 5 (average size = 67.8 nm) 

 

 

 

Size measurement for experiment 2B 6 (average size = 72.4 nm) 
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Size measurement for experiment 2B 7 (average size = 62.4 nm) 

 

 

measurement for experiment 2B 8 (average size = 64.4 nm) 
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measurement for experiment 2B 9 (average size = 71.4 nm) 

 

 

 

 

Size measurement for experiment 3B 10 (average size = 82.44 nm, PDI= 0.038) 

0 

5 

10 

15 

20 

25 

0.1 1 10 100 1000 10000 

Size (d.nm) 

Size Distribution by Intensity 



90 

 

 

 

Size measurement for experiment 3B 11 (average size = 77.01 nm, PDI= 0.074) 

 

 

 

 

Size measurement for experiment 3B 12 (average size = 62.44 nm, PDI= 0.09) 
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Size measurement for experiment 7B 13 (average size = 56.96 nm, PDI= 0.213) 

 

 

 

Size measurement for experiment 7B 14 (average size = 65.69 nm, PDI= 0.142) 
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Size measurement for experiment 7B 15 (average size = 64.25 nm, PDI= 0.072) 

 

 

 

 

Size measurement for experiment 8B 16 (average size = 50.34 nm, PDI= 0.119) 
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Size measurement for experiment 8B 17 (average size = 56.95 nm, PDI= 0.193) 

 

 

 

 

 

 

Size measurement for experiment 8B 19 (average size = 53.23 nm, PDI= 0.078) 
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Size measurement for experiment 8B 20 (average size = 50.50 nm, PDI= 0.096) 

 

 

 

 

 

Size measurement for experiment 8B 21 (average size = 56.72 nm, PDI= 0.17) 
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Size measurement for experiment 8B 22 (average size = 53.64 nm, PDI= 0.088) 

 

 

 

 

 

Size measurement for experiment 8B 23 (average size = 60.53 nm, PDI= 0.087) 
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Size measurement for experiment 8B 24 (average size = 60.78 nm, PDI= 0.081) 
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