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6.3 Surrogate Model 

A surrogate model, also called a response surface model, meta-model, or emulator, 

is widely used to obtain approximated responses to input variables in various design 

optimization problems. A surrogate model is constructed using a data-driven approach for 

a limited number of design of experiment (DOE) points and their system responses 

obtained from experiments or simulations. Using this data, the approximated input-output 

behavior can be constructed. There are a wide variety of surrogate models proposed in the 

past such as polynomial response surfaces [61], support vector regression and classifiers 

(SVR, SVC) [62], neural networks [63], radial basis function [64], and kriging predictors 

[65].  

The kriging method has been widely used due to its capability of dealing with 

highly nonlinear problems [102]. The basic idea of this method is to predict a function 

value at a given design point by calculating a weighted average of the response values of 

the function in the neighborhood of a given point based on a Gaussian process governed 

by prior covariance. For instance, for n sample points 
1 2[ , ,..., ]T

s nx x x x , the n responses 

1 2[ ( ), ( ),..., ( )]T

s ny y yy x x x  are modeled as [102]: 

                                               s  y Fβ e                                                            (6.3) 

Fβ  is the mean structure of the response, where [ ( )]iF f x  

{ ( ) [ ( )], 1,..., , and 1,..., }s k sf i n k K  f x x  is an n K  model matrix, and ( )sf x  

represents user-selected basis functions; 
1 2[ , ,..., ]T

K  β  is the vector of the regression 

coefficients; 
1 2[ ( ), ( ),..., ( )]T

ne e ee x x x  is a realization of the stochastic process; and ( )e x  

has zero mean and a covariance that is equal to 
2 ( , , )i jR θ x x , where 2  is the process 

variance and ( , , )i jR θ x x is the correlation function of the stochastic process, 

1 2[ , ,..., ]T

m  θ  is the process correlation parameter vector of dimension m. Having 

determined θ  through the maximum likelihood estimator (MLE) [102], β can be obtained 

from the generalized least squares regression and then response of a kriging model can be 

obtained through the interpolation of n sample points as 

                                                                                            (6.4) 
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where [ ( )] ( 1,..., )T

kf k K f x  is the basis-function values evaluated at the point x  and 

1[ ( , , ),..., ( , , )]T

nR Rr θ x x θ x x . A standard kriging method constructs the mean structure 

Fβ  using a fixed set of polynomial basis functions, which may not be accurate enough for 

highly nonlinear problem. The dynamic kriging method proposed in the literature [102], 

on the other hand, obtains an optimum mean structure using basis functions selected by a 

genetic algorithm, and an accurate optimum of the correlation parameters 

1 2[ , ,..., ]T

m  θ are obtained through the generalized pattern search algorithm. Thus, the 

dynamic kriging method can, in general, create more accurate surrogate model than the 

conventional kriging method [107]. In this study, the dynamic kriging method is utilized 

to generate a surrogate model for prediction of the wind turbine gear contact fatigue 

damage. 

The accuracy of a system response predicted by a surrogate model depends not only 

on the number of sampling points, but also on the location of sampling points. In the wind 

turbine drivetrain model, the CPU time of the 10-minute dynamic simulation under wind 

load uncertainty (35 wind scenarios considered) is approximately 12 hours for one DOE 

point using a server computer (two 3.1GHz Intel Xeon E5-2687W CPUs having 20 cores 

each, i.e., 40 logical processors, 768GB RAM). In general, a local surrogate model is 

created at the current design point within the two sigma range of design variables [101]. It 

is, however, important to notice here that the design point could move to a point beyond 

the two sigma range in an iterative RBDO process, thus the local surrogate model needs to 

be generated at each design iteration of RBDO, making the RBDO process very 

computationally expensive. Suppose that 14 DOE points are used for generating a local 

surrogate model and 10 design iterations are assumed to be needed to obtain a RBDO 

optimum design; then the CPU time for RBDO amounts to roughly 1,680 hours (70 days). 

To address this fundamental computational issue in wind turbine drivetrain RBDO, 

an intermediate surrogate model covering the range from the DDO optimum to the 

expected RBDO optimum is utilized in this study. That is, surrogate models are generated 

once prior to the RBDO process and used throughout the RBDO iteration process. To 

ensure its accuracy, 50 DOE points are selected using Latin Centroidal Voronoi 

Tessellations (LCVT) sampling method with hypercube window and the window size is 
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selected in the range of twelve sigma as shown in Fig. 6.2. The area of this window covers 

approximately one ninth of the entire design variable domain. It is important to notice here 

that the center of the intermediate window is intentionally shifted by three sigma of the 

face width from the DDO optimum as shown in Fig. 6.2 as “+” point since it is unlikely 

that the gear face is decreased from the DDO optimum to meet the higher target reliability 

in RBDO. The window has to be appropriately selected such that the design variables taken 

in the RBDO iterative process lie within the window to assure the accuracy. Furthermore, 

the window size has to be small enough to minimize the number of DOE points to reduce 

the computational cost for the surrogate model generation. The numerical procedure for 

generating the surrogate model is summarized as follows: 

(1) At the DDO optimum design point of the wind turbine drivetrain, 50 DOE points are 

created using truncated Gaussian sampling (TGS) method with hypercube window in 

the twelve sigma range. 

(2) The wind turbine drivetrain dynamics simulation is carried out for 50 DOE points 

considering wind load uncertainty to obtain 50 fatigue damage response vectors. Each 

response vector contains 10-minute gear contact fatigue damages for all 35 wind load 

cases considered in the wind load uncertainty model. Each wind load scenario needs a 

surrogate model that predicts the corresponding 10-minute contact fatigue damage for 

the give design point. 

(3) Using the 10-minute fatigue damage response vectors for 50 DOE points, 35 surrogate 

models associated with 35 wind load scenarios are generated by the dynamic kriging 

method. 

It is imporatant to notice here that since the intermediate surrogate models are generated 

only once, an estimated CPU time using the above-mensioned server computer is reduced 

to 25 days if 50 DOE points are used. This leasds to a significant reduction in CPU time as 

comparied to that of local surrogate models. Furthermore, if simulations at all DOE points 

can run concurrently using computer that has a sufficient number of cores, the CPU time 

using the intermeduate surrogate models is futher reduced to 12 hours. On thet other hand, 

CPU time of the local surrogate models is 12 N  hours, where N is the number iterations 

required to complete the RBDO process. 
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Fig.6.2 Randomly generated 50 DOE ponits for an intemediate surrogate model; 

                  + : DDO optimum design 

 

6.4 RBDO of Wind Turbine Drivetrain 

In this section, a numerical procedure for the RBDO of wind turbine drivetrain 

under wind load uncertainty and gear manufacturing variability is developed. First, a 

formulation of wind turbine drivetrain RBDO is presented and then an entire numerical 

procedure developed for RBDO of wind turbine drivetrains is presented. 

6.4.1 Formulation of Wind Turbine Drivetrain RBDO 

In reference to Eq. 6.1, RBDO of wind turbine drivetrains is formulated as follows: 

           20

Minimize  ( ) ( ) ( ) 3 ( )

Subject to [ ( , ; ) 1]

for and
a a a

B ring B sun B planet B

Tar

year a F

L U L U

B B B

J M M M

P D B P

  

   



     

  

 

   

Y                       (6.5) 

where B  and 
a

  are means of the random face width B and the random tip relief amount 

δa of the sun gear, respectively; the lower and upper bounds of the design variables are 

same as the deterministic design optimization in Chapter 4 (i.e., 167.5 272.5B   mm 

and 0 100
a

  μm); the cost function ( )BJ   is defined as the total mass of the planetary 

stage gears consisting of a ring gear, a sun gear and three planet gears; y is the random 

wind load vector including 20 sets of (C, k, a, b,  );  and 20 ( , ; )year aD B  Y  is the 20-year 
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contact fatigue damage of the sun gear. For each of the MCS design point, 
20 yearD is 

evaluated as follows: 

20

20 10 10 10min 10 10 10 10

1 1 1

ˆ ˆˆ ˆˆ( , ; ) 6 3000 ( , ; , , , , ) ( , ; , )
v in n

h h h ijlh i j lh lh lh lh lh ij h h i j

year a VI a

l i j

D B f v i C k a b D B v i v i  
  

   y  

for 1,...,h NMCS                                                                                                                                     (6.6) 

where ˆ hB  and ˆh

a  are realizations of random face width B and tip relief amount a , 

respectively; and ˆ h
y  is the realization vector of random wind load parameters. The 

probabilistic constraint 20[ ( , ; ) 1]year aP D B  Y  is imposed to ensure that the probability of 

contact fatigue life being shorter than 20 years is smaller than the target probability of 

failure Tar

FP  . 

6.4.2 Numerical Procedure of Wind Turbine Drivetrain RBDO 

A numerical procedure of wind turbine drivetrain RBDO using the intermediate 

surrogate model is summarized as follows:  

Step 1: As shown in Fig. 6.3, using the DDO optimum design (face width = 202 mm, tip 

relief = 41 μm) obtained in Chapter 4, 50 DOE points are randomly generated 

using the truncated Gaussian sampling (TGS) method with hypercube window 

in the twelve sigma range. The intermediate surrogate models of the sun gear 10-

minute contact fatigue damages are generated using the dynamic kriging method. 

The numerical procedure for generating the surrogate models is summarized in 

Fig. 6.4. For each DOE point, the 10-minute fatigue damages for all the wind 

load conditions (35 scenarios) under consideration are calculated and the 

obtained 10-minute fatigue damages are inputted to RAMDO software to 

generate 35 surrogate models associated with 35 wind load conditions using the 

dynamic kriging method. 

Step 2:     The RBDO process starts from the DDO optimum design. At every RBDO 

design, NMCS realizations of designs are created considering the manufacturing 

variabilities as defined in Table 5.2. The NMCS realizations are inputted to the 

35 surrogate models to obtain the NMCS 10-minute fatigue damage tables 

containing 35 10-minute fatigue damages under 35 wind load conditions. 
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Step 3:  The NMCS realizations of 20 sets of (C, k, a, b, τ) are defined using the PDFs, 

and NMCS 20 wind load probability tables are created. Each table contains the 

probabilities of 35 wind load conditions. 

Step 4: The NMCS 20-year fatigue damages are calculated using Eq. 6.6, and then the 

probabilistic constraint is evaluated inside RAMDO at the current design. If the 

convergence criteria is met, the RBDO iteration stops and an optimum design is 

obtained. Otherwise, the design is updated and then continues the RBDO process 

by repeating Step 2 to 4 until the RBDO optimum design is achieved. 
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(3) 500,000 MCS design points are created using the joint PDF of the face width and tip 

relief. 

(4) The 500,000 10-minute fatigue damage tables are generated through the local 

surrogate models and then 500,000 20-year fatigue damages are calculated using Eq. 

6.5. 

(5) Probability of failure is calculated and compared with the target probability of failure. 

 

The probability of failure calculated using the local surrogate models is 2.5042 %, 

while the converged value of probability of failure at this RBDO optimum is 2.2748 %. 

The difference is 0.2294 %, which is small enough, and the RBDO optimum turned out to 

be on the safer side. This result justifies the use of intermediate surrogate models in the 

wind turbine drivetrain RBDO involving the high-fidelity gear dynamics simulation. 

Furthermore, it is demonstrated that the integrated design optimization procedure 

developed in this study enables the cost effective and reliable design of wind turbines 

drivetrains. 
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(a) Change of design variables 

 

(b) Change of normalized mass and probability of failure 

Fig.6.5 RBDO design iteration for 10%Tar

FP   
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(a) Change of design variables 

 

(b) Change of normalized mass and probability of failure 

Fig.6.6 RBDO design iteration for 5%Tar

FP   
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(a) Change of design variables 

 

(b) Change of normalized mass and probability of failure 

Fig.6.7 RBDO design iteration for 2.275%Tar

FP   
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Fig.6.8 Randomly generated 50 DOE ponits in local window at RBDO optimum design; 

             + : RBDO optimum design 
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CHAPTER 7                                                                                            

CONCLUSIONS AND FUTURE WORK 

7.1 Summary and Conclusions 

Gears in wind turbine drivetrains are subjected to severe cyclical loading due to 

variable wind loads that are stochastic in nature and the failure rate of drivetrain systems 

is reported to be relatively higher than the other wind turbine components. For this reason, 

improving reliability of drivetrain design is one of the key issues to make wind energy 

more competitive to fossil fuels. However, limited studies have been carried out regarding 

deterministic and reliability-based design optimization (DDO and RBDO) of wind turbine 

drivetrains considering wind load as well as manufacturing uncertainties. It requires an 

extensive numerical procedure involving uncertainty quantification of wind loads as well 

as manufacturing errors of gears, the contact dynamics of multibody geared systems, 

probabilistic contact fatigue prediction of gear teeth, and design optimization procedures 

to meet 20-year service life while minimizing the cost (weight) of drivetrains. This thesis 

is aimed to develop an integrated multibody dynamics computational framework for the 

deterministic and reliability-based design optimization of wind turbine drivetrains 

considering wind load and gear manufacturing uncertainties.  

To this end, a numerical procedure for gear dynamics simulation of multibody 

geared systems is developed first using the tabular contact search method in Chapter 2. 

Since 10-minute wind data is widely used to characterize the short-term wind speed 

variability in wind energy industry, 10-minute wind turbine gear dynamic simulations 

under different wind load conditions are required to evaluate probabilistic contact fatigue 

life under random wind load. Furthermore, since the tooth contact pressure is sensitive to 

the gear tooth profile, an accurate description of the tooth profile geometry and precise 

contact geometry calculation are required and use of a simplified gear contact dynamics 

model is not suited.  

To improve computational efficiency associated with the gear contact dynamics 

simulation considering precise contact geometry as well as mesh stiffness variations, a 

tabular contact search algorithm using the combined nodal and non-conformal contact 

search approach is generalized to gear tooth contact in this study. To predict the jump in 

contact that can occur for measured tooth profiles with tooth surface imperfections due to 
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the wear and surface failures, a combined nodal and non-conformal contact search 

algorithm for gear tooth contact is developed. In this procedure, the nodal search is 

employed as a global search to provide a rough estimate of the contact point and then the 

contact point is used as the initial estimate for the non-conformal contact search equations 

to fulfill the non-conformal contact condition. By doing so, a robust contact search 

algorithm which allows for detecting an appropriate initial estimate for non-conformal 

contact search for tooth surfaces with gear geometry imperfections can be achieved.  

In the dynamics simulation, the tabular contact search is performed for all the gear 

teeth positioned in the searching range defined in the look-up table tooth by tooth. This 

allows for detecting multi-point contact without any iterative procedures. Furthermore, the 

coordinate transformation between the generalized coordinates and those defined in the 

look-up table coordinate system introduced in the contact geometry analysis is established. 

With this transformation, the look-up contact table can be directly applied to any pair of 

gears in the dynamic simulation. Several numerical examples are presented in Chapter 3 in 

order to demonstrate the use of the numerical procedure developed in this study. In 

particular, an accuracy of the mesh stiffness model introduced in this study and the 

transmission error of gear tooth with tip relief are discussed. A planetary gear model is then 

introduced to discuss the effect of tooth surface irregularity on mesh force variation. A 

wind turbine drivetrain model is presented in the last example and is validated against test 

data provided in the literature. 

An integrated numerical procedure for design optimization of wind turbine 

drivetrains is developed in Chapter 4 using the gear dynamics simulation procedure based 

on the multi-variable tabular contact search algorithm considering wind load uncertainty. 

The joint probability density function (PDF) of the 10-minute mean wind speed (V10) and 

10-minute turbulence intensity (I10) is introduced to characterize the short-term wind speed 

variability at a specific location and time. Since the wind load distribution varies at 

different locations in different years, a wide spatiotemporal variability is considered by 

identifying PDF of all the joint PDF parameters (C, k, a, b, τ) using 249 sets of wind data 

and these PDFs are used in the reliability-based design optimization (RBDO). The 

averaged joint PDF obtained using Monte Carlo simulation (MCS) is used in the 

deterministic design optimization (DDO). The random time-domain wind speed data is 
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generated using NREL TurbSim and then inputted into NREL FAST to perform the aero-

hydro-servo-elastic simulation of rotor blades under pitch control to predict the transmitted 

torque and speed of the main shaft of the drivetrain, which are sent to the multibody gear 

dynamics simulation for contact fatigue prediction.  

To account for the wind load uncertainty characterized by the averaged joint PDF 

of the 10-minute mean wind speed and turbulence intensity, multiple 10-minute drivetrain 

dynamics simulations are performed. However, multibody drivetrain dynamics simulation 

becomes a computational burden in the entire design optimization process. In addition, 

since the tooth contact pressure is sensitive to the gear tooth profile, an accurate description 

of the tooth profile geometry and precise contact geometry calculation are required, 

resulting in use of a simplified gear contact dynamics model being not suitable. For this 

reason, a numerical procedure for the multibody gear dynamics simulation based on the 

tabular contact search algorithm developed in Chapter 2 is integrated into the gear design 

optimization procedure considering wind load uncertainty.  

The pitting fatigue model based on the Paris equation is then used to predict the 

contact fatigue life of gear tooth using the maximum contact pressure obtained using the 

multibody drivetrain dynamics simulation under various 10-minute wind scenarios. 

Numerical results obtained at different locations and in different years characterized by 

joint PDF parameters (C, k, a, b, τ) indicate that the predicted contact fatigue life differ 

significantly and wind load variation plays an important role to realistic estimation of 

contact fatigue life of wind turbine drivetrain systems.  

Using the optimization procedure developed in this study, it is demonstrated for a 

750kW GRC wind turbine gearbox model that an optimum tip relief allows for lowering 

the greatest maximum shear stresses on the tooth surface without relying heavily on face 

width widening to meet the 20-year fatigue life constraint and it leads to weight reduction 

by 8.4 %, which leads to more cost-effective design. If only face width is considered as 

design variable, total weight needs to be increased by 4.7 % to meet the 20-year fatigue life 

constraint. 

Furthermore, the reliability analysis at the DDO optimum design is discussed in 

Chapter 5 considering the large spatiotemporal wind load uncertainty and gear 

manufacturing uncertainty. Surrogate models are generated using the dynamic kriging 
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method in RAMDO software to evaluate the gear contact fatigue damage. One million 

MCS sets of gear design variables are generated. For each set of design variables, the 10-

minute gear contact fatigue damage is obtained from the surrogate models and then twenty 

sets of (C, k, a, b, τ), which represents uncertain annual wind loads for 20 years, are 

randomly generated to calculate the probabilistic fatigue damage. The 49.5 % reliability is 

obtained at the DDO optimum design obtained in Chapter 4, indicating that the probability 

of failure is 50.5 %, as expected, for DDO design and RBDO is necessary to further 

improve the reliability of the wind turbine drivetrain. To this end, the sampling-based 

reliability analysis is carried out to evaluate the probability of failure for each design using 

the Monte Carlo Simulation (MCS) method. However, use of a large number of MCS 

sample points required leads to a large number of contact fatigue damage evaluations using 

the 10-minute multibody drivetrain dynamics simulation, resulting in the RBDO 

calculation process being very computational intensive.  

In order to overcome the computational difficulty resulting from the use of high-

fidelity wind turbine drivetrain dynamics simulation, intermediate surrogate models are 

created once prior to the RBDO process using the dynamic kriging method and used 

throughout the entire RBDO iteration process. The area of the intermediate window chosen 

for generating the surrogate model covers approximately one ninth of the entire design 

variable domain. It is demonstrated that the RBDO optimum obtained ensures the target 

97.725 % reliability (two sigma quality level) by only 1.4 % increase in the total weight 

from the baseline design with 8.3 % reliability. This result clearly indicates the importance 

of incorporating the tip relief as a design variable that prevents larger increase in the face 

width causing an increase in weight. This, however, does not mean that a larger tip relief 

is always preferred since an optimum tip relief amount depends on stochastic wind loads 

and an optimum tip relief cannot be found deterministically. Furthermore, accuracy of the 

RBDO optimum obtained using the intermediate surrogate models is justified by the 

reliability analysis at the RBDO optimum using the local surrogate models. It is 

demonstrated that the integrated design optimization procedure developed in this study 

enables the cost effective and reliable design of wind turbines drivetrains. 
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7.2 Future Work 

There are several topics that would be recommended for further study to address 

the design optimization of wind turbine drivetrains and these topics are summarized as 

follows: 

1. In this study, the time-domain rotor blade speed and the input shaft toque under wind 

loads are predicted using NREL FAST software, in which a drivetrain is modeled by a 

simplified lumped mass model. To ensure the consistency between the simplified 

drivetrain model used in the aerodynamics simulation of rotor blades and the high-

fidelity model used in the gear tooth contact fatigue damage evaluation, a coupled 

multi-physics simulation capability that integrates the high-fidelity computational fluid 

dynamics (CFD) simulation for rotor blades and the multibody dynamics simulation 

for drivetrains would be pursued. A co-simulation technique proposed in the literature 

[108] would be one of the approaches that can be applied to the numerical procedure 

developed in this study. 

2. While gear manufacturing uncertainties associated with the face width as well as the 

tip relief are considered in this study, the axial misalignment of a gear shaft alters the 

contact pressure distribution over the gear tooth, causing a significant impact on the 

contact fatigue life. That is, uncertainty associated with an assembly error would also 

be considered in RBDO to prevent unexpected failure due to gear assembly errors. 

Consideration of an axial misalignment requires developing a variable contact stiffness 

model for misaligned teeth in contact. Furthermore, an axial misalignment has a 

significant impact on the gear transmission error. 

3. Deflection of the overhung main shaft of wind turbines alters the gear mesh phasing in 

the planetary gear. In particular, bending deflection of the shaft causes a misalignment 

of gear teeth in contact and the tooth contact pressure distribution may also be altered. 

Such a structural deformation of wind turbine components should be considered in the 

future work. 

4. Rotor blade pitch control is crucial for achieving high energy production efficiency as 

well as preventing rotor blades from damages under stochastic wind loads. While an 

ideal region-3 speed control model is utilized in this study, more study is needed in the 
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future to shed light on the effect of the pitch control design and parameters on the 

drivetrain fatigue damages. 
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APPENDIX                                                                                                 

A. The Probability Density Functions 

The probability density functions (PDFs) of C, k, a, b, and  are identified as 

follows: 
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B. 750kW GRC Wind Turbine Specifications 

Specification of 750kW GRC wind turbine used in this thesis is summarized in 

Appendix B. The rotor blade properties are given in Table B.1 through B.3, while 

properties of the tower are provided in Table B.4 through B.6.  These data are used for 

creating the wind turbine model using NREL FAST.  

 

Table B.1 Twist and chord distribution for the GRC blade [97] 

Station Twist wrt Hub Chord length Comments 

(m) (deg) (mm)  

0.00  1330.00 

Large Calipers 

3.66 16.00 1845.00 

4.88 18.10 2155.00 

6.10 17.20 2265.00 

7.01 14.70 2205.00 

8.23 12.30 2135.00 

10.06 10.50 2075.00 

10.06 9.00 1984.00 

Medium Calipers 

10.97 7.80 1909.00 

11.89 7.10 1824.00 

12.80 6.10 1747.00 

13.72 5.20 1667.00 

14.63 4.50 1575.00 

15.54 3.80 1493.00 

16.46 2.90 1389.00 

17.37 2.40 1286.00 

18.29 2.00 1187.50 

19.20 1.30 1156.00 

20.07 1.10 989.00 

20.07 1.10 916.00 

20.80 0.60 834.00 
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Table B.1 Continued 

20.80 0.80 873.00  

 

Small Calipers 21.72 0.30 752.00 

22.63 -0.70 640.00 

 

Table B.2 GRC blade structural parameters [97] 

Section 

number 

Normalized 

section location 

Mass/length 

(kg/m) 

Flap stiffness 

(N-m2) 

Lag stiffness 

(N-m2) 

1 0.000 1427.29 3.74 109 3.74 109 

2 0.021 200.79 6.12 108 6.12 108 

3 0.053 205.39 5.36 108 4.47 108 

4 0.105 213.15 4.09 108 4.09 108 

5 0.158 221.05 2.82 108 3.71 108 

6 0.211 229.08 1.55 108 3.33 108 

7 0.263 213.27 1.32 108 2.89 108 

8 0.316 196.96 1.08 108 2.45 108 

9 0.368 180.18 8.45 107 2.02 108 

10 0.421 162.91 6.10 107 1.58 108 

11 0.474 145.16 3.77 107 1.14 108 

12 0.526 129.29 3.13 107 9.57 107 

13 0.579 113.00 2.49 107 7.75 107 

14 0.632 96.28 1.84 107 5.94 107 

15 0.684 79.13 1.18 107 4.12 107 

16 0.737 61.56 5.18 106 2.31 107 

17 0.789 52.33 4.28 106 1.88 107 

18 0.842 42.87 3.31 106 1.46 107 

19 0.895 33.18 2.27 106 1.03 107 

20 0.947 23.27 1.18 106 6.03 106 

21 1.000 13.13 6.83 104 1.77 106 
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Table B.3 Polynomial approximations of the mode shapes for GRC blade [97] 

Mode Frequency(Hz) 
               Polynomial terms 

   ---------X2+---------X3+---------X4+---------X5+---------X6 

1st flap 1.7217 0.02395 2.2453 -4.1649 5.1454 -2.2498 

1st Lag 2.4098 0.69226 1.2286 -2.4026 2.5294 -1.0477 

2nd Flap 4.8427 -1.92770 10.168 -34.565 46.353 -19.029 

 

 

 

                            Table B.4 GRC tower dimensions [97] 

Section Distance from tower base Outside diameter Wall thickness 

 (m) (m) (m) 

1 0.000 3.026 0.019 

2 5.361 2.931 0.019 

3 10.723 2.866 0.016 

4 16.084 2.853 0.016 

5 21.446 2.694 0.016 

6 26.807 2.470 0.013 

7 32.169 2.278 0.013 

8 37.530 2.046 0.013 

9 42.891 1.893 0.013 

10 48.253 1.740 0.013 

11 53.614 1.646 0.013 
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Table B.5 GRC tower structural properties [97] 

Station 

Normalized 

section 

location 

mass EI GJ EA Iy,Iz 

  Kg/m Nm2 Nm2 GN Kg-m 

1 0.000 1.404 103 4.206 1010 3.235 1010 3.721 101 1.586 103 

2 0.098 1.359 103 3.820 1010 2.938 1010 3.604 101 1.441 103 

3 0.196 1.109 103 2.985 1010 2.296 1010 2.939 101 1.126 103 

4 0.293 1.104 103 2.945 1010 2.265 1010 2.926 101 1.111 103 

5 0.391 1.042 103 2.476 1010 1.905 1010 2.762 101 9.340 102 

6 0.489 7.647 102 1.530 1010 1.177 1010 2.027 101 5.772 102 

7 0.587 7.051 102 1.200 1010 9.227 109 1.869 101 4.524 102 

8 0.685 6.328 102 8.670 109 6.669 109 1.678 101 3.270 102 

9 0.783 5.852 102 6.857 109 5.275 109 1.551 101 2.586 102 

10 0.880 5.377 102 5.319 109 4.092 109 1.426 101 2.006 102 

11 0.978 5.083 102 4.493 109 3.456 109 1.348 101 1.695 102 

 

 

Table B.6 Polynomial approximations of the mode shapes for GRC tower [97] 

Mode Frequency(Hz) 
Polynomial terms 

---------X2+---------X3+---------X4+---------X5+---------X6 

1st side to side 0.4673 1.1445 -0.5231 0.0140 1.0153 -0.6507 

1st fore-aft 0.4719 1.1562 -0.5406 0.0423 0.9883 -0.6462 

2nd side to side 2.4537 32.4280 -50.238 79.921 -90.890 29.779 

2nd fore-aft 2.9071 78.7820 -123.44 192.26 -232.90 86.292 
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C. Gear Material Properties  

Material properties of gears for 750kW GRC wind turbine drivetrain model used in 

the pitting fatigue calculations are summarized in Appendix C.  

 

Table C.1. Mechanical parameters  

of 18CrNiMo7-6 

E(Mpa) 2.1 105 

G(Mpa) 0.8 105 

ν 0.3 

Su(Mpa) 1172 

σy (Mpa) 835 

μ 0.04 

 

 

Table C.2 Fatigue parameters  

of 18CrNiMo7-6. 

Cp 4.87 10-16 

m 3.05 

'

f  (Mpa) 3470 

'

f  (Mpa) 2499 

b -0.085 

tk  3 

  0.7 

  0.11 

Hv (HV) 720 
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Table C.3 Chemical composition  

of 18CrNiMo7-6. 

C(%) 0.150-0.210 

Si(%) 0.400 

Mn(%) 0.500-0.900 

P(%) 0.025 

S(%) 0.035 

Cr(%) 1.500-1.800 

Mo(%) 0.250-0.350 

Ni(%) 1.400-1.700 
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