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Figure 4.10: Comparing the average fractional anisotropy (FA) values within 4 WM

regions of interest between the HR baseline and each of reconstructed images by 3

different methods: Developed edge-guided weighted-TV approach (WTV), standard

TV, and zero-padded IFFT (IFFT). The WM regions of interests are selected in 4

different lobes of brain (frontal, parietal, temporal and occipital) where partial volume

encountered, and the mean of error is computed in pure and non-pure regions as well.
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Figure 4.11: Comparing the average mean diffusivity (MD) values within 4 WM

regions of interest between the HR baseline and each of reconstructed images by 3

different methods: Developed edge-guided weighted-TV approach (WTV), standard

TV, and zero-padded IFFT (IFFT). The WM regions of interests are selected in 4

different lobes of brain (frontal, parietal, temporal and occipital) where partial volume

encountered, and the mean of error is computed in pure and non-pure regions as well.



122

● ●

● ●

●

●●

● ●

●

●

●

●

●

● ●

●

●

●

●

temporal temporal non−pure temporal pure

parietal parietal non−pure parietal pure

occipital occipital non−pure occipital pure

frontal frontal non−pure frontal pure

WTV TV IFFT WTV TV IFFT WTV TV IFFT

2e−05

3e−05

4e−05

2e−05

3e−05

4e−05

2e−05

3e−05

4e−05

2e−05

3e−05

4e−05

Method

M
ea

n 
E

rr
or

 W
ith

in
 R

eg
io

n

method

IFFT

TV

WTV

Radial Diffusivity

Figure 4.12: Comparing the average radial diffusivity (RD) values within four WM

regions of interest between the HR baseline and each of reconstructed images by 3

different methods: Developed edge-guided weighted-TV approach (WTV), standard

TV, and zero-padded IFFT (IFFT). The WM regions of interests are selected in 4

different lobes of brain (frontal, parietal, temporal and occipital) where partial volume

encountered, and the mean of error is computed in pure and non-pure regions as well.
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Figure 4.13: Comparing the average of axial diffusivity (AD) values within 4 WM

regions of interest between the HR baseline and each of reconstructed images by 3

different methods: Developed edge-guided weighted-TV approach (WTV), standard

TV, and zero-padded IFFT (IFFT). The WM regions of interests are selected in 4

different lobes of brain (frontal, parietal, temporal and occipital) where partial volume

encountered, and the mean of error is computed in pure and non-pure regions as well.
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Standard TV and zero-padded IFFT show a similar performance. The reason

is that TV works well for compressed sensing style sampling (when we have sparse

samples equally from low and high frequencies) but seems to perform poorly for

super-resolution (when mostly higher frequencies are missed).

To overcome TV limitations in super-resolution reconstruction, the developed

edge-guided weighted-TV method (WTV) uses the complementary high frequency

edge information from the structural MR modalities that are provided in higher spa-

tial resolution than the diffusion-weighted images. A weight map is generated from

the edge information and is incorporated into the optimization problem defined in

equation (4.31). As shown by presented quantitative results, the developed WTV

method demonstrates a significant improvement over the other two approaches (stan-

dard TV and zero-padded IFFT) in most regions of interest. In order to compare the

quantitative results, paired t-test was performed and p−value < 0.05 was considered

significant.

Since the edge information is included in non-pure regions, we did not expect

to see a significant enhancement within the pure areas. However, the optimization

method [99], used to solve the minimization problem in equation (4.31), is performed

on the whole image; therefore, the incorporated weight map caused improvement

within the whole spatial domain including pure and non-pure regions.

To investigate if the enhanced performance in each WM region of interest

is still mainly due to the enhancement in their non-pure regions, we performed a

correlation analysis by running linear regressions between the whole-region results
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versus the results within only pure/non-pure regions. We calculated the coefficient of

determination (R2) to measure the goodness of fit to evaluate the regressions.

We computed the enhancement gained by the developed WTV over the stan-

dard TV as:

∆error =
∣∣ ¯WTV error − ¯TV error

∣∣ (4.40)

Figures 4.14, 4.15, 4.16, and 4.17 show the scatter plots of the ∆error in

each WM region of interest against the ∆error in only pure regions (blue) and only

non-pure regions (green).

A least-squares fit was used to fit a line between pairs of quantities to describe

the relationship between predictor (defined in x-axis) and response (defined in y-axis)

variables. Here, the response variable is the ∆error in the whole white matter region

of interest, and the predictor variable is the ∆error in either corresponding pure or

non-pure regions.

Linear regression models the relation between a dependent, or response, vari-

able y and one or more independent, or predictor, variables x1, ..., xn. Simple linear

regression considers only one independent variable using the relation:

y = β0 + β1x+ ε (4.41)

Where β0 is the y-intercept, β1 is the slope (or regression coefficient), and ε is the

error term.

Starting with a set of n observed values of x and y given by (x1, y1), (x2, y2),

..., (xn, yn), we form a system of linear equations using the simple linear regression

relation. Following represents these equations in matrix form:
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y2
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yn
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1 x1

1 x2

. .

. .

. .
1 xn


[
β0

β1

]
(4.42)

Let:

Y =


y1

y2

.

.

.
yn

 , X =


1 x1

1 x2

. .

. .

. .
1 xn

 , B =

[
β0

β1

]
(4.43)

Now the parameters of regression (β0 and β1) are found by solving Y = XB relation.

Then, the coefficient of determination (R2) was calculated to measure the

goodness of fit. It is a measure that allows us to determine how certain one can be

in making predictions from a certain model. R2 value falls between 0 and 1, and a

closer value to 1 shows higher linear correlation between the predictor and response

variables:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(4.44)

Where ŷi represents the estimated values of yi from the calculated least-squares fit,

and ȳ is the mean of y variable. A higher coefficient of determination (R2) for the

non-pure regions, as shown in figures 4.14, 4.15, 4.16, and 4.17, demonstrates that the

improvement of mean error in each WM region of interest (frontal, occipital, partial,

and temporal) is highly correlated to the improvement of mean error in their corre-

sponding non-pure areas. This is consistent with our expectation that enhancements

caused by the developed WTV approach in each region of interest is mainly due to

the enhancements in non-pure samples.
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Figure 4.14: Scatter plots of ∆error of FA in each WM region of interest against

the ∆error in only pure regions (blue) and only non-pure regions (green). A least-

squares fit was used to fit a line between pairs of quantities to describe the relationship

between predictor (defined in x-axis) and response (defined in y-axis) variables. The

coefficient of determination (R2) was calculated to measure the goodness of fit.
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Figure 4.15: Scatter plots of ∆error of MD in each WM region of interest against

the ∆error in only pure regions (blue) and only non-pure regions (green). A least-

squares fit was used to fit a line between pairs of quantities to describe the relationship

between predictor (defined in x-axis) and response (defined in y-axis) variables. The

coefficient of determination (R2) was calculated to measure the goodness of fit.
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Figure 4.16: Scatter plots of ∆error of RD in each WM region of interest against

the ∆error in only pure regions (blue) and only non-pure regions (green). A least-

squares fit was used to fit a line between pairs of quantities to describe the relationship

between predictor (defined in x-axis) and response (defined in y-axis) variables. The

coefficient of determination (R2) was calculated to measure the goodness of fit.
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Figure 4.17: Scatter plots of ∆error of AD in each WM region of interest against

the ∆error in only pure regions (blue) and only non-pure regions (green). A least-

squares fit was used to fit a line between pairs of quantities to describe the relationship

between predictor (defined in x-axis) and response (defined in y-axis) variables. The

coefficient of determination (R2) was calculated to measure the goodness of fit.
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4.5.4 Approach 3: Evaluation Based on the Differences Between Tensor

Proprieties

We compared the tensor properties of the reconstructed images to the tensor

properties of the HR baseline image for each test subject within four white matter

regions of interest selected in four different lobes of brain (frontal, parietal, temporal

and occipital) where partial volume encountered. The comparison is run within the

pure and non-pure regions as well, where pure and non-pure samples are computed

from a pure plugs mask that is generated from the low-resolution average b0 image

and the structural T1 and T2-weighted MR scans as described in chapter 3.

The third evaluation approach is designed to complement the approach 2 by

considering diffusion orientation that is not captured by RIS measures. In this study

we used Frobenius, Riemannian, and Kullback-Leibler tensor distances, described in

section 1.4.5, as the error metrics to quantitatively compare the diffusion tensors

from the baseline image and each or reconstructed images. Frobenius distance is not

a geodesic metric, and it is not invariant to linear changes of image coordinates, so its

application is limited in tensor images registration/segmentation. However, it is still

a good metric in our comparison evaluation where both baseline and reconstructed

images are from the same subject and are presented in the same physical coordinates.

For each test subject, the diffusion tensor images (DTI) were estimated for

each of reconstructed diffusion-weighted images (DWI) and the HR baseline DWI

image. Then, for each DTI voxel, we computed the distance between the diffusion

tensors from the HR baseline and each of reconstructed images. Finally, for each
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Table 4.4: Error mean value of all tensor metrics within each region of interest across
all subjects.

Tensor Region WTV TV IFFT p-value p-value
Metric Mean Mean Mean WTV WTV

Error Error Error vs. vs.
TV IFFT

Riemannian Frontal 1.42×10−1 1.54×10−1 1.54×10−1 ∗ ∗ ∗∗ ∗ ∗ ∗∗
Occipital 1.69×10−1 1.80×10−1 1.80×10−1 ∗∗ ∗∗
Parietal 1.54×10−1 1.72×10−1 1.73×10−1 ∗ ∗ ∗∗ ∗ ∗ ∗∗
Temporal 1.49×10−1 1.56×10−1 1.56×10−1 ∗ ∗

Kullback Frontal 7.57×10−2 8.31×10−2 8.32×10−2 ∗ ∗
-Leibler Occipital 8.64×10−2 9.75×10−2 9.76×10−2 ∗ ∗

Parietal 8.22×10−2 1.22×10−1 1.24×10−1 ∗ ∗ ∗ ∗ ∗ ∗
Temporal 7.76×10−2 8.37×10−2 8.38×10−2

Frobenius Frontal 8.23×10−5 8.81×10−5 8.82×10−5 ∗ ∗ ∗∗ ∗ ∗ ∗∗
Occipital 1.02×10−4 1.08×10−4 1.08×10−4 ∗ ∗
Parietal 9.08×10−5 9.83×10−5 9.83×10−5 ∗ ∗ ∗ ∗ ∗ ∗
Temporal 8.91×10−5 9.06×10−5 9.06×10−5

NOTE: ∗: p-value < 0.05, ∗∗: p-value < 0.01, ∗ ∗ ∗: p-value < 0.001, ∗ ∗ ∗∗: p-value
< 0.0001.

region of interest, the error metric is defined as the average distances over all voxels

within that region. Figures 4.18, 4.19, and 4.20 present the box plots of average errors

within each region of interest for each of super-resolution reconstruction methods. All

numeric results are summarized in table 4.4, where error metrics are averaged over

all test subjects.

As shown by presented quantitative results, the developed WTV method

demonstrates a significant improvement over the other two methods (standard TV

and zero-padded IFFT) in most regions of interest. In order to compare the quan-

titative results, paired t-test was performed and p − value < 0.05 was considered

significant.
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Figure 4.18: Comparing the average Riemannian error values within four WM regions

of interest between the HR baseline and each of reconstructed images by 3 different

methods: Developed edge-guided weighted-TV approach (WTV), standard TV, and

zero-padded IFFT. The WM regions of interests are selected in 4 different lobes of

brain (frontal, parietal, temporal and occipital) where partial volume encountered,

and the mean of error is computed in pure and non-pure regions as well.
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Figure 4.19: Comparing the average Kullback-Leibler error values within four WM

regions of interest between the HR baseline and each of reconstructed images by 3

different methods: Developed edge-guided weighted-TV approach (WTV), standard

TV, and zero-padded IFFT. The WM regions of interests are selected in 4 differ-

ent lobes of brain (frontal, parietal, temporal and occipital) where partial volume

encountered, and the mean of error is computed in pure and non-pure regions as well.
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Figure 4.20: Comparing the average Frobenius norm values within four WM regions

of interest between the HR baseline and each of reconstructed images by 3 different

methods: Developed edge-guided weighted-TV approach (WTV), standard TV, and

zero-padded IFFT. The WM regions of interests are selected in 4 different lobes of

brain (frontal, parietal, temporal and occipital) where partial volume encountered,

and the mean of error is computed in pure and non-pure regions as well.
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Same as approach 2, we performed a correlation analysis, between the whole-

region results versus the results within only pure/non-pure regions, to investigate

if the enhanced performance in each WM region of interest is mainly due to the

enhancement in their non-pure regions. The coefficient of determination (R2) was

calculated for each linear regression to evaluate the goodness of fit. Figures 4.21,

4.22, and 4.23 show the scatter plots of the ∆error, as computed in equation (4.40),

in each WM region of interest against the ∆error in only pure regions (blue) and only

non-pure regions (green). Also, a least-squares fit was used to fit a line between pairs

of quantities and the coefficient of determination (R2) was calculated as in equation

(4.44). All figures show a higher coefficient of determination (R2) for the non-pure

regions that indicates the enhancements caused by the developed WTV approach in

each region of interest is mainly due to the enhancements in non-pure samples as we

expected from the method section.

4.6 Discussion and Conclusions

We introduced a novel algorithm for super-resolution reconstruction of low-

resolution diffusion-weighted images using the prior anatomical information from the

higher resolution structural MR modality sources. We then used three different quan-

titative approaches to evaluate the performance of our algorithm with two common

methods in the literature: zero-padded IFFT, and standard total variation (TV).

Although TV works well for compressed sensing style sampling [113, 114, 115]

(when we have sparse samples equally from low and high frequencies), it performs
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Figure 4.21: Scatter plots of ∆error of Riemannian distance in each white matter

(WM) region of interest against the ∆error in only pure regions (blue) and only

non-pure regions (green). A least-squares fit was used to fit a line between pairs

of quantities to describe the relationship between predictor (defined in x-axis) and

response (defined in y-axis) variables. The coefficient of determination (R2) was

calculated to measure the goodness of fit.



138

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.01

0.02

0.000 0.025 0.050 0.075
∆error in only pure/non−pure regions

∆
er

ro
r i

n 
w

ho
le

 fr
on

ta
l r

eg
io

n

●● ●●pure R2 = 0.54 non−pure R2 = 0.649
Kullback−Leibler/frontal

●●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●
●●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

0.00

0.02

0.04

0.06

0.00 0.02 0.04 0.06 0.08
∆error in only pure/non−pure regions

∆
er

ro
r i

n 
w

ho
le

 o
cc

ip
ita

l r
eg

io
n

●● ●●pure R2 = 0.161 non−pure R2 = 1

Kullback−Leibler/occipital

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.05 0.10
∆error in only pure/non−pure regions

∆
er

ro
r i

n 
w

ho
le

 p
ar

ie
ta

l r
eg

io
n

●● ●●pure R2 = 0.249 non−pure R2 = 0.999

Kullback−Leibler/parietal

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

0.00

0.01

0.02

0.03

0.04

0.05

0.00 0.02 0.04
∆error in only pure/non−pure regions

∆
er

ro
r i

n 
w

ho
le

 te
m

po
ra

l r
eg

io
n

●● ●●pure R2 = 0.727 non−pure R2 = 0.91

Kullback−Leibler/temporal

Figure 4.22: Scatter plots of ∆error of Kullback-Leibler distance in each white matter

(WM) region of interest against the ∆error in only pure regions (blue) and only

non-pure regions (green). A least-squares fit was used to fit a line between pairs

of quantities to describe the relationship between predictor (defined in x-axis) and

response (defined in y-axis) variables. The coefficient of determination (R2) was

calculated to measure the goodness of fit.
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Figure 4.23: Scatter plots of ∆error of Frobenius norm in each white matter (WM)

region of interest against the ∆error in only pure regions (blue) and only non-pure

regions (green). A least-squares fit was used to fit a line between pairs of quantities to

describe the relationship between predictor (defined in x-axis) and response (defined

in y-axis) variables. The coefficient of determination (R2) was calculated to measure

the goodness of fit.
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poorly for super-resolution (when mostly higher frequencies are missed) as our eval-

uation results showed a close performance for standard TV and zero-padded IFFT.

To overcome TV limitations in super-resolution reconstruction, we introduced

an edge-guided weighted-TV method (WTV) that uses the complementary high fre-

quency edge information from the other structural MR modalities provided in higher

spatial resolution. A weight map is generated from the edge information and is in-

corporated into the l1-norm optimization process. All of our evaluation approaches,

consisting of brain tractography, rotationally invariant scalars and tensor properties,

demonstrated a significant improvement in the performance of developed weighted-

TV algorithm over the standard TV and zero-padded IFFT.

Based on the definition of generated weight map, we expected to see a signif-

icant improvement on the performance of developed edge-guided weighted-TV over

the standard TV only in high frequency boundary regions where partial volume ef-

fects encounter. However, as the optimization process is performed in the frequency

domain, the generated weight map caused enhancements through all investigated

white matter (WM) regions of interest in the spatial domain including both pure and

non-pure regions. To investigate if the enhanced performance in each WM region of

interest is still mainly due to the enhancement in their non-pure regions, we performed

a correlation analysis to compute regression between the enhancement gained by the

developed WTV over the standard TV in each WM region of interest against the en-

hancement gained in only pure regions and only non-pure regions. The results showed

a higher coefficient of determination (R2) for the non-pure regions that demonstrates
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the enhancement gained in each WM region of interest (frontal, occipital, partial, and

temporal) is mainly due to the enhancement gained in their corresponding non-pure

regions.
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CHAPTER 5
CONCLUDING REMARKS

The main purpose of this thesis was to generate tools that benefit from com-

plementary information available from multiple structural and diffusion-weighted MR

imaging modalities to advance our interpretation of brain biological architecture.

We demonstrated that an improved interpretation of data in agreement with actual

anatomical definitions is achieved by identifying and addressing the partial volume

effects issues that occur when complementary information were combined näıvely.

First, we identified the limitations of previously developed multi-modal tools

for automated tissue classification of large-scale, multi-center data. In Chapter 2,

we modeled the unique anatomical states of each subject in longitudinal degenera-

tive studies using a non-parametric fuzzy k-Nearest Neighbor (k-NN) classifier. This

model augmented the output of expectation maximization (EM), a group specific

classification method that uses a priori knowledge for all subjects in an atlas-based

approach. We emphasized that using an atlas-based method is not sufficient for large-

scale, multi-center longitudinal studies, due to each subject having unique anatomical

states in a longitudinal degenerative study that may not be represented by prior prob-

ability distributions. Therefore, we developed a method to build up a model for each

individual subject using a k-NN classifier to complement the classification results

that EM produces. Chapter 2 also demonstrated segmentation enhancements when

multi-modal MR modalities (T1/T2-weighted) were acquired at the same high spa-

tial resolution with isotropic 1 mm3 voxel sizes. However, in many datasets provided
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from scanners with 1.5 Tesla scan protocol, the T2-weighted image is acquired at

lower spatial resolution than T1 (usually by a factor of 2 to 3).

In Chapter 3, we demonstrated that näıvely adding low-resolution multi-modal

information can adversely affect segmentation results. We investigated and explained

the reason by describing partial volume effects (PVE) issue that affect more spatial

samples at tissue boundaries when multi-modal scans are presented in different spa-

tial resolutions. Then, we developed a novel approach to deal with increased PVE

issue by using only those spatial samples that are not affected by partial volume

composition, termed as pure samples, for initialization/training of the classification

methods. The developed novel method operates in physical spatial domain and is not

limited by the constrains of different voxel lattice spaces of input modalities. Pure

samples were identified by computing a binary mask, called pure plugs mask. A novel

integrity metric, called Mahalanobis-weighted Euclidean distance was introduced to

decide if all spatial samples within a plug area belong to one anatomical tissue type.

Evaluation results proved enhanced segmentation quality for gray matter (GM) and

white matter (WM) when only pure samples are used in the training or initializa-

tion of the classification methods. Additionally, we demonstrated that multi-modal

classification accuracy, when second modality is low-resolution, approaches the seg-

mentation quality when all modalities are acquired in high-resolution. This technical

improvement directly improved segmentation quality for the longitudinal, multi-site,

international PREDICT-HD study [1], as now it was possible to use the low-resolution

T2-weighted modalities that were acquired during the first 7 years of study to en-
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hance the segmentation results previously generated using only T1-weighted scans.

We speculate that the developed method may help to reduce the scanning time and

cost in future clinical trails by dealing with PVE issue algorithmically, as this allows

the collection of a single modality in a high resolution and use the other modalities

acquired in lower spatial resolutions.

Chapters 2 and 3 demonstrated improved delineation of anatomical structures

in structural MRIs. Chapter 4 then suggested to use the information of anatomical

structures presented in high-resolution structural MR images as a priori knowledge to

enhance the super-resolution reconstruction (SRR) of diffusion-weighted MR modali-

ties that are acquired in low spatial resolution due to the time constraints of clinical re-

search. Image post-processing methods are an alternative to hardware improvements

that can enhance interpretation of DWI information. Providing super-resolution DWI

information that is guided by the high-resolution structural scans, a more accurate

assessment of characterization of brain white matter architecture and microstructure

is possible. We showed the limitations of standard total variation (TV) based recon-

struction approach, and introduced a novel edge-guided weighted-TV method that

incorporates complementary high-resolution information from structural MR modali-

ties into the l1-norm optimization process. Our evaluation approaches demonstrated

the superior performance of the developed super-resolution reconstruction method

in providing an accurate assessment of brain connectivity. The developed method

showed better performance in recovering the high-resolution rotationally invariant

scalar (RIS) measurements and high-resolution diffusion tensor properties in four
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white matter regions of interest selected in four different lobes of brain (frontal, pari-

etal, temporal and occipital) where partial volume encountered.

In conclusion, this doctoral work provided algorithmic developments for ap-

propriate integration of complementary multi-modal information in MR studies to

increase the sensitivity of volumetric and diffusion measures used by clinicians. This

can lead to improved clinical and observational trials for testing therapies that may

slow the progression of disease. Increasing the sensitivity of measures can lead to

a substantial decrease in the number of samples needed for longitudinal and cross-

sectional analysis that may reduce the cost of future studies.
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APPENDIX: ABBREVIATIONS

MRI - Magnetic Resonance Imaging

DWI - Diffusion Weighted Imaging

DTI - Diffusion Tensor Imaging

DT - Diffusion Tensor

RIS - Rotationally Invariant Scalars

FA - Fractional Anisotropy

MD - Mean Diffusivity

RD - Radial Diffusivity

AD - Axial Diffusivity

ADC - Apparent Diffusion Coefficient

GM - Gray Matter

WM - White Matter

CSF - Cerebrospinal Fluid

VB - Venous Blood

PVE - Partial Volume Effect

PVC - Partial Volume Coefficient

RV - Random Variable

EM - Expectation Maximization

TPM - Tissue Probability Maps

KNN - K-Nearest Neighbors algorithm

MD - Mahalanobis distance
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SRR - Super Resolution Reconstruction

HR - High Resolution

LR - Low Resolution

TV - Total Variation

WTV - Weighted Total Variation

SNR - Signal to Noise Ratio

HCP - Human Connectome Project

BC - Bhattacharyya Coefficient

AF - Arcuate Fascicle

CST - Cortico-spinal tract
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