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CHAPTER I 

INTRODUCTION 

  

In 2010, it was reported that globally approximately 35.6 million people were living with 

dementia. Since the prevalence of dementia has been predicted to nearly double every 20 years, 

more than 65 million people and more than 115 million people may be living with dementia in 

2030 and 2050, respectively (Sosa-Ortiz, Acosta-Castillo et al. 2012). Alzheimer’s disease (AD) 

is a devastating neurodegenerative disorder, characterized by a progressive decline in cognitive 

function, and accounts for 60%–70% of the people living with dementia (Reitz, Brayne et al. 

2011). An epidemiological study estimated that in the United States, there were 4.7 million 

individuals aged 65 years or older with AD in 2010 (Hebert, Weuve et al. 2013). Unfortunately, if 

no therapeutic interventions are developed, the estimated number of individuals 65 years or older 

with AD in the US is predicted to be 13.8 million by 2050, nearly tripling 2010 levels (Hebert, 

Weuve et al. 2013). Such numbers emphasize the need for effective biomarkers for early 

diagnosis and therapeutics to cure AD.  

 One of the key pathological changes observed in AD brain tissue is the intracellular 

accumulation of abnormally phosphorylated tau that results in neurofibrillary tangles (NFTs). The 

severity of NFT formation is well correlated with cognitive impairment (Nagy, Jobst et al. 1996). 

The pathogenesis mediated by tau in AD could result from hyperphosphorylation of tau and the 

formation of aberrant tau aggregates. The first evidence suggesting that hyperphosphorylated tau 

was associated with cytotoxicity was that expression of pseudohyperphosphorylated tau in 

differentiated PC12 cells promoted toxicity and induced apoptosis (Fath, Eidenmuller et al. 2002). 

For in vivo evidence, the mouse hippocampal expression of glycogen synthase kinase3-beta 

(GSK3β), which phosphorylates tau (Ishiguro, Shiratsuchi et al. 1993), induced somatodendritic 

accumulation of phosphorylated tau in hippocampal neurons and neuronal cell death (Lucas, 
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Hernandez et al. 2001, Hernandez, Borrell et al. 2002), suggesting a role for phosphorylated tau in 

neuronal toxicity. Since these studies did not provide direct evidence for phosphorylated tau-

mediated cytotoxicity, use of tau knockout mice expressing GSK3β will help to determine if 

phosphorylated tau exert a toxic effect. 

 Hyperphosphorylated tau is also found in paired helical filaments (PHFs) (Wang, 

Grundke-Iqbal et al. 2007), which constitute the principal component of NFTs in AD. In AD 

hippocampus, there exists an inverse correlation between the number of intra/extracellular tangles 

and the number of surviving neurons (Bondareff, Mountjoy et al. 1989, Cras, Smith et al. 1995), 

suggesting that NFTs may originate from neurons that are degenerating. However, despite 

intensive studies about the pathogenic role of tau in AD in the past decade, the precise 

mechanisms by which abnormally phosphorylated tau mediates disease pathogenesis are poorly 

understood. Defining the function(s) of abnormally phosphorylated tau, thus, is necessary to 

obtain a better understanding of pathological tau-driven neuropathogenesis, which will help to 

develop effective disease intervention and to provide appropriate biomarkers for detection of 

early AD.   

 

Tau phosphorylation 

 Tau protein was first discovered as a heat stable protein that promoted microtubule 

assembly in 1975 (Weingarten, Lockwood et al. 1975). The human gene, MAPT (microtubule-

associated protein tau), is unique and located on chromosome 17 (Neve, Harris et al. 1986) where 

it occupies over 100 kb and contains at least 16 exons (Andreadis, Brown et al. 1992, Andreadis, 

Broderick et al. 1995). The alternative splicing of the tau gene generates six tau isoforms in the 

human brain. These six tau isoforms differ from each other by the presence of either three or four 

microtubule binding repeat regions in the carboxy-terminal (C-terminal) part and one (1N), two 

(2N), or zero (0N) inserts in the amino-terminal domain (N-terminal) (Goedert, Spillantini et al. 
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1989). These six tau isoforms, 0N3R, 1N3R, 2N3R, 0N4R, 1N4R, and 2N4R, are shown in Fig. 

1.1. The shortest tau isoform, which lacks both the two amino terminal inserts and the extra 

microtubule binding repeat (0N3R), is the only form that is expressed in fetal human brain 

(Kosik, Orecchio et al. 1989). Tau is composed of an N-terminal region followed by a proline-

rich domain, the microtubule-binding repeat motifs and the C-terminal tail. Biophysically, while 

the N-terminal region of tau is acidic, the microtubule binding and C-terminal regions are basic, 

indicating that tau protein is a dipole with two regions having opposite charges (reviewed in 

(Sergeant, Bretteville et al. 2008)).  

Ser/thr phosphorylation of tau and a role for microtubule dynamicity 

 Phosphorylation is the most common post-translational modification described for tau. So 

far, 85 phosphorylation sites have been identified in tau (reviewed in (Mietelska-Porowska, 

Wasik et al. 2014)). Although numerous kinases are involved in tau phosphorylation, the most 

studied of these have been the proline-directed protein kinases (PDPK): GSK3, CDK5, and the 

family of serine and threonine mitogen-activated protein kinases (MAPKs). In the early 1990s, 

GSK3 was identified as a tau protein kinase (Ishiguro, Shiratsuchi et al. 1993), and to date, 42 

GSK3 sites have been identified with 29 of the sites being phosphorylated in AD brain 

(Lovestone, Reynolds et al. 1994, Reynolds, Betts et al. 2000). Cyclin-dependent kinase 5 

(CDK5) is also a well-known kinase that phosphorylates tau. An in vivo study demonstrated that 

CDK5 hyperphosphorylated tau and reduced the ability of tau to associate with microtubules 

(Patrick, Zukerberg et al. 1999). Furthermore, CDK5 has been suggested to induce the “mitotic-

like” phosphorylation of tau in AD since tau epitopes phosphorylated by CDK5 were similar to 

those that are phosphorylated during mitosis (Hamdane, Sambo et al. 2003). Ferrer and 

collaborators reported, in their kinase immunohistochemistry assays, that the family of MAPKs 

(active forms: pERK, p-p38 and pJNK) and calcium/calmodulin-dependent kinase II co-localized 

with tau aggregates in different tauopathies (neurodegenerative diseases associated with the 
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pathological aggregation of tau protein), suggesting that those kinases are involved in abnormal 

tau phosphorylation (Ferrer, Blanco et al. 2001). 

 The phosphorylation of tau will also be affected by phosphatases such as protein 

phosphatase (PP) 1, PP2A, PP2B (calcineurin), and PP5 (reviewed in (Braithwaite, Stock et al. 

2012).  However, only PP1, PP2A, and PP2B have been shown to dephosphorylate abnormally 

hyperphosphorylated tau. In the study conducted by Gong and colleagues, PP2A, when incubated 

with abnormally hyperphosphorylated tau extracted from AD brains, could dephosphorylate S46, 

S199, S202, S396 and S404 (Gong, Grundke-Iqbal et al. 1994). PP2A and its mRNA level had 

been found to be decreased in AD brain (Gong, Singh et al. 1993, Gong, Shaikh et al. 1995). It 

was also found that the inhibition of PP2A induced hyperphosphorylation of tau by a decrease in 

tau dephosphorylation in vitro and in vivo (Bennecib, Gong et al. 2000, Sun, Liu et al. 2003), 

linking the impairment of PP2A to tau hyperphosphorylation in AD brain. Indeed, in AD human 

brains, the activity of immunoprecipitated PP2A (determined by phosphatase assays using 
32

P-

tau) showed a negative correlation with the phosphorylation level of tau (determined by 

quantitative immunoblots) (Liu, Grundke-Iqbal et al. 2005). The fact that PP2A accounted for 

more than 70% of dephosphorylation of phosphorylated tau at ser/thr in the human brain (Liu, 

Grundke-Iqbal et al. 2005) indicates that PP2A is a major phosphatase regulating tau 

phosphorylation in human brain. Taken together, the phosphorylation status of tau is a 

consequence of the equilibrium between the amount and activity of protein kinases and 

phosphatases.  

 The most studied function of tau is to promote and stabilize microtubule assembly 

(Weingarten, Lockwood et al. 1975, Cleveland, Hwo et al. 1977). Phosphorylation of tau 

negatively regulates its ability to promote microtubule assembly (Lindwall and Cole 1984, 

Alonso, Zaidi et al. 1994), suggesting that tau phosphorylation at specific sites is a predominant 

mechanism by which tau function is regulated. The well-known phosphorylation sites affecting 

the ability of tau to bind microtubules are S262 and S356, which are in the KXGS motifs within 
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the microtubule binding repeats of tau. Evidence from several studies have suggested that 

phosphorylation at those sites significantly decreased the binding of tau to microtubules in vitro 

(Biernat, Gustke et al. 1993) and in vivo (Drewes, Trinczek et al. 1995, Biernat and Mandelkow 

1999). Interestingly, ablation of tau phosphorylation at S262/S356 by point mutations inhibited 

the formation of neurites in N2a cells (Biernat, Wu et al. 2002), suggesting that such 

phosphorylation is required for the plasticity of microtubules necessary for neurite outgrowth. 

Phosphorylation at T231 also greatly diminished the ability of tau to bind to microtubule in vitro 

and in cells (Sengupta, Kabat et al. 1998, Cho and Johnson 2003). In addition, phosphorylation at 

T231 decreased the ability of tau to stabilize microtubules in cells since the level of acetylated 

tubulin, a marker of microtubule stability, was significantly reduced by the presence of phospho-

T231 tau in the cell (Cho and Johnson 2004). These suggest that phosphorylation of T231 plays a 

key role in regulating tau function in vivo. In a developing brain, the fetal isoform of tau is highly 

phosphorylated and has reduced affinity for microtubules (Goedert and Jakes 1990, Bramblett, 

Goedert et al. 1993, Goedert, Jakes et al. 1993, Watanabe, Hasegawa et al. 1993). The elevated 

levels of phosphorylated tau in fetal brains correlate with the microtubule dynamicity required for 

neuronal plasticity during mammalian brain development (Brion, Smith et al. 1993), further 

emphasizing a role for tau phosphorylation during brain development.  

Similarities of tau phosphorylation in  

an early developmental state and a neurodegenerating state 

 Tau phosphorylation has been reported to be developmentally regulated. Multiple lines of 

studies have shown that in normal brain, several ser/thr sites in tau such as S199/S202, T231, 

S262/S356, and S396/S404 were highly phosphorylated during brain development and less 

phosphorylated in adult brains (Bramblett, Goedert et al. 1993, Brion, Smith et al. 1993, Goedert, 

Jakes et al. 1993, Kenessey and Yen 1993, Goedert, Jakes et al. 1994, Seubert, Mawaldewan et al. 

1995). However, phosphorylation of these sites reappeared in AD brains as demonstrated by 

detection with antibodies AT8 (pS199/pS202), AT180 (pT231), PHF-1 (pS396/pS404), 12E8 
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(pS262/pS356), and TG3 (pT231 with pathologic conformation), suggesting that similarities in 

tau phosphorylation exist between a developing system and the disease state (Fig 1.2).  

 The similarities in tau phosphorylation between a developmental system and the disease 

state have led to the proposal that abnormal cell cycle activation occurs in AD brain 

(McShea, Harris et al. 1997, Nagy, Esiri et al. 1997). In developing neurons that are 

dividing, phosphorylation of tau was driven by cyclin dependent kinases (Kanemaru, Takio et al. 

1992, Goedert, Jakes et al. 1993, Brion, Octave et al. 1994, Pope, Lambert et al. 1994). 

Interestingly, in AD brains, cell cycle protein expression was found to precede the appearance of 

phosphorylated tau (Vincent, Zheng, Dickson, Kress, & Davies, 1998), suggesting that during 

neurodegeneration tau phosphorylation was closely linked to an abnormally activated cell cycle. 

In AD neurons, the presence of proliferation markers such as PCNA and Ki-67 antigen, as well as 

a number of regulators of G1/S transition, including cyclin D, Cdk4, cyclin B1 and cyclin E has 

been consistently observed (Smith and Lippa 1995, Busser, Geldmacher et al. 1998, Hoozemans, 

Bruckner et al. 2002, Yang, Mufson et al. 2003). Furthermore, in preclinical stages of AD, the 

disease-affected neurons were shown to undergo DNA replication, as evidenced by de novo 

tetraploidization in the neurons (Mosch, Morawski et al. 2007, Arendt, Bruckner et al. 2010, 

Frade and Lopez-Sanchez 2010). Taken together, these similarities between a developmental 

system and the neurodegenerating system suggest that in AD, neurons may be recapitulating an 

early developmental state, not only in phosphorylation but also in function. Thus, using a 

developmental system to study the role of phosphorylated tau may lead to new functions for 

abnormally phosphorylated tau. 

Phosphorylation at T231 of tau 

 Tau residue T231 has been shown to be phosphorylated by GSK3β, which is a tau kinase 

that is activated in AD (Pei, Braak et al. 1999, Flaherty, Soria et al. 2000, Spittaels, Van den 

Haute et al. 2000, Muyllaert, Terwel et al. 2006, Lin, Cheng et al. 2007). Phosphorylation at T231 



 
 

7 
 

regulates MT binding (discussed above), and may also have a pathogenic role for AD progression 

since phospho-T231 tau is found in NFTs of AD brain (Kimura, Ono et al. 1996). 

Phosphorylation at T231 has been shown as an early phosphorylation event in the course of 

neurodegeneration since the antibody to phospho-T231 stained ‘pretangle’ neurons, which have 

normal dendrites, somas, and nuclei, and lack tau filaments in the cytoplasm (Augustinack, 

Schneider et al. 2001). In contrast, antibodies to other phosphorylation sites (e.g. pS396/pS404 

and pS422) were found to rarely label pretangle neurons but rather predominantly label 

intra/extraneuronal NFTs in degenerating neurons (Augustinack, Schneider et al. 2001). These 

observations thus suggest that (1) the sequential phosphorylation at specific sites of tau may have 

a role in filament formation and (2) the increase in phosphorylation at T231 might be an early 

step in the development of NFTs. While the idea that NFTs play a causal role for 

neurodegeneration is still controversial, several lines of evidence have shown that smaller tau 

aggregates, tau oligomers, could be found in AD brains and may be the most neurotoxic form of 

tau aggregates (Santacruz, Lewis et al. 2005, Berger, Roder et al. 2007, Lasagna-Reeves, Castillo-

Carranza et al. 2011, Ward, Himmelstein et al. 2012). Since phosphorylation at T231 is preserved 

in tau oligomers extracted from AD brain specimens (Lasagna-Reeves, Castillo-Carranza et al. 

2011, Fa, Puzzo et al. 2016), phospho-T231 tau may play a role in the formation of the oligomeric 

tau species, contributing to the early stage of disease pathogenesis. 

 Since phosphorylation at T231reduces the binding affinity of tau for microtubules, non-

microtubule bound phospho-T231 tau would be more available to interact with other cellular 

partners. Previously, our lab found that tau associated with SH3 domain of Fyn kinase and that 

phosphomimetic mutant tau T231D significantly lowered the affinity for Fyn-SH3 binding 

(Bhaskar, Yen et al. 2005), suggesting that phosphorylation at this residue reduced the affinity of 

tau for Fyn kinase. In a later study conducted by Reynolds and colleagues, the fifth and sixth 

PXXP motifs (residues P213–P219) of tau were found to associate with SH3 domain-containing 

signaling proteins such as phosphatidylinositol 3-kinase (PI3-kinase), phospholipase C γ1 (PLC 



 
 

8 
 

γ1), Grb2, and Src family kinases (Reynolds, Garwood et al. 2008). In the study, GSK3β-

mediated phosphorylation of tau decreased these interactions. Since T231 is phosphorylated by 

GSK3β (Lucas, Hernandez et al. 2001), the study suggests that phosphorylation of T231 may 

contribute to the regulation of tau association with these signaling proteins.  

 Phospho-T231 tau also interacts with Peptidyl-prolyl isomerase 1 (Pin1) (Lu, Wulf et al. 

1999). This interaction was found to promote dephosphorylation of tau via recruitment of PP2A 

in vitro (Lu, Wulf et al. 1999, Zhou, Kops et al. 2000). An in vivo study also showed that cis, but 

not trans, phospho-T231 tau was more resistant to dephosphorylation by PP2A (Nakamura, 

Greenwood et al. 2012). Pin1 catalyzes the isomerization of the phospho-T231 from a cis to trans 

conformation since phosphorylation at T231 drives tau conformation to a cis form (Nakamura, 

Greenwood et al. 2012). These observations indicate that Pin1-mediated isomerization is 

important for regulation of phospho-T231, possibly by regulating the binding of PP2A to tau. In 

addition, cis, but not trans, phospho-T231 tau appeared early in the human brains with mild 

cognitive impairment and accumulated exclusively in degenerated neurons without forming NFTs 

(Nakamura, Greenwood et al. 2012). This led to the speculation that the cis phospho-T231 

conformation of tau has the potential to promote tau aggregation and to regulate the binding with 

other signaling molecules during neurodegeneration.   

 Tau protein was found to be a mitotic phosphoprotein since tau was recognized by MPM-

2, a mitosis- and phosphorylation-specific monoclonal antibody (Illenberger, Zheng-Fischhofer et 

al. 1998). Pin1 binds tau only after mitosis-specific phosphorylation, and phosphorylation of tau 

at T231 is required for the Pin1 binding (Lu, Wulf et al. 1999). These observations suggest a 

function of phospho-T231 tau in mitosis. Since the aberrant cell cycle re-activation of AD-

affected neurons has been suggested for disease pathogenesis (discussed above), it is 

hypothesized that phospho-T231 tau may play a critical role for the neuronal cell cycle reentry. 

Previously, our lab reported that T231 phosphorylation potentiated NGF-induced MAPK 

activation in neuronal cells (Leugers and Lee 2010). Several studies had shown that cell-cycle re-
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activation most likely occurred as a down-stream effect of activated Ras-MAPK signaling 

(Arendt, Holzer et al. 1995, Gartner, Holzer et al. 1995, Gartner, Holzer et al. 1999). Therefore, 

these observations further suggest that phospho-T231 tau may be involved in cell cycle regulation 

in developing and fully differentiated neurons, by playing a role in signaling. 

Tau phosphorylation at tyrosine residues: a signaling role in neurons 

 Most of the prior research into hyperphosphorylation of tau in AD was largely centered 

on ser/thr kinases as described above. Tyrosine phosphorylation of tau represents a relatively new 

area of research which focuses on just 5 residues of tau (Y18, Y29, Y197, Y310, and Y394) 

whereas there are over 70 serines and threonines in tau. Moreover, tyrosine phosphorylation is 

closely associated with dynamic signal transduction processes. In vitro tyrosine phosphorylation 

of tau was first reported in the 1980’s (Kadowaki, Fujita-Yamaguchi et al. 1985), and later, in 

1998, tyrosine phosphorylation of tau in cells was shown by our lab (Lee, Newman et al. 1998). 

Since those initial reports, a number of kinases have been shown to phosphorylate tyrosine 

residues in tau. Tyrosine 18 was found to be phosphorylated by proto-oncogene protein tyrosine 

kinase Fyn (Fyn), a Src non-receptor tyrosine kinase family member (Lee, Thangavel et al. 2004). 

Other Src kinases such as Src and Lymphocyte-specific tyrosine kinase (Lck) are also able to 

phosphorylate tau at Y18 (Lebouvier, Scales et al. 2009). Tyrosine phosphorylation of tau at Y29 

has been reported in in vitro kinase assays using Lck (Williamson, Scales et al. 2002). For Y197 

phosphorylation, phosphopeptide mapping using tandem mass-spectrometry from in vitro 

phosphorylated tau found that Y197, which lies in the proline rich region of tau, was 

phosphorylated by tau-tubulin kinase (TTBK), a dual specificity kinase (Sato, Cerny et al. 2006). 

C-terminus of tau contains two tyrosine residues, Y310 located in the third microtubule binding 

domain and Y394 located after the microtubule binding domain. At the present time, no kinase is 

known to phosphorylate Y310. On the other hand, Y394 can be phosphorylated by Abelson 

tyrosine kinase (Abl), a non-receptor tyrosine kinase expressed in the brain (Lebouvier, Scales et 

al. 2009). 
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 In contrast to the phosphorylation of tau on some ser/thr residues, the Y18 

phosphorylation does not affect its microtubule association properties (Lee, Thangavel et al. 

2004). However, several studies have suggested that tyrosine phosphorylation of tau is involved 

in neuronal development. In neuronal cells, tyrosine phosphorylation plays a critical role for 

growth cone function (Bixby and Jhabvala 1993), and Fyn and Src were shown to be in growth 

cones (Maness, Aubry et al. 1988, Helmke and Pfenninger 1995). Furthermore, it was reported 

that tau was essential for growth cone motility (Liu, Lee et al. 1999) and located within the 

growth cones of newly forming axons (Zmuda and Rivas 2000). Therefore, given that Fyn is 

involved in signaling downstream of cell-adhesion receptors for axon guidance (Schmid, Graff et 

al. 1999, Kleene, Mzoughi et al. 2010), we hypothesized that phospho-tyrosine tau will have a 

role in neuronal signal transduction. This notion is further supported by a finding in 

differentiating oligodendrocytes, where the tau-Fyn complex was found in lipid rafts, specialized 

membrane microdomains enriched in signaling molecules (Klein, Kramer et al. 2002). In the 

study, the inhibition of tau-Fyn interaction in oligodendrocytes decreased process number and 

process length. In addition, the inhibition of lipid raft formation prevented process growth of the 

oligodendrocytes. Lipid rafts are also required for growth cone motility (Nakai and Kamiguchi 

2002), and disruption of lipid rafts was shown to impair axon guidance, which requires signal 

transduction in response to extracellular cues (Guirland, Suzuki et al. 2004). All these 

observations thus suggest a signaling role for tau and Fyn through lipid rafts during neuronal 

development.  

 A role for tyrosine phosphorylation in AD has also been suggested. In AD brains, an 

increase in phosphotyrosine-containing proteins (Shapiro, Masliah et al. 1991) and the level of 

Fyn (Shirazi and Wood 1993) were shown. In addition, our lab reported the presence of the 

phospho-Y18 tau in NFTs of AD brains (Lee, Thangavel et al. 2004), suggesting a role for 

tyrosine phosphorylation in disease pathogenesis. In a cell culture model for AD where amyloid-β 

(Aβ) was added to PC12 cells, Aβ treatment significantly increased the level of tyrosine 
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phosphorylation (Luo, Hirashima et al. 1995). Increases in Fyn activation and the level of tyrosine 

phosphorylated tau were also reported in Aβ-treated human primary cortical cultures 

(Williamson, Scales et al. 2002). Interestingly, the involvement of Fyn in neurodegeneration 

pathways initiated by Aβ is supported by the finding that Fyn negative cells were protected from 

Aβ-induced neurotoxicity (Lambert, Barlow et al. 1998). In addition, tau negative cells were also 

protected from Aβ-induced neurotoxicity (Rapoport, Dawson et al. 2002), suggesting that tau and 

Fyn association may have a role in neurodegeneration process. This notion is further supported by 

in vivo studies showing that tau reduction could prevent Aβ-induced neuronal dysfunction in AD 

mouse models (Roberson, Scearce-Levie et al. 2007, Roberson, Halabisky et al. 2011).Tau 

phosphorylation by Fyn in lipid rafts was previously reported in Aβ-treated human neuroblastoma 

cells (Hernandez, Lee et al. 2009). In the study, the level of phospho-Y18 tau in lipid raft 

fractions was increased in response to Aβ treatment and subsequently decreased over time. In 

addition, an earlier study showed that Aβ-treatment resulted in Fyn activation, tyrosine 

phosphorylation of tau, and MAPK activation in neurons (Williamson, Scales et al. 2002). Thus, 

from these observations, one would speculate that phosphorylation at Y18 may occur in lipid rafts 

during an Aβ-induced signaling pathway and be regulated by protein tyrosine phosphatase(s). 

However, currently, protein tyrosine phosphatase(s) that selectively target phospho-Y18 have not 

been reported. Lastly, whether the raft localization of tau and Fyn or the phosphorylation of tau 

by Fyn in rafts is critical for the Aβ-associated signal transduction is still unknown. Nevertheless, 

based on the study by Hernandez et al. (Hernandez, Lee et al. 2009), Fyn and Fyn-mediated tau 

phosphorylation is believed to play a key role for signaling pathways associated with 

neurodegeneration.  

 Previously, our lab found that in normal brain, phospho-Y18 tau occurred during brain 

development and then disappeared after 2 weeks post-natal, and in AD, phospho-Y18 tau 

reappeared (Lee, Thangavel et al. 2004). The phosphorylation of Y394 was also identified in both 

PHF-tau and fetal tau using mass spectrometry (Derkinderen, Scales et al. 2005). There findings 
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raise the possibility that phosphorylation at tyrosine residues may play similar roles in both 

developing brain and AD-affected brain. Interestingly, phosphorylation at Y18 seemed to be 

differentially regulated during neurodegeneration, relative to phospho-S199/S202 tau, since 

phospho-Y18 tau was absent in neuropil threads and dystrophic neurites and present in NFTs 

whereas AT8 was present in all three pathologies (Lee, Thangavel et al. 2004). In a subset of 

neurons of AD brain, Fyn immunoreactivity was found to be significantly elevated relative to 

control brains  (Shirazi and Wood 1993).  In addition, Fyn levels were increased in the neuronal 

cell bodies where it colocalized with neurofibrillary tangles (Ho, Hashimoto et al. 2005). The 

presence of Fyn in AD brain together with differential phosphorylation at tyrosine 18 of tau 

suggests that the regulation of phospho-Y18 may be mediated by protein tyrosine phosphatase(s). 

We thus attempted to identify a protein tyrosine phosphatase which could regulate phospho-Y18 

tau during neurodegeneration. Our lab had then found the association between phospho-T231 tau 

and SHP2, which is a Src-homology 2 domain (SH2)-containing protein tyrosine phosphatase 

(PTP) 2, in neuronal cells (Leugers and Lee, unpublished data). While SHP1, which is another 

isoform of the PTP, is predominantly expressed in hematopoietic cells, SHP2 is ubiquitously 

expressed (reviewed in (Lorenz 2009)) and has been reported to play a critical role for synaptic 

plasticity and memory formation, control of energy balance and leptin signaling, and growth 

factor-mediated signal transduction associated with neuronal differentiation (Zhang, Chapeau et 

al. 2004, Kim, Han et al. 2007, Kusakari, Saitow et al. 2015). This thus led us to consider SHP2 

as a potential tau binding partner.  

 

Protein tyrosine phosphatase SHP2 

 In the early 1990s, several groups identified SHP2 based on its sequence similarity to the 

catalytic domain of known PTPs (Adachi, Sekiya et al. 1992, Freeman, Plutzky et al. 1992, 

Ahmad, Banville et al. 1993).  SHP2 is a cytoplasmic protein tyrosine phosphatase, composed of 
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two SH2 domains (N-SH2 and C-SH2) located in the N-terminal region, a classic PTP domain 

and a C-terminal tail (Fig 1.3A). SHP2 protein and its orthologs in non-vertebrates are encoded 

by the PTPN11/Ptpn11 genes in mammals, ptpn11a/b in D. rerio, Csw in D. melanogaster and 

ptp-2 in C. elegans.  

 According to several biochemical and enzymatic studies, in the basal state, SHP2 

possesses low PTP activity. To increase SHP2 activity, cells are exposed to various cellular 

stimuli, resulting in the binding of the SHP2 SH2 domains to activated receptors (e.g. receptor 

tyrosine kinases (RTKs) and cytokine receptors) as well as scaffolding adapters (e.g. IRS, 

DOS/Gab and FRS proteins), shifting SHP2 to an active conformation (Kazlauskas, Feng et al. 

1993, Kuhne, Pawson et al. 1993, Lechleider, Freeman et al. 1993, Holgado-Madruga, Emlet et 

al. 1996, Goldsmith and Koizumi 1997, Gu, Pratt et al. 1998, Hadari, Kouhara et al. 1998). In 

1994, Zhao and collaborators purified and characterized SHP2. In their phosphatase assays, the 

recombinant SHP2 lacking SH2 domains (∆SH2-SHP2) exhibited enhanced phosphatase activity, 

compared to the wild-type full-length protein (Zhao, Larocque et al. 1994), suggesting that SHP2 

activity was regulated by its SH2 domains in an autoinhibitory manner. Consistent with this 

notion, crystal structure of SHP2 indicated that the N-SH2 domain indeed interacted with the 

catalytic PTP domain in the basal state, likely resulting in autoinhibition of PTP activity (Hof, 

Pluskey et al. 1998) (Fig. 1.3B and C). This autoinhibited structure is stabilized by major 

hydrogen bonding that occurs between D61 and C459 residues. The substitution of SHP2 C459 to 

serine (C459S) is used to generate a substrate trapping mutant.   

 The interaction of SHP2 SH2 domains with specific phosphotyrosine motifs of SHP2’s 

upstream signaling partners was proposed to disrupt the inhibitory interactions between N-SH2 

and its PTP domain, leading to a switch to the active state of SHP2 (Hof, Pluskey et al. 1998). In 

this state, the phosphatase is in an open conformation that allows for substrate binding and its 

subsequent dephosphorylation (Fig 1.3C). The C-terminal tail of SHP2 carries serine and tyrosine 

phosphorylation sites as well as a proline rich region that can bind SH3 domain-containing 
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proteins. Although the precise role remains unclear, in the active state, the C-terminal tail tyrosine 

residues are phosphorylated. Bennett and colleagues, through tryptic phosphopeptide mapping 

assays using active PDGFR, first identified Y542 and Y580 of SHP2 as the major in vivo sites of 

SHP2 tyrosine phosphorylation (Bennett, Tang et al. 1994). Subsequently, these sites of SHP2 

were also found to be phosphorylated following stimulation with growth factors or cytokines, 

such as EGF and IL-6, thereby activating the Ras-MAPK signaling pathway (Araki, Nawa et al. 

2003, Hov, Tian et al. 2009). 

 Although PTPs are generally seen as negative regulators of cell signaling based on their 

ability to counteract the positive signal emanating from tyrosine kinases, accumulating evidence 

indicates that SHP2 is one of the rare PTPs displaying a positive function in signal transduction. 

Indeed, in response to a wide range of growth factors and cytokines, SHP2 promotes the 

activation of the Ras-MAPK pathway, a canonical signaling pathway that plays key roles in 

various cellular processes, including proliferation, survival, differentiation, migration, and 

metabolism (reviewed in (Tajan, de Rocca Serra et al. 2015)). Mice harboring a truncated SHP2, 

which lacked its N-SH2 domain, died in utero during gastrulation, possibly resulting from a 

defect in its MAPK pathway (Saxton, Henkemeyer et al. 1997).  This phenotype became worse in 

mice with a complete loss of SHP2 expression as indicated by the embryonic lethality resulting 

from a massive death of blastocyst internal mass cells, apoptosis of trophoblastic cells, and failure 

to produce trophoblastic stem cells (Yang, Klaman et al. 2006). The molecular mechanism 

underlying the defective phenotype was associated with the disruption in FGF4-evoked activation 

of the Ras-MAPK pathway, which controls stem cell survival. In addition to the role of SHP2 in 

embryonic development, numerous studies using tissue-specific knockouts of SHP2 have shown 

various roles for SHP2 in tissue/organ development and/or homeostasis, and these effects have 

often been associated with ERK1/2 hypoactivation (reviewed in (Tajan, de Rocca Serra et al. 

2015)).  
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Association of PTPN11 mutations with aberrant signaling 

 PTPN11 (human SHP2 gene) was first identified as the susceptibility gene for Noonan 

syndrome (NS) (Tartaglia, Mehler et al. 2001). As an autosomal dominant disorder, clinical 

features of NS are short stature, facial dysmorphia, and congenital heart defects (reviewed in 

(Tartaglia and Gelb 2005). Approximately 50% of individuals with a clinical diagnosis of NS 

possess missense mutations in PTPN11 (Tartaglia, Mehler et al. 2001, Tartaglia and Gelb 2005). 

Structural and functional studies have shown that NS-associated mutations of SHP2 mainly 

occurred at mutational hotspots within or close to the N-SH2 and PTP domains (residues G60, 

D61, Y62, Y63, T73, Q79, N308, and G503) (Niihori, Aoki et al. 2005, Tartaglia, Martinelli et al. 

2006) (Fig. 1.4A).  

 The NS-associated mutations led to a reduction of the auto-inhibitory interaction, thereby 

resulting in increased SHP2 phosphatase activity in both the basal and stimulated conditions (Fig 

1.4B). Thus, a loss of autoinhibition of the PTP activity resulting from disruption of the 

intramolecular interaction between the N-SH2 and PTP domain may be a mechanism underlying 

the NS-associated aberrant signaling. In addition to germline mutations related to NS, somatic 

mutations of PTPN11 have been identified in about 34% of juvenile myelomonocytic leukemia 

(JMML) patients without NS (Tartaglia, Niemeyer et al. 2003). The JMML-associated somatic 

mutations of PTPN11 are not identical to but partly overlap with the germline mutations 

associated with NS (Fig 1.4A). Several enzymatic assays have shown that the PTP activity of 

either NS- or the leukemia-associated SHP2 mutants was significantly increased, relative to that 

of wild type SHP2 (Tartaglia, Niemeyer et al. 2003, Fragale, Tartaglia et al. 2004). Indeed, 

expression of these various SHP2 mutants in COS7 cells resulted in prolonged MAPK activation 

following stimulation with a growth factor, suggesting that the overly active SHP2 mutant may 

induce aberrant activation of Ras. This notion is supported by evidence that gain-of-function 

mutations of K-Ras or N-Ras are associated with NS or sporadic JMML (Flotho, Valcamonica et 

al. 1999, Schubbert, Zenker et al. 2006).  
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 The effect of aberrant Ras signal induced by SHP2 mutation was also reported in an in 

vivo study using ‘knock-in’ mice expressing the NS-associated SHP2 mutant D61G (Araki, Mohi 

et al. 2004). While homozygous SHP2 D61G mice died in utero, heterozygous (D61G/+) mice 

showed the key features of NS (short stature, craniofacial abnormalities, and multiple cardiac 

defects). In addition, D61G/+ embryos exhibited cell and pathway-specific increases in the levels 

of phospho-ERK. Taken together, these studies provide insights into the molecular mechanism by 

which mutations of PTPN11 cause abnormal signaling relevant to NS.  

 

Role of SHP2 and tau in growth factor-induced Ras-MAPK pathways 

 Multiple lines of evidence, addressing the role of SHP2 in development and mutation-

associated disease pathogenesis, indicate that the PTP activity of SHP2 is required for full 

activation of Ras, with SHP2 being thought to regulate an upstream element necessary for Ras 

activation (reviewed in (Neel, Gu et al. 2003)). However, the precise mechanism by which SHP2 

promotes Ras activation remains unclear. Several studies have shown that SHP2 promotes Ras-

MAPK activation by functioning as a docking protein. Phospho-Y542/Y580 of SHP2, resulting 

from PDGFR activation, was found to provide docking sites for the Grb2/SOS complex (Bennett, 

Tang et al. 1994, Li, Nishimura et al. 1994, Vogel and Ullrich 1996), leading to a subsequent 

promotion of ERK1/2 activation. However, it was shown that Grb2 binding may not be sufficient 

to enhance ERK1/2, since a dominant negative SHP2 mutant (catalytically inactive) retained 

Grb2 association but still disrupted Ras-MAPK activation (Deb, Wong et al. 1998). This 

suggested that the phosphatase activity was involved in Ras-MAPK activation, and that the 

dephosphorylation of a substrate by SHP2 was required to activate Ras-MAPK pathway. Such 

substrates could be RTKs such as PDGFR or EGFR or adaptor proteins such as Gab1. As an 

example, specific phospho-tyrosine residues on Gab1 bind to p120 RasGap, the GTPase-

activating protein that inactivates GTP-bound Ras. Dephosphorylation of these Gab1 phospho-
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tyrosine residues by SHP2 consequently promotes Ras-MAPK activation by preventing the 

binding of p120 RasGAP and the inactivation of Ras (Cleghon, Feldmann et al. 1998, Agazie and 

Hayman 2003, Montagner, Yart et al. 2005, De Rocca Serra-Nedelec, Edouard et al. 2012). In 

addition to RTKs and adaptor proteins, Src kinases (Zhang, Yang et al. 2004, Yang, Klaman et al. 

2006) and SPRY/Sprouty, a negative regulator of Ras (Tefft, Lee et al. 2002, Hanafusa, Torii et 

al. 2004) were also found as substrates for SHP2, where the dephosphorylated forms enhance 

Ras-MAPK activation.   

 Previously, our lab discovered that tau was necessary for NGF-induced MAPK activation 

in PC12-derived cell lines and that phosphorylation at T231 was required for tau to potentiate 

MAPK signaling (Leugers and Lee 2010). This finding has relevance towards AD since phospho-

T231 tau appears early in AD and MAPK activity is augmented in AD brain (Pei, Braak et al. 

2002, Luna-Munoz, Garcia-Sierra et al. 2005). As a key regulator of proliferation and survival 

signaling pathways, the catalytically active SHP2 is also required for NGF-induced MAPK 

activation and the sustained activity of MAPK in PC12 cells (Wright, Drueckes et al. 1997, 

D'Alessio, Cerchia et al. 2007). The role of tau in the signaling cascade was suggested to be 

upstream of Ras as a constitutively active mutant Ras rescued NGF-induced MAPK activity in a 

tau depleted cell line (Leugers and Lee 2010). SHP2 was also found to act upstream of Ras since 

absence of functional SHP2 impaired growth factor-evoked Ras activation (Shi, Yu et al. 2000). 

Although the roles of tau and SHP2 in growth factor-mediated signal transduction have been 

separately elucidated, their relationship and its possible role in signaling have not been studied.  

 

Dissertation research focus 

 The evidence we have seen regarding a role for phosphorylated tau in physiological and 

pathological conditions suggests that tau function is regulated by its phosphorylation. This notion 

further suggests that the role of tau in a neuronal signaling pathway may be regulated by tau 
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phosphorylation. Indeed, the significant role of T231 tau phosphorylation for signal transduction 

has been shown (Leugers and Lee 2010). Since our lab found that phospho-T231 tau associated 

with SHP2 in neuronal cells (Leugers and Lee, unpublished data), the primary aim of the 

dissertation research is to investigate the interaction between tau and SHP2. Here, we report the 

structural features of tau involved in SHP2 association, the localization of tau-SHP2 complexes in 

cells, the tau-SHP2 association during neuronal differentiation, and the identification of tau-SHP2 

complexes in primary mouse hippocampal neurons and intact mouse brain tissues. These findings 

provide important insights into tau-SHP2 association that may have broader implications for the 

role of the complexes in early brain development and in AD pathogenesis.   
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Figure 1.1   Schematic diagram showing the organization of the six predominant isoforms of 

tau found in adult human brain, with exons 2, 3, and 10 as indicated.  

The number of amino acids in each isoform is indicated at the right. The six isoforms are 

generated by splicing in or out exons 2 and 3 in the N-terminal region and exon 10 in the C-

terminal region. The splicing in or out of exon 10 results in a tau form with or without the second 

microtubule-binding repeat (R2), to yield isoforms with four or three microtubule-binding 

domains, respectively (Goedert, Spillantini et al. 1989). In human fetal brain, only fetal tau (352 

amino acids) is present (Kosik, Orecchio et al. 1989, Goedert and Jakes 1990).  
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Figure 1.2   Phosphorylation sites on tau protein in fetal/AD brains and epitopes specific for 

major tau antibodies.  

Characteristic tau domains are depicted: from N-terminal projection domain, proline-rich domain, 

microtubule binding domain, and C-terminus. Red color denotes amino acids phosphorylated in 

AD brain, green in both AD and fetal brain. Tau antibodies specific for phospho-tau epitopes are 

given in purple. Red- in the AD brain; Green-in both the AD and fetal brain. 
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Figure 5.4   Tau-SHP2 complexes are present in brain sections of P301L Tg mice. 

(A and B)   The brain sections of transgenic mice expressing human P301L mutant tau, which is 

associated with frontotemporal dementia, were deparaffinized using sequential incubation with 

xylene and ethanol, and rehydrated. Following the antigen retrieval and blocking procedures, the 

sections were subjected to PLAs using DD8 and mouse-anti SHP2 (A). SHP2 was additionally 

labeled by anti- mouse IgG-Alexa 488 secondary antibody (B). (C and D)   As controls, PLAs 

were performed in the brain sections, omitting either DD8 (C) or anti-SHP2 (D). Images were 

taken by Nikon E800 microscope. Scale bar; 50um. (E)   The PLA puncta from wild type (Fig. 

5.3) and P301L brains were counted on five areas within cortical region from each section. The 

number of PLA signals was then statistically compared using student t-test. Error bars, mean ± 

s.e.m. from three independent experiments. (*p<0.05) 
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Figure 5.5   In medial region of mouse brains, P301L brains showed the higher number of 

tau-SHP2 complexes than wild type brain.  

(A)   A schematic for a section of medial part of mouse brains indicating areas for panels B-D. (B 

- D)   Using sections of medial region from wild type (B) and P301L (C and D) brains, DD8 and 

monoclonal anti-SHP2 were used to detect tau and SHP2. The PLAs were conducted, followed by 

additional labeling of SHP2 by anti-mouse IgG-Alex 488.  Images were taken by Nikon E800 

microscope. Panels B and C show the further inside region of the brain sections. Panel D shows 

the edge of the brain section. Scale bar: 50um. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 Our research has demonstrated the tau-SHP2 association in vitro, in cells, and in intact 

brain tissues. In Chapter II, we showed that tau-SHP2 association did not require tau 

phosphorylation but was enhanced by tau phosphorylation, particularly at T231. Furthermore, in 

Chapter III, we found that tau-SHP2 interaction occured through tau microtubule binding repeat 1 

(tau residues 256-273). In Chapter IV, the investigation of tau-SHP2 complexes in cells using 

PLAs demonstrated that endogenous tau and SHP2 formed complexes, which might be localized 

at plasma membrane, and that phosphorylation at T231 of tau was required for the increase in tau-

SHP2 association found during NGF-induced signaling. Finally, we found that tau-SHP2 

complexes existed in mouse brain tissues and in primary culture neurons where the localization of 

tau-SHP2 complexes could be visualized using the PLA. These findings raise a number of 

questions regarding the mechanism behind the association of tau with SHP2 and also the 

functional role of tau-SHP2 complexes in NGF-induced MAPK activation. Here we will describe 

additional experiments to address these issues and further discuss the implications of the role of 

tau-SHP2 association on MAPK signaling in neurodegenerative disease. 

Nature of tau-SHP2 association 

 Our current finding in Chapter II indicates that the association between tau and SHP2 is 

regulated by tau phosphorylation as evidenced by the increased tau-SHP2 interaction obtained 

when using the phosphomimetic mutant T231D tau in the in vitro binding assays. This 

observation prompts us to focus on the possibility that another modification at T231 might allow 

us to generate a SHP2 association-defective tau mutant, which would be a useful tool to 

investigate the role for tau-SHP2 association on NGF signaling in PC6-3 cells. T231D tau is a 

mutant tau construct where threonine (T) residue has been substituted with the negatively charged 

aspartic acid (D) residue. Given that tau residue 230 is a positively charged arginine (R), the 
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introduction of D residue into the 231 position will likely neutralize the positively charged 

condition maintained by R230, subsequently giving tau a conformation that favored SHP2 

binding. Thus, it is possible that strengthening the positive charge around R230 and T231 by 

substituting a K residue into positon 231 may decrease or inhibit the tau-SHP2 interaction. Thus 

we will generate E.Coli-synthesized T231K tau and conduct in vitro binding assays to test for 

SHP2 binding using SHP2 immunoprecipitated from COS7 cell lysates. Since in vitro binding 

assays were successfully conducted in our experiments (Chapter II), we do not expect any 

problem for this assay. Wild type or T231D tau will be included as controls. The resulting data 

are expected to show different binding efficiencies among the recombinant tau constructs. If 

T231K tau still binds to SHP2, there are three possible results: 1) less binding efficiency than 

wild type tau, 2) the same binding as wild type tau, or 3) more binding than wild type tau. The 

first possibility would suggest that positive charge at tau residue 231 negatively regulates the 

SHP2 binding but not completely disrupts the association. The second would suggest no effect of 

positive charge at 231 of tau on SHP2 binding. The last would suggest that any tau conformation 

induced by + or – charge at the residue 231 would promote SHP2 association. 

 If T231K tau loses the association with SHP2 in the in vitro binding assays, it would 

suggest that T231K tau may be a SHP2 association-defective tau mutant in cells and that the tau 

conformation induced by phosphorylation at T231 may be the most favored form of tau with 

which SHP2 associates. We will then extend our experiment using cells to examine whether 

T231K tau is also a SHP2 association-defective tau mutant in a biological system. T231K tau 

construct will be expressed in COS7 cells by transient transfection and immunoprecipitated, 

followed by immunoblots to investigate SHP2 co-immunoprecipitation. Controls will also include 

mock transfection and wild type tau transfection in the cells. The expected results are an absence 

of SHP2 in the co-immunoprecipitation of T231K tau while SHP2 co-immunoprecipitates with 

wild type tau. In such a case, we will also confirm this observation in neuronal cells by 
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performing PLAs for the T231K tau-SHP2 interaction in rTau4 cells where T231K tau, empty 

vector or wild type tau is transiently expressed. If T231K tau is confirmed as a SHP2 association-

defective tau mutant in rTau4 cells, the construct would be a useful tool to investigate the role for 

tau-SHP2 interaction on NGF signaling (discussed below).  

 If T231K tau is able to co-immunoprecipitate with SHP2 despite not being able to 

associate with SHP2, this result would suggest that additional posttranslational modifications in 

cells, in addition to the T231K modification, are able to promote SHP2 binding. Thus an 

alternative approach would be to focus on microtubule binding repeat 1 of tau, through which 

SHP2 associates with tau. To identify a SHP2 association-defective tau mutant, we will test 

internal deletion tau mutants (discussed below).  

 In Chapter III, we demonstrated that the SHP2 binding region of tau was located in tau 

R1 (residues 256-273). Since the microtubule binding repeats of tau are composed of highly but 

not perfectly conserved repeats of 18 residues (Brandt and Lee 1993), it is possible that other 

microtubule binding repeat(s) R2 (287-304), R3 (318-335), and/or R4 (350-367) may also be 

capable of binding to SHP2. The involvement of other tau microtubule binding repeats for SHP2 

binding will further suggest that SHP2-associated tau may be free tau, not bound to microtubules, 

and may have a function for signaling. Thus we will determine if other microtubule binding 

repeats are involved in SHP2 binding. To this end, we will first generate a tau internal deletion 

mutant (∆R1) derived from full length 0N4R human tau. The ∆R1 construct will be expressed in 

COS7 cells by transfection, and co-IPs will be performed as described in Chapter II. Controls will 

include mock transfection and wild type tau expression in cells. If the SHP2 binding site uses 

conserved residues, the expected result is that the ∆R1 construct would bind SHP2. The data 

would then suggest that other microtubule binding repeat(s) (R2, R3 and/or R4) would also be 

capable of binding to SHP2, indicating the requirement of the 18 conserved residues for SHP2 
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interaction. This result would imply that in order for tau to associate with SHP2, tau would have 

to be free from microtubules.  

 The data showing the ability of other binding repeats (R2, R3 and/or R4) to bind SHP2 

will also allow us to determine the effect of synergy between repeats on SHP2 binding. Since our 

in vitro binding assay was useful to measure binding efficiencies of tau to SHP2 (Fig. 2.7), we 

will first examine the effect of R1/R2, R1/R3, R1/R4, R2/R3, R2/R4, and R3/R4 using E.coli-

synthesized internal deletion tau mutants (∆R3/∆R4, ∆R2/∆R4, ∆R2/∆R3, ∆R1/∆R4, ∆R1/∆R3, 

and ∆R1/∆R2). If the quantitation of the data shows different SHP2 binding efficiencies among 

the mutant constructs, it would suggest that each repeat may have a different ability to bind 

SHP2. However, in the case that all the constructs have the same binding efficiencies, we will 

compare them with the binding efficiency obtained from using a tau mutant, ∆R2/∆R3/∆R4, 

which would reflect the effect of only R1 on SHP2 binding. If the pairs of repeats show higher 

binding efficiencies than the single binding repeat, it would suggest that more microtubule 

binding repeats such as three or four microtubule binding repeats provide additional sites for 

SHP2 binding. On the other hand, the possibility also exists that there is no significant difference 

in the binding efficiency between the paired and single repeat(s). This would suggest that only 

one microtubule binding repeat out of four engages in SHP2 binding. In the co-IP above testing 

the ∆R1-tau for SHP2 binding, an alternative result is no association between ∆R1-tau and SHP2. 

This result would indicate that R1 is the only microtubule binding repeat capable of SHP2 

association. This ∆R1 construct then may be alternatively used as a SHP2 association-defective 

mutant tau if T231K tau is not useful (discussed above).  

 If R1 is shown to be uniquely involved in SHP2 association, we would examine the R1 

sequence to identify critical tau residues that may be required for SHP2 interaction. Since T263, 

E264, L266, and Q269 are only residues found in R1, these residues would be the first candidates 

for site directed mutagenesis. Taken together, these experiments are expected to add to our 
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understanding of the nature of tau-SHP2 association and help to identify SHP2 association-

defective tau mutant that can be utilized for further investigation into the role of tau-SHP2 

association in NGF signaling.    

Tau as a substrate for SHP2 

 Phosphatases involved in tau dephosphorylation include PP1, PP2A, PP2B, PP5, and 

others (reviewed in (Braithwaite, Stock et al. 2012)).  Such phosphatases have been found to 

dephosphorylate numerous ser/thr tau residues (discussed in Chapter I), indicating that 

phosphorylated tau at those sites serves as a substrate for the protein phosphatase(s) (Gong, 

Grundke-Iqbal et al. 1994, Gong, Singh et al. 1994). Furthermore, the levels or activity of the 

protein phosphatases are significantly decreased in AD (Gong, Shaikh et al. 1995), suggesting 

that hyperphosphorylation at ser/thr restudies of tau in AD brain could result from a deficit in 

protein dephosphorylation. In AD brain, tau tyrosine residue 18 is also phosphorylated as 

evidenced by detection using an antibody 9G3 (Lee, Thangavel et al. 2004). Interestingly, our lab 

found that phospho-Y18 tau was present mainly in intact neurons and not in neuropil threads or 

dystrophic neurites, suggesting that phospho-Y18 might be dephosphorylated during 

neuropathogenesis. The phosphorylation at Y18 also takes place in early brain development but 

disappears in further developed brains (21 d postnatal) (Lee, Thangavel et al. 2004). In addition, 

the level of Fyn and its activity in developing rat brains were found to increase by 35 d postnatal 

(Inomata, Takayama et al. 1994), suggesting that phospho-Y18 tau may be regulated by protein 

tyrosine phosphatase(s). Since we found the tau-SHP2 association, we tested if phospho-Y18 tau 

was a substrate for SHP2 and found that tau served as a substrate for SHP2 in vitro where 

phospho-Y18 tau peptide or full length phospho-Y18 tau was used as a substrate (Francis and 

Lee, unpublished data). Thus, it is significant to determine if phospho-Y18 tau is a substrate for 

SHP2 in differentiating cells, which might be relevant to early AD pathogenesis. To extend our 

understanding, we propose additional experiments using COS7 and neuronal cells. 
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increased following NGF stimulation, it would further suggest a signaling function for the 

complex. To determine if the amount of tau-SHP2 complexes in lipid rafts increases following 

NGF stimulation, we will perform co-IPs from raft prep using different time points of NGF 

stimulation. Taken together, results from these experiments are expected to determine the 

membrane localization of tau-SHP2 complexes and investigate NGF-induced changes. Such data 

may provide additional evidence supporting a role for the complex in signaling.  

 Although we have investigated the tau and SHP2 interaction in the current dissertation 

research, the significance of the tau-SHP2 association in the NGF signaling pathway remains to 

be determined. If we generate a SHP2 interaction-defective mutant tau as discussed in the 

beginning of this chapter, we would be able to test  its ability to potentiate NGF-induced MAPK 

activation in rTau4 cells, using wild type tau as a control (Leugers and Lee 2010). The assay 

quantitates NGF-induced MAPK activation which enables to increase Firefly luciferase 

expression that could be measured. Thus if tau-SHP2 association is required for NGF receptor 

signaling, the expression of an SHP2 interaction-defective mutant tau would not potentiate NGF-

induced MAPK activity.  

Implications for tau-SHP2 association in neurodegenerative disease 

 Based on the results from our dissertation research, tau and SHP2 association may have a 

critical role for NGF-induced MAPK pathway. Given that increased MAPK signaling is 

associated with AD neuropathogenesis (Zhu, Castellani et al. 2001, Zhu, Sun et al. 2004), we 

speculate that there is a role for tau-SHP association during disease pathogenesis. Increased 

MAPK activation has been also suggested to induce aberrant cell cycle events in the post-mitotic 

neurons of AD brain, as evidenced by (1) the elevated expression of p21Ras, which links 

mitogenic signals to cell cycle regulation, in very early stages of AD brain (Peeper, Upton et al. 

1997, Gartner, Holzer et al. 1999), and (2) a neuronal cell  model where the expression of c-myc 

and Ras oncogenes forced postmitotic primary cortical neurons into the cell division cycle 
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anti-activated SHP2, we will also use brain sections from the triple transgenic mouse AD model 

(3×Tg-AD mouse model) (Oddo, Caccamo et al. 2003).  

 We have shown the increased association between tau and SHP2 in response to NGF, 

which may be critical for enhancement of MAPK activity. MAPK activation in AD brain is likely 

to be initiated by additional triggers including Aβ peptide, oxidative stress, and inflammation 

(reviewed in (Zhu, Lee et al. 2002, Kim and Choi 2010)). It is therefore important to conduct 

experiments to determine whether tau-SHP2 association is increased in a similar fashion by these 

various triggers. Aβ-induced MAPK activation has been documented in primary neuronal 

cultures, SH-SY5Y neuroblastoma cells, as well as PC12 cells (Rapoport and Ferreira 2000, 

Frasca, Chiechio et al. 2004, Jang and Surh 2005). In PC6-3 cells, we will determine if tau-SHP2 

complex levels increase in response to Aβ peptide using PLAs. Various time points of Aβ 

treatment (Aβ25-35 peptide) (Jang and Surh 2005) will be used to follow the changes in the level of 

tau-SHP2 association. Non-treated cells will be included as a control. The expected result is that 

the level of tau-SHP2 complex would increase following Aβ treatment, which would suggest that 

tau-SHP2 association may be involved in Aβ-triggered MAPK activation as shown in the NGF 

pathway. However, if the results do not show an increased tau-SHP association, it would suggest 

that Aβ-triggered MAPK activation in PC6-3 cells may be mediated through other signaling 

pathways that do not engage tau-SHP2 association. In such a case, Aβ treatment may activate 

other small GTPases such as Rab1, which is also involved in MAPK activation (reviewed in 

(Zhang and Liu 2002)), rather than Ras. Moreover, in order to examine the effect of other cell 

stressors on tau-SHP2 interaction, PC6-3 cells will also be subjected to heat shock, irradiation, or 

hydrogen peroxide treatment. PLAs will then be utilized to determine whether these cell stressors 

increase tau-SHP2 association. Since our data from the PLAs using primary mouse hippocampal 

cultures also demonstrated tau-SHP2 association (Fig. 5.1 and 5.2), we will extend on our 

experiments to investigate the effect of Aβ treatment on the tau-SHP2 association in primary 
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neuronal cultures. Results from these experiments will provide us with additional information 

about the link between Aβ exposure and tau-SHP2 interaction. 

 

Final comments 

 The continued aging of the global population is driving the current epidemic of dementia, 

both in terms of its extent and global distribution. By 2050, around 13.8 million people are 

projected to be suffering with AD in the United States alone unless preventive measures are 

developed (Hebert, Weuve et al. 2013). It is therefore urgent to achieve medical advances to 

delay or cease onset of AD, which will generate significant economic and longevity benefits. One 

of those efforts is to improve our understanding of disease pathogenesis. Much evidence supports 

a role for phosphorylated tau as a significant contributor to AD pathogenesis, where it is involved 

in aberrant signaling, cell cycle reentry and subsequent neuronal loss.  

 In this dissertation research, we have focused on the association between tau and protein 

tyrosine phosphatase SHP2, investigating the role of tau phosphorylation in the interaction, and 

identifying the SHP2 binding region of tau. We have also investigated tau phosphorylation-

mediated changes in the tau-SHP2 association upon growth factor-induced signaling in cells. We 

finally demonstrated the tau-SHP2 association in mouse primary neuronal cultures and brain 

tissues. Based on the data we have obtained for this dissertation, and the data we hope to gather 

from further experimentation, we propose a model for the role of tau-SHP2 interaction in the 

context of MAPK activation triggered by physiological (NGF) or disease-associated (Aβ, 

oxidative stress, or inflammation) stimuli (Rapoport and Ferreira 2000, Frasca, Chiechio et al. 

2004, Jang and Surh 2005) (Fig. 6.1). We hypothesize that tau-SHP2 association, which is 

regulated by tau phosphorylation, is critical for the sustained MAPK activation required for 

neuronal differentiation. Given the abnormally phosphorylated tau in AD brain and the correlated 
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changes in MAPK signaling triggered by upstream factors such as Aβ and oxidative stress 

(Rapoport and Ferreira 2000, Frasca, Chiechio et al. 2004, Jang and Surh 2005), we speculate that 

there is a role for tau-SHP2 association in exacerbating MAPK activation in the diseased brain. 

We also propose a model describing a pathogenic role for tau-SHP2 association during early AD 

pathogenesis (Fig. 6.2). We hypothesize that tau protein phosphorylated at both Y18 and T231 

increases the association with SHP2 upon stimulations with cellular stressors such as Aβ, 

oxidative stress, and inflammation. During this association, SHP2 will act on tau to 

dephosphorylate phospho-Y18 but not affect tau-SHP2 association. Since SHP2 is required for 

full activation of Ras (Shi, Yu et al. 2000) the increased tau-SHP2 association will promote Ras-

MAPK pathway, resulting in cell cycle reentry of the affected neurons. Neurons will then die due 

to the forced cell division cycle. On the other hand, the enhanced MAPK will further 

phosphorylate tau, which forms PHFs. Subsequent transfer of PHFs into dendrites will be shown 

as neuropil threads or dystrophic neurites in AD brain. Finally, we hope that our research will 

provide insights into AD progression. Additional experiments to determine the signaling role of 

tau-SHP2 association early in differentiating cells may lead to understanding of the role for tau 

phosphorylation and tau-SHP2 interaction early in AD-associated MAPK signaling.   
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Figure 6.1   Model of ERK signaling regulated by tau-SHP2 association in developing brain. 

The proposed model depicts the potential role of tau-SHP2 association during Ras-MAPK 

signaling triggered by physiological or pathological upstream signals. ① In the resting state, 

PC12 cells only have the basal level of tau-SHP2 complexes. ② NGF activation of TrkA or 

pathological stressors lead to a recruitment of adaptor protein complexes (only partially 

represented here) to the activated receptor. ③ The increase in the tau-SHP2 association can be 

done by two possible modes. i) phospho-T231tau and SHP2 are co-localized into lipid rafts and 

subsequently associate each other. ii) phospho-T231 tau undergoes additional phosphorylation by 

GSK3β, thereby inducing further conformational changes in tau that increase SHP2 binding. The 

tau-SHP2 complexes are then localized to the lipid rafts. ④ The increase in the number of tau-

SHP2 complexes contributes to activation of M-Ras GTPase through C3G (Guanine-nucleotide 

exchange factor, GEF). ⑤ The GTPase activation results in a signaling through a kinase cascade 

composed of Raf, MEK, and ERK kinases; culminating in the activation of ERK1/2 (MAPK) and 

downstream transcription factors.  

             : Tau,      : microtubule binding domains,      : SHP2,     :TrkA,    : phosphorylation. 
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Figure 6.2   A pathogenic role for tau-SHP2 association during early AD pathogenesis. 

The proposed model depicts the potential role of tau-SHP2 association during AD pathogenesis-

associated-MAPK pathway. ① Pathological stressors such as amyloids, oxidative stress and 

inflammation strike neurons. ② These factors increase the level of the association between 

phospho-tau (both pT231 and pY18) and SHP2 in neurons. ③ SHP2 acts on phospho-Y18 tau, 

resulting in dephosphorylation of phospho-Y18. ④ The increased association between tau-SHP2 

enhances Ras-MAPK pathway, which triggers cell division events in postmitotic neurons. Such 

cell cycle reactivation subsequently leads to neuronal cell death. ⑤ On the other hand, the 

enhanced MAPK activity contributes to formation of PHFs by further phosphorylating tau, which 

is not phosphorylated at Y18. These PHFs are then transferred into dendrites.  

             : Tau,      : microtubule binding domains,      : SHP2, : PHFs,    : phosphorylation. 
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