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Figure 27. Macrophages ingest infected neutrophils and cargo. Representative 
fluorescence microscopy images of macrophages (white dotted outlines) with bound 
and/or engulfed iPMNs. Ft are shown in green (sGFP-expressing strain), nuclei are 
shown in blue (DAPI), and neutrophils are shown in red (stained for 
myeloperoxidase). Symbols indicate Ft-infected neutrophils (arrows), including one 
undergoing degradation by the macrophage (asterisk).  
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Figure 28. F. tularensis replicates within macrophage cytosol. a-b. Growth of F. 
tularensis was measured via enumeration of colony-forming units. Macrophages were 
co-incubated with either iPMNs or Ft bacteria for 2 hours, washed, and returned to 
incubation for 24-36 hours. Representative time course is shown in panel a and 
pooled data showing the mean ± SEM of three independent experiments are shown in 
panel b. Differences between direct and indirect infections were not statistically 
significant. c. Bacterial burden was visualized via confocal microscopy after 1 hour 
(upper panels) and 15 hours (lower panels) of co-incubation. Macrophages and 
neutrophils can be seen via phase contrast image, neutrophils were identified by 
staining with anti-myeloperoxidase (green) and Ft were stained with anti-Ft LPS 
antibodies (red). Images are representative of two independent experiments. 
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CD80 [302]. M1 macrophages differ from M2 macrophages that exhibit a pro-

resolving or anti-inflammatory phenotype and are defined by enhanced 

surface expression of CD163, CD200R, and/or CD206. As efferocytosis of 

apoptotic neutrophils typically induces an anti-inflammatory macrophage 

phenotype [225, 307], and as engulfment of F. tularensis strain LVS was 

previously shown to elicit an M2 phenotypes in murine macrophages [69], we 

hypothesized that uptake of iPMNs would stimulate macrophages to develop 

an M2 phenotype with characteristic surface marker expression. We 

evaluated macrophage phenotype using flow cytometry to quantify the 

amount of each surface marker, and representative histograms (left panels) 

and pooled data (right panels) for each protein are shown (Figure 29).  

Our data demonstrated that, consistent with uptake of free F. 

tularensis, engulfment of iPMNs failed to enhance CD80 expression to a level 

comparable to macrophages stimulated with IFNγ+LPS, a treatment known 

to classically activate macrophages and upregulate surface CD80 [302]. 

Indeed, uptake of either F. tularensis or iPMNs consistently decreased the 

basal amount of CD80 expression seen on the surface of untreated 

macrophages, though the differences were not statistically significant. 

Surface CD163 was not altered relative to untreated macrophages when 

stimulated with LPS+ICs, F. tularensis, or iPMNs for 24 hours. 

Contrastingly, surface exposure of CD200R was upregulated by treatment 
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Figure 29. Macrophage surface marker expression. 
Representative histograms (left panels) and pooled data (right 
panels) are shown for CD80 (panel a), CD163 (panel b), 
CD200R (panel c), and CD206 (panel d). Histograms 
demonstrate the MFI of the isotype control (black) or MPs 
treated with media alone (blue), stimulatory cytokines (red), 
Ft bacteria (gold), or iPMNs (purple). Bars represent the 
mean ± SEM from at least 2 independent experiments. **p 
<0.01 per one-way ANOVA. MFI, mean fluorescence intensity. 
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with IL-4 as compared to untreated macrophages. CD200R levels were not 

increased above untreated controls when macrophages were stimulated with 

either F. tularensis or iPMNs. 

Lastly, quantitation of CD206 showed high levels of expression on 

untreated macrophages that were comparable to cells stimulated with IL-10. 

However, co-incubation with either F. tularensis or iPMNs significantly 

reduced surface CD206 relative to untreated cells. Together, these data show 

that our resting macrophages were low in CD80, CD163, and CD200R low, 

but CD206 high, a pattern of markers that is consistent with pro-resolving 

M2 macrophages. Co-incubation with either F. tularensis or iPMNs resulted 

in macrophages that were low for all four surface markers, suggesting 

acquisition of an unpolarized phenotype. 

 

Exposure of classically activated macrophages to F. tularensis or F. 

tularensis-infected neutrophils is sufficient to decrease M1 macrophage 

surface marker exposure 

To further explore the potential anti-inflammatory effects of iPMNs on 

macrophage phenotype per our hypothesis, we next tested the ability of 

iPMNs to reverse the classically-activated M1 phenotype, as measured by 

CD80 surface expression. Macrophages pre-treated with IFNγ+LPS for 24 

hours were washed and then incubated in fresh medium containing either 

PMNs, iPMNs, or F. tularensis for 12 hours prior to analysis via flow  
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Figure 30. Engulfment reverses CD80 exposure. Macrophages were pre-stimulated with 
IFN-γ and LPS for 24 hours, washed, and co-incubated with PMNs, iPMNs, or Ft 
bacteria for 2 hours. Macrophages were washed and returned to incubation for 12 hours. 
a. Representative histograms of CD80-PE staining from three independent experiments 
are shown. In all panels, isotype control (black) and cytokine-treated positive control 
(blue) are shown alongside each experimental sample (red). b. Pooled data from three 
independent experiments are shown as the mean ± SEM. Differences between each 
sample and the IFN-γ+LPS control were analyzed using one-way ANOVA with Dunnett’s 
post-test. *p<0.05, **p<0.01. 
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cytometry. Representative histograms (Figure 30a) and pooled data (Figure 

30b) are shown. Panel I demonstrates that stimulation of resting 

macrophages (red) with IFNγ+LPS (blue) significantly increased surface 

levels of CD80, consistent with their ability to induce the M1 phenotype 

[325]. Co-incubation of IFNγ+LPS pre-treated macrophages with PMNs 

reduced surface CD80 (panel II), but this was not statistically significant, 

whereas co-incubation of either iPMNs (panel III) or F. tularensis (panel IV) 

significantly decreased levels of CD80 (*p<0.05, **p<0.01). These data 

demonstrate the ability of iPMNs and F. tularensis to decrease surface levels 

of CD80, indicating an ability to reverse classical macrophage activation. 

 

Effects of F. tularensis-infected neutrophils on macrophage cytokine secretion 

In addition to surface markers, macrophage phenotypes are defined by 

their cytokine secretion profiles. Whereas M1s generally secrete 

proinflammatory cytokines including IFNγ and TNFα, M2s mainly secrete 

anti-inflammatory cytokines, such as IL-10. Using cytokine array panels, we 

compared the levels of 37 cytokines secreted by untreated macrophages and 

macrophages co-incubated with PMNs, iPMNs, or F. tularensis for 12 hours. 

Figure 31b shows one representative set of arrays with cytokines of particular 

interest marked by colored boxes with their integrated intensity shown as a 

heat map in Figure 31c. Signal intensity as a percentage of the maximum 

signal (reference dots; see corners of array panels) is shown.  
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Figure 31. Infected neutrophils alter cytokine production. 
Macrophages were co-incubated with PMNs, iPMNs, or Ft bacteria 
for 2 hours, washed, and returned to incubation for 12 hours. a-c. 
Array panels were used to identify the relative presence or absence 
of 36 different cytokines. Each cytokine is seen in a pair of spots. a. 
Legend for cytokine locations on array. b. Representative set of 
array membranes from 4 independent experiments. Selected factors 
of interest are marked by boxes. c. Heat map displaying similarities 
and differences among samples. Scale bar indicates relative 
densitometry values as compared to the reference spots, and 
represent the mean of four independent experiments. Cytokines 
with values less than 10% are not shown. d. Levels of prostaglandin 
E2 (PGE2) were quantitated via ELISA. Pooled data are the mean ± 
SEM of five independent experiments. Raw values were 
approximately 250 pg/mL. 
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Notably, factors elevated by both F. tularensis and iPMNs, but not 

untreated or PMN-treated macrophages, include IL-1β, TNFα, MIP1α/MIP1β, 

and IFNγ (slightly), which are among the most potent proinflammatory 

stimuli [326]. Additional proinflammatory proteins secreted only by iPMNs 

and F. tularensis include IL-2, IL-6, IL-18, CCL1/I-309, CCL5/RANTES, 

CXCL10 (IP-10), and GM-CSF. Only direct infection with F. tularensis 

prompted enhanced secretion of IL-21 above basal levels and, to a small 

extent, CD40L. The only factor that was uniquely elevated by iPMNs was 

CXCL1/GROα. Of note, all three experimental samples secreted higher 

amounts of complement components 5 and 5a above baseline in a step-wise 

fashion: treatment with PMNs increased secretion slightly, which was 

enhanced further by iPMNs, and greatest by direct infection with F. 

tularensis. 

As determined by heat map analysis, the branching pattern displayed 

at the top of the map (Figure 31c) separated the samples into two groups 

according to their similarities: untreated macrophages were most similar to 

macrophages co-incubated with PMNs, and macrophages treated with iPMNs 

(i.e. indirect infection) were most similar to macrophages treated with free F. 

tularensis (direct infection).  

As previous studies reported that F. tularensis stimulates PGE2 

release from murine macrophages [327], we therefore performed ELISAs to 

quantitate release of PGE2 and found that macrophages secreted comparable 
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amounts of PGE2 irrespective of treatment conditions, and slight differences 

were not statistically significant (Figure 31d). TGFβ levels for all samples 

were below the level of detection, as assayed by ELISA (data not shown). 

Taken together, these data indicate that infectious samples containing F. 

tularensis, either as free bacteria or within iPMNs, secrete a collection of 

proinflammatory cytokines that may serve to recruit many types of 

leukocytes, activate microbicidal activity of macrophages, enhance leukocyte 

production, and increase antigen presentation. Further, co-incubation of 

macrophages with iPMNs tended to be the most inflammatory condition. In 

contrast to surface marker expression, these data indicated that efferocytosis 

of iPMNs induced a predominantly pro-inflammatory macrophage phenotype. 

However, in the absence of quantitative cytokine values, we cannot determine 

the magnitude of this response. 

 

Discussion 

As members of the innate immune system, neutrophils and 

macrophages cooperate to defend the host against pathogenic infection. 

Neutrophils are the first responders to sites of inflammation where they 

rapidly phagocytose and degrade invading microbes and tissue debris. 

Typically, ingestion of foreign particles triggers neutrophils to die via 

apoptosis, however, cell death can be hastened or delayed by pathogenic 

organisms. Among their many functions, macrophages are responsible for the 
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clearance of effete neutrophils as part of normal tissue homeostasis as well as 

inflammation. Engulfment of apoptotic neutrophils by macrophages (termed 

“efferocytosis”) is critical to prevent progression to secondary necrosis and 

release of histotoxic factors from the neutrophil. We demonstrated previously 

that infection with the bacterial pathogen Francisella tularensis significantly 

delays neutrophil apoptosis, but whether F. tularensis-infected neutrophils 

are effectively cleared by macrophages is unknown. 

In the present study, we extend our previous work to investigate the 

fate of iPMNs and their infectious cargo, as well as consequences for the local 

immune environment. We first demonstrate that iPMNs are readily taken up 

by macrophages, that F. tularensis survives this process, and that F. 

tularensis is capable of replicating within the engulfing macrophage cytosol. 

Secondly, we show that efferocytosis of iPMNs is not exclusively dependent 

on the canonical mediators PS, complement, or CD47. Finally, we report that 

although iPMN uptake reduces expression of inflammatory markers on the 

surface of the engulfing macrophage, our results also indicate that these 

macrophages secrete trace levels of proinflammatory cytokines, comparable to 

those triggered by direct infection with F. tularensis. Together, the results of 

this study demonstrate for the first time that F. tularensis invades 

macrophages via uptake of infected neutrophils, which elicits a slight 

proinflammatory response from the macrophage. 
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Over the last decade, our lab and others have established the ability of 

pathogens to extend neutrophil lifespan, particularly those that survive and 

replicate intracellularly, as does F. tularensis [104]. A subset of these 

microbes also exploits apoptotic neutrophils as Trojan horses for infection of 

macrophages. Whereas efferocytosis of infected neutrophils is reported to 

enhance elimination of Mycobacterium tuberculosis [328], conversely, 

Leishmania major, Yersinia pestis, and Chlamydia pneumoniae survive 

engulfment to successfully infect the host macrophage [262-264].  

Consistent with the latter, we demonstrate here that neutrophils laden 

with F. tularensis deliver their infectious cargo into macrophages during 

efferocytosis. Furthermore, we show that F. tularensis is capable of 

significant growth within the engulfing macrophage to levels comparable 

with direct infection. While it is possible that all bacteria survive efferocytosis 

and grow at a rate identical to those directly phagocytosed by macrophages, 

our experimental assays cannot exclude the possibility that a proportion of F. 

tularensis are killed and the surviving bacteria are capable of accelerated 

growth that matches total bacterial burden at 24 and 36 hours.  

One of the most intriguing findings of this study is that more 

macrophages associate with iPMNs than with PMNs, despite decreased 

surface exposure of phosphatidylserine (PS) on the iPMNs. Numerous studies 

have established PS as the “eat me” signal par excellence, yet in direct 

contrast, our data indicate that macrophages associate to a greater extent 
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with iPMNs (PS-low) than PMNs (PS-high). These data are, to our 

knowledge, the first report of an inverse correlation between macrophage 

association and PS externalization. Furthermore, the binding and ingestion of 

iPMNs by macrophages occurs rapidly (within 30 minutes, the earliest time 

point tested) and is concordant with previous reports of engulfment of 

pathogen-laden neutrophils and uninfected apoptotic neutrophils [263, 318, 

329].  

Having identified that high PS exposure is not required for enhanced 

association with iPMNs, we next sought to evaluate alternative mediators of 

uptake. As deposition of complement onto the surface of neutrophils enhances 

efferocytosis [322, 323], we tested various concentrations of serum as well as 

heat-inactivated serum, but none of the results were statistically significant, 

indicating that serum opsonins may contribute to efferocytosis of iPMNs, but 

cannot entirely account for the disparity between PMNs and iPMNs. 

Recently, data from Greenlee-Wacker et al. suggests that infection of 

neutrophils with S. aureus enhances CD47 expression in order to prevent 

efferocytosis [318]. We therefore explored the hypothesis that F. tularensis-

infected neutrophils enhance their association with macrophages by reducing 

surface levels of CD47, but no relationship was detected. 

As yet unexplored alternative mediators of enhanced uptake include 

chemoattractants that draw macrophages into proximity with iPMNs. 

Indeed, L. major-infected neutrophils release MIP-1β to recruit macrophages 
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and enhance their own uptake [263]. Cytokine and chemokine secretion by F. 

tularensis-infected neutrophils may provide substantial insight. Alterations 

in the concentrations of bridging molecules such as MFG-E8 [330] or the 

prevalence of tethering receptors [240] might enhance association of 

macrophages with iPMNs. Another possible mechanism exists whereby the 

minority of iPMNs that are PS-high can trigger “bystander uptake” of PS-low 

iPMNs that are transiently tethered to the macrophage surface [240].  

From a teleological perspective, infection of macrophages via the 

“Trojan horse” route might provide several benefits to F. tularensis. First, as 

neutrophils are short-lived host cells, transfer to a macrophage permits a 

longer duration of intracellular residence where F. tularensis is protected 

from both cellular and acellular components of the immune system. In 

addition, although we previously reported that F. tularensis replicates 

modestly in neutrophils [208], the pathogen grows substantially faster and to 

greater numbers inside macrophages [148]. Whereas neutrophils are confined 

to the local infection site, macrophages can return to the circulation and 

travel to distal organs; thus, transfer from a neutrophil to a macrophage also 

permits systemic spread of the infection. Indeed, T. gondii and L. 

monocytogenes disseminate from their origins of infection to the spleen and 

central nervous system, respectively, via infected phagocytes [331, 332]. Last, 

engulfment of neutrophils induces an anti-inflammatory M2 macrophage 

phenotype that would typically enable continued bacterial replication without 



132  
	
  
	
  

alerting the host immune system, but F. tularensis already successfully 

replicates within macrophages without significant macrophage activation 

[167, 196]. However, F. tularensis might benefit from the enhanced efferocytic 

activity of M2 macrophages to expedite infection.  

In direct contrast with this hypothesis, we show that co-incubation of 

macrophages with F. tularensis-infected neutrophils induces a slight 

proinflammatory cytokine response characterized by the release of TNFα, IL-

1β, and IFNγ. These results are surprisingly similar to the cytokine profile 

elicited by direct infection with F. tularensis, and dissimilar to the pattern of 

cytokines released by treatment of macrophages with uninfected neutrophils. 

In contrast to other pathogens that take advantage of efferocytosis to elicit an 

anti-inflammatory response and for whom direct infection is otherwise 

proinflammatory [264, 333-335], we now describe that F. tularensis 

stimulates a similar inflammatory response irrespective of the route of 

infection. However, in the absence of quantitative cytokine values, we cannot 

determine the magnitude of this response. 

In agreement with published reports [225, 226], we show that 

treatment of macrophages with apoptotic neutrophils is “immunologically 

silent”. Indeed, their cytokine profile is nearly identical to that of untreated 

macrophages. This congruence also suggests that our method of human 

monocyte-derived macrophage isolation results in a pro-resolving phenotype, 

and these data are supported by the presence of M2 phenotype markers 
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presented on their cell surface (low CD80, moderate CD163 and CD200R, and 

high CD206). Interestingly, we find that macrophages treated with either 

iPMNs or free F. tularensis express very low levels of all surface markers, 

both M1 and M2. Furthermore, following enhancement of CD80 with IFNγ + 

LPS, free F. tularensis and iPMNs (but not PMNs) return CD80 exposure to 

basal levels. Whereas simultaneous expression of both M1 and M2 markers 

has been described [336], to the best of our knowledge, reduction of both M1 

and M2 markers has not been previously reported. Our data emphasize the 

diversity of macrophage functional phenotypes, and underscore the need to 

discard the dichotomous terminology. 

Although the production of proinflammatory cytokines by F. tularensis 

and iPMNs is seemingly in contradiction with the reduction of CD80, it is 

important to note that the use of surface markers to characterize distinct 

functional macrophage phenotypes is controversial [300], as macrophage 

functions shift rapidly in response to changing environmental signals. 

Therefore, the cytokine secretion profile is likely more reflective of 

macrophage function than surface markers.  

However, as the mannose receptor (CD206) is the primary receptor 

mediating uptake of F. tularensis in the absence of serum [174], the reduction 

of CD206 surface levels following exposure to iPMNs or free F. tularensis 

might be interpreted as an attempt by the host to curtail pathogen uptake. 

Surface levels of CD206 are controlled by several mechanisms that may be 
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dysregulated in the context of F. tularensis infection. First, direct bacterial 

detection or paracrine signaling from other immune cells might alter 

mannose receptor recycling at the plasma membrane via enhanced 

endocytosis or diminished exocytosis of CD206-containing vesicles [337]. 

Second, as IFNγ decreases CD206 expression at the transcriptional level 

[338], it is possible that the low levels of proinflammatory cytokines released 

by F. tularensis-infected macrophages prompt downregulation of CD206. 

Third, decreased detection of the mannose receptor on the macrophage 

surface may be due to proteolytic cleavage and shedding of the extracellular 

moiety of the receptor, as occurs in response to fungal pathogens [339, 340]. 

Previous reports regarding macrophage responses to F. tularensis are 

highly heterogeneous, and there are substantial differences among the 

bacterial strains, host species, and cell types investigated [193, 196, 197, 341, 

342]. However, consistent with our results, in vitro studies of human 

monocytes and macrophages infected with the F. tularensis LVS strain 

routinely report an early inflammatory response characterized by the 

secretion of TNFα and IL-1β [193, 343, 344]. Murine studies are nevertheless 

useful in establishing the critical role of TNFα and IFNγ in F. tularensis 

infection: neutralization of these cytokines increases murine mortality and 

bacterial burden, whereas supplementation increases survival [194, 195, 345-

347]. Underscoring the protective benefits of classically-activated 

macrophages, F. tularensis SchuS4 strain prevents proinflammatory cytokine 
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responses but LVS does not, which may explain why LVS is less virulent 

[197].  

A single previous study has examined the effect of Francisella on 

macrophage polarization in the context of efferocytosis [348]. Mares et al. 

report that infection of J774A.1 cells (a murine macrophage cell line) with F. 

novicida induces M2 polarization and decreases the ability of macrophages to 

engulf and clear nonviable cells. However, ancillary findings within this 

study not only directly contrast established principles but also conflict 

between the two models utilized within the report, and therefore cast doubt 

on the entire report. Their most striking data indicate that ingestion of 

necrotic debris induces an M2 macrophage phenotype, but the overwhelming 

majority of studies in macrophage literature demonstrate that necrotic debris 

polarizes macrophages towards a proinflammatory M1 phenotype [321, 349, 

350]. Also, the in vivo and in vitro data presented in this paper indicate 

opposite conclusions regarding the effect of F. novicida on macrophage 

polarization. Whereas murine infection in vivo results in upregulation of the 

M2-associated markers Fizz1 and Arginase1, in vitro infection of J774A.1 

cells does not impact Arginase1 expression; this discrepancy is not explained 

or discussed by the authors. Last, this study reports that F. novicida 

decreases the efferocytic capacity of macrophages, but the term efferocytosis 

may be a misnomer here, as the method used to generate non-viable cells 

may also generate necrotic debris. Taken together, the differences in bacterial 
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species, host species, and cell type, combined with the uncertain nature of 

engulfed target cells, limit comparisons with our data. Whether pre-infection 

with F. tularensis decreases efferocytosis in our model system is unknown. 

In sum, our data support a model wherein F. tularensis drives 

enhanced association of iPMNs with macrophages, perhaps to increase 

bacterial uptake and replication, but is detected by the macrophage. Although 

the host attempts to eliminate infection by secreting TNFα and IL-1β, the 

proinflammatory response is overwhelmed by intracellular growth of F. 

tularensis. Cytokine release, with subsequent recruitment and activation of 

additional inflammatory cells, may contribute to the dramatic destruction of 

lung tissue characteristic of pneumonic tularemia.  

Many questions remain regarding the mechanism by which iPMNs 

provoke this immune response. For example, is proinflammatory signaling 

initiated by unique features of the infected apoptotic neutrophil, or does it 

require the presence of free F. tularensis in the cytosol? It is tempting to 

speculate that immune activation may occur via the AIM2 inflammasome, 

which is required for detection of F. tularensis in the cytosol and cleavage of 

IL-1β to its active form [187-190, 351, 352]. If so, how does F. tularensis 

escape the efferosome? Following phagocytosis of free bacteria, F. tularensis 

arrests phagosome maturation, but the mechanism of egress is unclear. 

Maybe the as-yet undetermined receptors responsible for iPMN uptake may 

play a role in signaling and efferosome trafficking via effects on Rab 
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recruitment, as previously described [353]. Perhaps most importantly, 

whether this process occurs in vivo and its potential contributions to tissue 

pathology and host disease remain to be determined. In conclusion, the 

results of this study extend our previous work to demonstrate a novel 

mechanism of macrophage infection by F. tularensis. Our data not only 

advance our understanding of tularemia pathogenesis, but also provide 

additional insights into the biology of efferocytosis and neutrophil-

macrophage interactions. 
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CHAPTER 4 

   SYNTHESIS 

 

The Virulence Strategy of Francisella tularensis 

 Like David and Goliath, the ability of bacteria to annihilate host 

organisms many times their own size is astonishing. A recent study 

estimated that the human body is comprised of over 1013 cells [354], yet fewer 

than 10 bacteria are sufficient to establish a lethal tularemia infection [147]. 

Its remarkably low infectious dose, combined with a case fatality rate up to 

60%, defines F. tularensis as among the most powerful pathogens on the 

planet. Francisella’s extreme virulence implies the evolution of robust 

strategies to escape destruction by the human immune system. Indeed, each 

layer of immune defense is systematically rendered ineffective by 

Francisella’s multifaceted “stealth” strategy. Like a masked burglar, F. 

tularensis obscures its identifying surface features (capsule), enters through 

the back door undetected (modified LPS and no TLR4-coupled uptake), and 

silences the alarm (blockade of respiratory burst) [164, 166, 169, 174, 176, 

177]. The detailed mechanism by which F. tularensis subsequently degrades 

the phagosome membrane and escapes to the cytosol without engaging the 

inflammasome is incompletely defined. As induction of cell suicide is the final 

bastion of neutrophil defense, we contend that inhibition of apoptosis 

represents Francisella’s ultimate immune evasion strategy. 
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 To satisfy the evolutionary drive to replicate, intracellular neutrophil 

pathogens must prolong host cell lifespan. As F. tularensis successfully 

infects an overwhelming number of neutrophils that contribute to disease 

pathology, and as these host cells provide protective cover from other immune 

responses, it stands to reason that F. tularensis might similarly delay 

apoptosis. Prior to studies undertaken by our laboratory, however, the ability 

of F. tularensis to combat this final neutrophil defense effort was unknown. 

We recently documented that F. tularensis indeed delays constitutive 

neutrophil apoptosis in a manner that includes alterations in gene 

transcription and blockade of caspase activity [208, 209], however, the details 

of this mechanism remained uncharacterized.  

 

Mcl-1: How Do I Live Without You? 

 Studies regarding the regulation of apoptosis continue to reveal a 

system of vast complexity that includes multiple intracellular signaling 

pathways that, seemingly to enhance confusion, features additional elements 

unique to neutrophils [104]. However, one might conceptualize apoptosis as 

essentially regulated by the opposing actions of pro-survival and pro-death 

members of the Bcl-2 family proteins [355]. Indeed, studies have shown that 

pathogens alter the relative abundance and activities of these factors in order 

to manipulate cell death [117, 356, 357]. We demonstrate here that whereas 
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neutrophil infection with F. tularensis enhances protein levels of the pro-

survival factors XIAP and calpastatin, it decreases the amount of the pro-

apoptotic protein Bax. Although Mcl-1 is described in the literature as critical 

to survival, and is upregulated by treatment with pro-survival cytokines 

[286], we found that infection of F. tularensis does not enhance Mcl-1 levels 

relative to untreated controls. This finding sets F. tularensis apart from other 

pathogens, including Chlamydia trachomatis, which relies on Mcl-1 to 

prevent Bax translocation and MOMP [358].  

However, F. tularensis may yet enhance cytosolic sequestration of Bax 

via changes in Mcl-1 activity rather than Mcl-1 quantity. Phosphorylation of 

Mcl-1 by CDK1, CDK2, or c-Jun N-terminal kinase 1 (JNK1) is required for 

dimerization with and inhibition of Bax [359, 360]. As demonstrated by 

blockade of R-roscovitine-induced apoptosis, our data imply that F. tularensis 

sustains survival signaling via a mechanism potentially including CDKs. 

Therefore, it is conceivable that F. tularensis enhances the pro-survival 

activity of Mcl-1 through CDK-mediated phosphorylation. Further 

investigation into the mechanisms by which F. tularensis prevents Bax 

translocation has the potential to shed light on apoptosis pathways and CDK-

mediated survival signaling. 
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Mitochondrial Integrity 

Neutrophil mitochondria, though few in number, play a central role in 

the extrinsic, intrinsic, and PICD apoptosis pathways [107]. The data 

presented in Chapter 2 confirm that neutrophils undergoing apoptosis lose 

mitochondrial membrane integrity, as evidenced by loss of mitochondrial 

membrane potential and release of pro-death proteins (cytochrome c, Htra2, 

and Smac) into the cytosol. In direct contrast, infection with F. tularensis 

sustains mitochondrial membrane potential and decreases IMS protein 

release. Consistent with the pore-forming ability of Bax, prolongation of 

neutrophil lifespan typically necessitates that this protein is excluded from 

the mitochondrion [104]. In keeping with this, our data demonstrate that 

cells undergoing apoptosis, either constitutive or induced by Fas or 

staurosporine, rapidly transport Bax to mitochondria, but delayed apoptosis 

in F. tularensis-infected cells is characterized by retention of Bax in the 

cysosol. Based on these data and studies of similar pathogens [117, 361, 362] 

we favor a model in which F. tularensis sustains mitochondrial integrity and 

extends neutrophil lifespan by blocking insertion of Bax into the outer 

mitochondrial membrane (see Figure 22).  

However, the mechanism by which Bax is retained in the cytoplasm of 

infected cells is uncertain. Association of Bax with the protein Bid in its 

active truncated form tBid induces a conformational change in Bax that 
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facilitates oligomerization of insertion into the OMM [363, 364]. We show 

here that infection with F. tularensis delays processing of Bid into tBid, 

thereby presumably contributing to the failure of Bax to translocate to 

mitochondria. Activation of Bid is believed to occur following cleavage by 

caspase-8 [365], the proteolytic activity of which is diminished in F. 

tularensis-infected neutrophils [208]. Although blockade of caspase-mediated 

Bid truncation may contribute to the Bax retention, it would only be of 

benefit once caspase-8 is activated.  

An alternative or ancillary mechanism by which F. tularensis may 

sequester Bax in the cytosol involves inhibition of calpain activity. Calpain is 

responsible for cleaving Bax into an active fragment that cannot be bound or 

inhibited by pro-survival factors [283], thus permitting its translocation to 

mitochondria. As we report in Chapter 2 that F. tularensis decreases calpain 

activity and increases calpastatin levels in infected neutrophils, it is possible 

that prevention of mitochondrial Bax insertion is due to diminished 

proteolytic activation by calpain.  

However, preservation of mitochondrial integrity does not absolutely 

require exclusion of Bax from mitochondria. Indeed, Anaplasma delays 

apoptosis despite translocation of Bax to the mitochondria; its T4SS effector 

protein Ats-1 inserts into the OMM and prevents oligomerization and pore 

formation by mitochondrial Bax [119]. Although it would seem unnecessary 
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given that very little Bax translocates to mitochondria, we cannot exclude the 

possibility that F. tularensis also stabilizes organelle integrity in this way.  

In addition to Anaplasma, several other intracellular pathogens 

preserve mitochondrial integrity to extend neutrophil lifespan [104]; the 

mechanisms by which they accomplish this task shed light on the intricacies 

of host-pathogen interactions and may inform future studies of F. tularensis 

apoptosis inhibition. Chlamydia trachomatis, for example, secretes a 

bacterial protease that targets Bid for degradation, thereby precluding 

formation of tBid and subsequent Bax oligomerization [366, 367]. By 

contrast, a Neisseria outer membrane porin translocates to mitochondria, 

where it interacts with a distinct channel protein (voltage-dependent anion 

channel; VDAC) to preserve organelle integrity [368, 369]. An E. coli K1 pilus 

protein similarly binds VDAC to delay Bax integration [370]. A more 

thorough characterization of the molecular mechanisms by which Bax is 

prevented from forming pores is warranted, as findings may facilitate 

engineering of novel anti-inflammatory therapeutics. With respect to F. 

tularensis, in particular, targeting of a pathogen-specific factor could 

potentially dissipate the overwhelming inflammatory response seen in 

tularemia and allow the host immune system to eradicate the pathogen. 
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The Case for Modulation of NF-κB by F. tularensis 

 Described as the archetypal transcription factor of inflammation, NF-

κB controls the expression of many genes involved in immunity, cell 

development, and survival [371]. Among its many functions, arguably the 

most relevant to granulocytes is the transcriptional regulation of numerous 

anti-apoptotic proteins, including members of the Bcl-2 family [372-374]. As 

such, induction of NF-κB signaling is an attractive explanation for the wide-

ranging and redundant pro-survival changes mediated by F. tularensis. 

A role for NF-κB in F. tularensis infection of neutrophils was first 

implicated in a previous study from our laboratory that documented the 

upregulation of multiple proteins involved in formation of the NF-κB 

complex: NFKB1, NFKB2, and RELA [209]. We also reported that F. 

tularensis increases mRNA levels of multiple anti-apoptotic gene products 

known to be transcribed by NF-κB, including BIRC3 (cIAP2), BIRC4 (XIAP), 

and BCL2A1 (A1), and experiments in Chapter 2 confirm that increases in 

transcription of XIAP and A1 are paralleled by sustained protein levels [209]. 

These data support a model whereby F. tularensis stimulates NF-κB, 

triggering an antiapoptotic signaling cascade that could account, at least in 

part, for upregulation of XIAP and A1, decreased Bax expression, changes in 

Bax activity, maintenance of mitochondrial integrity, and prevention of 

caspase activation [375]. Indeed, other intracellular pathogens manipulate 
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NF-κB signaling to extend neutrophil lifespan, including Anaplasma 

phagocytophilum, Neisseria gonorrhoeae, and Rickettsia rickettsii [376-379]. 

Enhancement of NF-κB signaling by Legionella pneumophila requires the 

Dot/Icm type IV secretion system (T4SS) [380], but as the F. tularensis 

genome does not encode a T4SS, potential mediation of NF-κB signaling must 

occur by a distinct mechanism. 

 If F. tularensis indeed enhances NF-κB signaling, it would elegantly 

integrate other features of tularemia disease pathology into a single 

overarching mechanism. In addition to anti-apoptotic signals, NF-κB 

enhances expression of degradative enzymes, growth factors, and adhesion 

molecules are typically associated with tumor invasion and metastasis rather 

than inflammation [356, 381]. However, at loci of bacterial infection, matrix 

metalloproteinases (MMPs) degrade the extracellular matrix into chemotactic 

fragments that promote neutrophil recruitment across vascular endothelium 

into the affected tissue site [382]. Work by Sellati and colleagues 

demonstrated that F. tularensis stimulates expression of MMP-9 by infected 

neutrophils, and furthermore, that MMP-9 contributes to the destructive 

immune cell influx that causes fatal disease [206]. As MMP-9 is under the 

transcriptional control of NF-κB [381], an attractive explanation for the 

neutrophil-dominant pulmonary pathology characteristic of tularemia is 

activation of NF-κB, which would exacerbate inflammation via two 
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mechanisms: first, inhibiting neutrophil apoptosis, and second, by increasing 

neutrophil recruitment via increased MMP-9 levels.  

 Existing data regarding modulation of NF-κB activation by F. 

tularensis is heterogeneous, and varies by host and bacterial species. F. 

tularensis strain LVS was demonstrated to both activate or inhibit NF-κB 

signaling, depending on the time point examined [344]. However, on whole, 

studies of primary human macrophages report induction of NF-κB activity in 

correlation with delayed cell death by F. tularensis strain LVS and F. 

novicida strain U112 [383-385].  

 miR-155 is a multifunctional microRNA involved in both physiological 

and pathological processes including inflammation and immunity [386]. Our 

lab previously demonstrated that infection of human macrophages with F. 

tularensis strains LVS and Schu S4 increases miR-155 production and, via 

downregulation of MyD88 and SHIP-1 protein levels, confers an anti-

inflammatory phenotype to infected cells [273]. As induction of miR-155 

requires NF-κB activation [387], and as F. tularensis infection suppresses the 

inflammatory response, one might hypothesize that F. tularensis enhances 

NF-κB signaling via a mechanism that includes induction of miR-155.  

The activation status of NF-κB in human neutrophils infected with F. 

tularensis has not been reported. Given the wide variety of functions 

modulated by NF-κB, examining the effect of F. tularensis on this 
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transcription factor in our model system has the potential to shed light on 

many aspects of F. tularensis pathogenesis, as well as neutrophil apoptosis 

signaling more broadly, and therefore warrants further study. 

 

R-Roscovitine: A Panacea for Inflammation? 

 As a cell cycle inhibitor, R-roscovitine successfully dampens 

uncontrolled cellular replication, and as such, pharmaceutical companies are 

currently testing R-roscovitine in clinical trials for the treatment of 

nasopharyngeal and non-small cell lung cancers [388]. The unexpected ability 

of R-roscovitine to induce neutrophil apoptosis is also under investigation for 

treatment of diseases characterized by aberrant neutrophil-dominant 

inflammation [104]. With the exception of rheumatoid arthritis, this research 

is, as yet, limited to animal models [388]. Studies of sterile immunity, 

including carrageenan-induced pleurisy, ventilator-induced lung injury, and 

bleomycin-induced lung injury, have returned promising data [295, 389, 390], 

but the utility of R-roscovitine for the treatment of infectious inflammation is 

less clear. 

 Aside from our investigation into the effect of R-roscovitine treatment 

on F. tularensis infection (presented in Chapter 2), the only other organism 

investigated to date is Streptococcus pneumoniae [278, 391]. In models of 

pneumonia and meningitis, supplementation of standard antibiotic therapy 
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with R-roscovitine uniformly reduced the number of neutrophils present at 

sites of infection as well as decreased proinflammatory cytokine release. 

However, the effect of these changes on overall disease pathology is unclear. 

In the meningitis model, supplementation with R-roscovitine clearly 

accelerated the resolution of inflammation and disease recovery [278]. By 

contrast, the pneumonia study reported reduced secretion of proinflammatory 

cytokines in R-roscovitine-treated mice but with no difference in the resultant 

pulmonary histopathology [391]. Perplexingly, supplementation with R-

roscovitine also transiently increased the pulmonary bacterial burden. 

Together, these data corroborate the capacity of R-roscovitine to induce cell 

death in vivo and suggest an ability to reduce proinflammatory cytokine 

release, yet simultaneously hinder antimicrobial defense. 

With regard to the treatment of inflammation, translation of animal 

data to human studies is, at this time, premature. Prior to human clinical 

trials, it is imperative to identify and characterize the molecular mechanisms 

by which R-roscovitine modulates neutrophil survival signaling. At present, 

only a small number of potential mediators are predicted to operate within 

this mechanism. Our data further complicate the existing model, as they 

bring into question the significance of Mcl-1 to CDK-mediated survival. 

Indeed, several studies have designated Mcl-1 levels as a central “switch” 

that controls neutrophil lifespan, and which is modulated by roscovitine [115, 

392]. However, we demonstrate in Chapter 2 that the ability of F. tularensis 
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to diminish R-roscovitine-induced cell death does not occur via modulation of 

Mcl-1 levels. Without a clear understanding of R-roscovitine signaling, its use 

to treat complex systemic disorders carries substantial risks, as it is 

impossible to predict potential adverse effects at the molecular and cellular 

levels, within the immune system, and throughout the body. Thus, the 

mechanism(s) by which CDKs mediate neutrophil survival, including 

modulation by F. tularensis and other stimuli merit further study. 

In the context of tularemia, the theoretical risks and benefits of R-

roscovitine treatment are manifold. As disease pathology is tightly linked to 

excess neutrophil accumulation in the lungs, one potential benefit of R-

roscovitine is the reduction in neutrophil quantity and accompanying host 

tissue damage. Furthermore, as F. tularensis is an intracellular pathogen, 

induction of neutrophil apoptosis may reduce bacterial burden by eliminating 

host cell availability. It is important to keep in mind that F. tularensis can 

infect a remarkable range of cell types including alveolar macrophages, 

resident DCs, and alveolar type II epithelial cells [270]. Therefore, a 

reduction in neutrophil quantity may divert F. tularensis to alternative host 

cells, not only negating the benefit of R-roscovitine treatment, but potentially 

expanding infection.  

The impact of treatment on non-neutrophil leukocytes must also be 

taken into account. For example, another immunosuppressive mechanism 
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exerted by R-roscovitine is blockade of leukocyte extravasation from the 

circulation and into inflamed tissue sites [393]. The absence of macrophages 

and DCs to engulf and clear apoptotic neutrophils might contribute to 

neutrophil secondary necrosis and pulmonary tularemia pathology. Inhibition 

of proinflammatory cytokine secretion by R-roscovitine may also be of 

detriment to the host, as robust macrophage inflammatory responses are 

required to clear F. tularensis infections [195, 196, 394]. Taken together, 

these unknown factors introduce substantial risk to the use of R-roscovitine 

to treat tularemia. 

 

Efferocytosis of Infected Neutrophils 

 Despite their role as benevolent vanguards of immunity, perturbations 

in neutrophil function rapidly transform friends into foes. Owing to the non-

specific nature of neutrophil depletion agents, the results of antibody-

depletion studies are of uncertain significance [395, 396], therefore the 

relative degree of benefit or detriment of neutrophils must be inferred from 

secondary findings. Data from our laboratory and others indicate that 

neutrophils not only fail to eradicate infection, but furthermore drive 

inflammation, inflict tissue damage, and exacerbate disease [163, 206, 207]. 

Deleterious effects of neutrophils associated with infection are not without 
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precedent, and have been documented for Mycobacterium tuberculosis [397], 

Chlamydia pneumoniae [398] and Respiratory syncytial virus [399]. 

Prior work from our laboratory provides an explanation for the 

profound accumulation of neutrophils in the lung, namely that infection with 

F. tularensis prolongs neutrophil lifespan [208]. However, the complementary 

hypothesis, that macrophages cannot efficiently engulf and clear these 

neutrophils, was not previously investigated. In Chapter 3 of this thesis, we 

demonstrate that there is no inherent defect in the efferocytosis of F. 

tularensis-infected neutrophils. Instead, we report that macrophages readily 

associate with and engulf neutrophils laden with F. tularensis. This result 

contrasts a recent study reporting that methicillin-resistant Staphylococcus 

aureus induces programmed neutrophil necrosis, and that infected cells 

actively inhibit their uptake by macrophages [318]. In contrast to S. aureus, 

which are susceptible to neutrophil killing, organisms that can survive 

intracellularly need not evade engulfment, but instead may subvert 

efferocytosis to gain access to fresh host cells (as do Leishmania major [263], 

Chlamydia pneumoniae [264], and Yersinia pestis [262]).  

It is interesting to note that several key benefits afforded to these 

pathogens by “Trojan Horse” entry (as opposed to direct macrophage 

infection) are superfluous to F. tularensis. For example, concealment within 

apoptotic neutrophils enables these microorganisms to silently enter 
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macrophages without alerting the cell or activating microbicidal pathways 

[104]. Whereas direct infection of macrophages with Leishmania major or 

Chlamydia pneumoniae triggers a proinflammatory response and secretion 

of\ TNFα and IL-1β, indirect entry results in secretion TGFβ, thereby 

limiting the recruitment of immune cells and amplifying infection. [263, 264, 

400, 401]. In contrast, our studies show that irrespective of the route of entry, 

F. tularensis-infected macrophages release nearly identical cytokine profiles. 

We also demonstrate that engulfment of infected neutrophils does not 

enhance bacterial replication within macrophages, implying that, unlike 

other pathogens, F. tularensis does not significantly benefit from this 

mechanism of bacterial ingress. Together, the data presented in Chapter 3 

suggest that indirect infection of macrophages via apoptotic neutrophils is 

not a dominant virulence factor, but rather that engulfment of F. tularensis-

infected neutrophils may occur by chance, without significant consequences 

for macrophage activation state or bacterial viability. Recent data suggest 

that transfer of Chlamydia pneumoniae from apoptotic neutrophils to 

alveolar macrophages may occur in vivo [264], but the incidence and 

contribution of efferocytosis to tularemia in vivo is unknown, and is worthy of 

future investigation. 

Another pathologic feature of tularemia, the regional formation of 

granulomatous lesions, may be linked to efferocytosis. Granulomata are foci 

of densely clustered tissue macrophages that isolate foreign material and are 
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hallmarks of an inadequate, dysregulated immune response [402]. Primate 

infection models of tularemia have documented granulomatous lesions in the 

respiratory tract, lymphatic system, liver, and spleen [314, 403]. Although 

the formation and function of granulomas in tularemia are not extensively 

characterized, a recent investigation of mycobacterial granulomas may shed 

light on the contribution of granulomas to tularemia pathology. 

Characterization of zebrafish embryos infected with Mycobacterium marinum 

by Davis et al. indicated that, in opposition to their intended role, 

granulomas fail to sequester infection and are therefore not host protective 

[404]. Intriguingly, this group demonstrated the recruitment of new 

macrophages to nascent granulomas, where they engulf infected apoptotic 

macrophages, exit the affected site, and seed secondary granulomas distally. 

Their mathematical model of this process estimates that this mechanism 

could account for the majority, if not all, granuloma expansion. It is tempting 

to speculate that efferocytosis of infected cells (albeit macrophages, not 

neutrophils, as in to this model) might contribute to the systemic spread of F. 

tularensis in a similar manner. 

 

Future Directions 

 This thesis inspires several areas of further inquiry. With respect to 

the mechanisms by which F. tularensis delays apoptosis, what bacterial 
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factor mediates this phenotype? We previously showed that F. tularensis 

retains the ability to delay apoptosis when physically separated from 

neutrophils in a transwell system [208], suggesting a soluble mediator whose 

identity remains elusive, but is an area of active investigation in our 

laboratory. Among the categories of potential macromolecule signals (lipids, 

proteins, carbohydrates, and nucleic acids), studies of similar apoptosis-

delaying pathogens have identified proteins, lipid A, lipopolysaccharides, and 

lipoproteins as mediators [120, 405-407]. While it is possible that F. 

tularensis secretes a similar soluble factor, F. tularensis is consistently 

unique among pathogens and may therefore impart cell survival via an as yet 

undescribed factor. In addition, further work characterizing the effect of F. 

tularensis on NF-κB activity may clarify its contribution to multiple aspects 

of tularemia disease pathology, as detailed above.  

 Our first description of F. tularensis as a “Trojan Horse” pathogen also 

engenders numerous questions. For example, what accounts for the enhanced 

association between macrophages and F. tularensis-infected neutrophils? As 

we showed that phosphatidylserine and CD47 exposure are not essential for 

this interaction, it may be that F. tularensis alters the exposure and/or 

distribution of non-canonical “eat me” or “don’t eat me” molecules on the 

surface of the neutrophil that make infected cells appealing for macrophage 

engulfment [231]. Alternatively, F. tularensis might enhance secretion of 

“find me” signals (like lysophosphatidylcholine) or reduce secretion of “keep 
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out” signals (such as lactoferrin) [227, 408]. Investigations into the 

mechanisms by which infected neutrophils enhance their association with 

macrophages may yield insights that facilitate the development of treatments 

for dysregulated efferocytosis in multiple disease contexts. 

 Our data demonstrating the presence of bacteria in the cytosol of 

efferocytosing macrophages and the substantial replication therein evoke two 

specific questions: First, how does F. tularensis avoid extermination during 

degradation of the neutrophil corpse? And second, how does it exit the 

efferosome and gain access to the macrophage cytosol? Maturation of the 

efferosome is not well-studied, but early reports indicate that this process is 

similar to maturation of the phagosome [409]. Efferosome processing involves 

sequential trafficking and fusion of vesicles to the efferosome (mediated by 

via Rab GTPases), followed by oxidant generation and acidification of the 

phagosomal lumen, and finally, degradation of the apoptotic cell by lysosomal 

hydrolases [20, 241, 410, 411]. The extent to which F. tularensis-infected 

neutrophils undergo efferosome maturation and the bacterial virulence 

factors that might modulate this process are currently unknown. Whereas 

Mycobacterium tuberculosis is unable to arrest efferosome maturation and is 

therefore entirely eliminated [328], the presence of free F. tularensis in the 

cytosol implies pathogen success in evading efferocytic degradation.  
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The experimental methods employed in our studies cannot quantify 

the proportion of F. tularensis that survive efferosome maturation and 

successfully escape to the cytosol. As we show that bacterial burden following 

direct or indirect infection is comparable at 24 and 48 hours after 

engulfment, one might hypothesize that the majority of bacteria escape 

killing and replicate at the typical rate once in the cytosol. Alternatively, only 

a small subset of F. tularensis may escape degradation, but exhibit 

accelerated growth. Indeed, one might theorize that, following life inside the 

neutrophil, transmitted bacteria may be better host-adapted and therefore 

capable of accelerated growth. The effects of F. tularensis on efferosome 

maturation and survival merit further study, as characterization of this 

process may enable the development of therapeutics to enhance efferosome 

maturation such that F. tularensis is rendered incapable of establishing 

infection within macrophages. 

 

Summary 

The recent influx of funding for biodefense engendered a considerable 

expansion of our knowledge regarding the biology of Francisella tularensis 

and the pathogenesis of tularemia. However, the mechanisms by which F. 

tularensis manipulates and evades the host innate immune system are only 

beginning to be defined. The primary goal of this thesis is to address 
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knowledge gaps regarding the ability of F. tularensis to prolong host 

neutrophil lifespan and the fate of infected neutrophils following 

efferocytosis. We discovered that F. tularensis delays apoptosis and sustains 

mitochondrial integrity by modulating a distinct subset of regulatory 

proteins. In addition, we found that infected neutrophils, upon undergoing 

eventual apoptosis, are readily consumed by macrophages and release their 

infectious cargo into the macrophage cytoplasm, which permits substantial 

bacterial replication. Intriguingly, we learned that unlike other pathogens, 

indirect infection with F. tularensis via efferocytosis triggers an early 

inflammatory cytokine response that is highly similar to that of directly 

infected cells. Together, these data significantly enhance our understanding 

of tularemia pathogenesis, but also shed light on other inflammatory 

disorders and infections characterized by the pathologic accumulation of 

neutrophils. 
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