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(a) (b) (c) 

Figure 6.7: Machine generated truth (from graph search method) and segmentation
from the proposed method for the ILM surface is shown in red and yellow respectively.
Top row- B-scans in original resolution. Bottom row- Magnified version of the blue
boxes to demonstrate superior quality of segmentation from the proposed method.
(a)Macular B-scan from test set. (b)-(c) ONH B-scans. Unlike the graph search
method where post processing is applied to the output segmentation, no such post
processing is applied to the segmentations obtained from the proposed method.

6.4 Multiple Surface Segmentation Using
CNNs (Aim 3.2)

The tissue boundaries in OCTs vary by presence and severity of disease. An

example is shown in Fig.6.8(a)(b) to illustrate the difference in profile for the Internal

Limiting Membrane (ILM) and Inner Retinal Pigment Epithelium (IRPE) in a normal

eye and in an eye with AMD.

The method for multiple surface segmentation is very similar to the single surface

case and is as follows. Similar to the single surface case, for detecting λ surfaces,

the surface positions are represented as a m2-D vector, where λ = {1, 2, . . . λ}, m2 =

λ×m1 and m1 consecutive surface postions for a surface index i (i ∈ λ) are given by

{((i− 1)×m1) + 1, ((i− 1)×m1) + 2, . . . ((i− 1)×m1) +m1} index elements in the

m2-D vector.
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Figure 6.8: Illustration of difference in surface profiles on a single B-scan. (left)
Normal Eye (right) Eye with AMD. S1 = ILM and S2 = IRPE, are shown in red.

6.4.1 Method

Consider a volumetric image I(x, y, z) of size X × Y × Z. A surface is defined as

S(x, y), where x ∈ x = {0, 1, ...X − 1}, y ∈ y ={0, 1, ...Y − 1} and S(x, y) ∈ z =

{0, 1, ...Z−1}. Each (x, y) pair forms a voxel column parallel to the z-axis, wherein the

surface S(x, y) intersects each column at a single voxel location. For simultaneously

segmenting λ(λ ≥ 2) surfaces, the goal of the CNN is to learn the surface postions

Si(x, y) (i ∈ λ) for columns formed by each (x, y) pair. In this work, we present a slice

by slice segmentation of a 3-D volumetric image applied on OCT volumes. Patches

are extracted from B-scans with the target Reference Standard (RS). A patch P (x1, z)

is of size N × Z, where x1 ∈ x1 = {0, 1, ...N − 1}, z ∈ z ={0, 1, ...Z − 1} and N is a

multiple of 4. The target surfaces Si’s to be learnt simultaneously from P is Si(x2) ∈ z

= {0, 1, ...Z−1}, where x2 ∈ x2 = {N
4
, N

4
+1...3N

4
−1}. Essentially, the target surfaces

to be learnt is the surface locations for the middle N
2

consecutive columns in P . Then

data augmentation is performed as described before.

6.4.2 Network Architecture

For segmenting λ surfaces simultaneously, the CNN learns λ surfaces for each

patch. In our work, λ = 2 surfaces are segmented simultaneously and therefore for
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each patch, the CNN learns two surfaces. The CNN architecture used in our work

is shown in Fig.6.9, employed for λ = 2 and patches with N = 32. The architecture

was used to train on patches with N=32. The CNN contains three convolution

layers [6], each of which is followed by a max-pooling layer [6] with stride length

of two. Thereafter, it is followed by two fully connected layers [6], where the last

fully connected layer represents the final output of the middle N
2

surface positions

for 2 target surfaces in P . We use the rectified linear unit (ReLu) [6] non-linearity

for each convolution to perform the non-linear transformations. Lastly, a Euclidean

loss function (used for regressing to real-valued labels) as shown in Equation (6.4) is

utilized to compute the error between CNN outputs and RS of Si’s (i ∈ λ) within P

for back propagation during the training phase. Unsigned mean surface positioning

error (UMSP) as shown in as shown in Eqn (6.3) is one of the commonly used error

metric for evaluation of surface segmentation accuracy. The Euclidean loss function

(E), essentially computes sum of the squared unsigned surface positioning error over

the N
2

consecutive surface position for Si’s of the CNN output and the RS for P ,

thereby reflecting the exact squared surface positioning error. to be used for back

propagation during training the network.

E =
i=λ∑
i=1

k1=
N
2
−1∑

k1=0

(aik1 − a
i
k2

)2 (6.4)

where k2 = ((i− 1)×N/2) + k1, a
i
k1

and aik2 is the k1-th surface position of reference

standard and CNN output respectively, for surface Si in a given P .

6.4.3 Experiments

The experiments compare segmentation accuracy of the proposed CNN based

method (CNN-S) and the G-OSC method [9]. The two surfaces simultaneously seg-

mented in this study are S1-ILM and S2-IRPE as shown in Fig. 6.8. 115 OCT scans

of normal eyes, 269 OCT scans of eyes with AMD and their respective reference
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Figure 6.9: The architecture of the CNN learned in our work forN=32 and λ = 2. The
numbers along each side of the cuboid indicate the dimensions of the feature maps.
The inside cuboid (green) represents the convolution kernel and the inside square
(green) represents the pooling region size. The number of hidden neurons in the fully
connected layers are marked on the side. IP=Input Patch, CV-L=Convolution Layer,
MP-L=Max-Pooling Layer, FC-L=Fully Connected Layer, E=Euclidean Loss Layer.

standards (RS) (created by a single expert with aid of the DOCTRAP software [99])

were obtained from the publicly available repository [68]. The 3-D volume size was

1000× 100× 512 voxels with voxel size 6.54× 67× 3.23 µm3. The data volumes were

divided into a training set (79 normal and 187 AMD), a testing set (16 normal and 62

AMD) and a validation set (20 normal and 20 AMD). The volumes were denoised by

applying a median filter of size 5× 5× 5 and normalized with the resultant voxel in-

tensity varying from -1 to 1. Thereafter, patches of size N ×512 with their respective

RS for the middle N
2

consecutive surface positions for S1 and S2 is extracted using

data augmentation, for training and testing volumes, resulting in a training set of

340, 000 and testing set of 70, 000 patches. In our work, we use N = 32. The UMSP,

calculated as the average of absolute differences between the computed surface and

reference standard for each voxel column in the image, was used to evaluate the ac-

curacy. The complete surfaces for each validation volume were segmented using the

CNN-S method by creating 1016
N/2

patches from each B-scan where each B-scan was

zero padded with 8 voxel columns at each extremity. Statistical significance of the

observed differences was determined by paired Student t-tests with a p value of 0.05
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was considered significant. In our study we used a single NVIDIA Titan X GPU for

training the CNN. The publicly available deep learning toolkit CAFFE [98] was used

as the CNN implementation. The validation of the G-OSC and CNN-S method were

carried out on a on a Linux workstation (3.4 GHz, 16 GB memory). A single CNN

was trained to segment both the normal and AMD OCT scans. For a comprehensive

comparison, three experiments were performed with the G-OSC method. The first

experiment (G-OSC 1) involved segmenting the surfaces in both normal and AMD

OCT scans using a single set of optimized parameters. The second (G-OSC 2) and

third (G-OSC 3) experiment involved segmenting the normal and AMD OCT scans

with different set of expert-designed, optimized parameters, respectively.

6.4.4 Results

The UMSP of the CNN-S method on the testing patches for S1 was 1.02 ± 0.66

voxels and for S2 was 1.73± 0.91 voxels. The quantitative comparisons between the

proposed CNN-S method and the G-OSC method on the validation volumes is sum-

marized in Table 6.2. For the entire validation data, the proposed method produced

a significantly lower UMSPE for surfaces S1 (p < 0.01) and S2 (p < 0.01), compared

to the segmentation results of G-OSC 1, G-OSC 2 and G-OSC 3. Illustrative results

of segmentations from the CNN-S, G-OSC 2 and G-OSC 3 methods on validation

volumes are shown in Fig. 6.11. Herein, the illustrations for G-OSC 2 and G-OSC 3

is shown. The CNN-S method yields consistent and qualitatively superior segmenta-

tions with respect to the G-OSC method. On closer analysis of some B-scans in the

validation data, the CNN-S method produceda high quality segmentation for a few

cases where the RS was not accurate enough as verifed by an retinal specialist, (4th

row in Fig. 6.11). The features extracted from the first convolution layer is shown in

Fig. 6.10. The CNN required 17 days to train on the GPU. The CNN-S method with

average computation time of 94.34 seconds (95.35 MB memory) is much faster than

G-OSC with average computation time of 2837.46 seconds (6.87 GB memory).
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Figure 6.10: Illustration of 20 chosen feature maps from the first convolution layer
for a given patch shown on the left. The ILM and IRPE are shown in red.

6.5 Discussion

The results from both the experiments show that a CNN based approach can

be used for segmentation of surfaces in volumetric images, thus eliminating the re-

quirement of human intervention for expert design of various transforms. The first

experiment for single surface segmentation leverages commonly used surface segmen-

tation method [20] to obtain machine generated truth for a large amount of data, thus

allowing training of the CNN. The results also show that our CNN based method can

learn the segmentations with sufficient accuracy and in fact results in qualitatively

better segmentations for cases where the machine generated surface segmentation is

not accurate enough. The developed method demonstrates that even if human de-

noted labels/truth is unavailable, a CNN can sufficiently learn the target based on a

reliable accurate enough automated/semi-automated method.

The second experiment for multiple surface segmentation using CNN demonstrates
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Figure 6.11: Each row shows the same B-scan from a Normal or AMD OCT volume.
(a) CNN-S vs. RS (b) G-OSC vs. RS, for surfaces S1 =ILM and S2 = IRPE. RS =
Reference Standard, Red = reference standard, Green = Segmentation using proposed
method and Blue = Segmentation using G-OSC method. In the 4th row, we had the
reference standard reviewed by a fellow-ship trained retinal specialist, who stated
that the CNN-S method is closer to the real surface than the reference standard.
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Table 6.2: UMSPE expressed as (mean± 95% CI) in voxels. RS - Reference Standard.
A single CNN was trained to infer on each type of data while 3 different set of
parameters were used for the G-OSC method. N = 32 was used as the patch size
(32× 512).

Normal and AMD Normal AMD
G-OSC 1 CNN-S G-OSC 2 CNN-S G-OSC 3 CNN-S

Surface vs. RS vs. RS vs. RS vs. RS vs. RS vs.RS

S1 1.45 ± 0.19 0.98 ± 0.08 1.19 ± 0.05 0.89 ± 0.07 1.37 ± 0.22 1.06 ± 0.11
S2 3.17 ± 0.43 1.56 ± 0.15 1.41 ± 0.11 1.28 ± 0.10 2.88 ± 0.54 1.83 ± 0.26

Overall 2.31 ± 0.29 1.27 ± 0.13 1.31 ± 0.07 1.08 ± 0.08 2.13 ± 0.39 1.44 ± 0.19

learning of the surface segmentation from expert manual tracings. The results show

that segmentations by CN-S are better than those from the G-OSC method, while

eliminating the requirement of expert designed transforms or adjustments.

The key aspect of the method is the elimination of expert intervention, efficien-

cies in terms of memory requirement and processing times and the generic nature of

the method compared to traditional graph search approaches. This is possible be-

cause learning local smoothness allows for a much more generic way of learning the

segmentation so that it is robust across a variety of target surface profiles as shown

in the illustrations in Fig. 6.6 and 6.11. The experiments show that the developed

method used a single CNN to learn various local surface profiles for macular scans

in the first case and both normal and AMD data in the second case. The strength

and genericness of the method can be seen from Fig 6.7 where the CNN learnt from

surface profiles of macular scans but was still able to provide superior qualitative

segmentations compared to the multi-resolution graph search method on ONH scans.

In the second experiment, comparison to G-OSC 1 shows that the CNN-S methods

outperforms the G-OSC method. If the parameters are tuned specifically for each

type of disease by using expert prior knowledge while using the G-OSC method, as

in the cases of G-OSC 2 and G-OSC 3, a common practice in medical image analy-

sis, the results depict that the CNN-S method still results in superior performance.

Therefore, the method has potential for applicability for in clinical setting, where a
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single network may be trained for segmenting OCT volumes of various types, instead

of mutiple versions of graph search based method to tackle each type of OCT volume.

Another advantage of the proposed method can be realized with respect to the

computation time for obtaining the surface segmentations. The graph search method

[2] requires a computation time of minutes to hours for obtaining the segmentation of a

OCT volume, mainly because the methods requires processing of the entire volume at

once. The improved graph based method [20] tackled this problem by using an expert

designed multi-resolution scheme to reduce the computation time to minutes. Our

proposed CNN based method is patch based and inference on each patch is computed

independently of the other, thereby allowing the use of sophisticated hardware like

GPUs to process the entire set of patches for a given volume within seconds. The

second experiment showed that the inference using the developed method is also much

faster than G-OSC method and requires less memory. In fact we plan to parallelize the

segmentation for multiple patches, thereby further reducing the computation time,

allowing more effetcive interactive use.

The smoothness of a surface at a voxel column level can also be imposed within

the loss function of the CNN by adding to the current loss function another term

that sums the squared difference of the difference between surface positions of the

neighboring columns given by the CNN output and reference segmentation. Such

an incorporation to the loss function shall potentially make the CNN more robust,

accurate and closely mimic the smoothness terms used in the state-of-the-art methods

[47] [2] [20]. The method is readily extensible to 3-D segmentation by employing a

3-D CNN architecture with corresponding representation of the surface for the CNN

to train on 3-D patches wgile employing 3-D convolutions.

There are several issues with the developed approach. First, the current work

trains on data from images obtained from one kind of a scanner, however it is pos-

sible that the trained CNN may not produce consistent segmentations on images
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obtained from a different kind of scanner due to the difference in textural and spatial

information. Such a challenge may be tackled by creating a training set that spans

across images from different types of scanner or by training another CNN which re-

fines the output of the proposed CNN for the given different type of scanner. Second,

a drawback of any such learning approach in medical imaging is the limited amount

of available training data. Third, the method may require long time to train the

network depending on the available processing hardware.

6.6 Conclusion

In this chapter, the focus was to accomplish Aim 3 of this thesis work by develop-

ing a CNN based method for segmentation of surfaces in volumetric images without

any human expert intervention and implicitly learned surface smoothness. The exper-

iments demonstrated the performance and potential of the developed method through

application on normal OCT volumes to segment the ILM surface as well as on normal

and AMD OCT volumes to segment the ILM and IRPE surface. The single surface

segmentation experiment results show high quantitative accuracy in segmentation of

macula scans, while also yielding higher quality segmentation for ONH scans, even

though the CNN was trained on macular scans only. The multiple surface segmetna-

tion experiment results show superior segmentation accuracy, lower processing time

and memory requirements compared to the G-OSC method. To the best of our knowl-

edge, this is the first method of its kind that does not require any human intervention

for surface segmentation.
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CHAPTER 7
CONCLUSIONS

In this dissertation, novel multiple surface segmentation methods using graph

search based and deep learning based approaches were developed and validated on

a variety of intra-retinal layer segmentation applications in SD-OCT volumes. The

development of the methods were motivated from real world segmentation problems

wherein, the traditional graph search methods are not efficient enough and may have

difficulty in solving the segmentation problem. Furthermore, the need for a generic

method for multiple surface segmentation which does not require human expert in-

tervention was discussed and a CNN based method was proposed to segment surfaces

which is both efficient and more genreic as compared to tradional graph search meth-

ods. Herein, a breif review of each of those methods and possible related future works

are discussed.

The multiple surface segmentation with truncated convex priors is motivated from

real world applications as in the case of segmenting surfaces in SD-OCT volumes

with AMD, PED and glaucoma; wherein sharp changes in surface smoothness and

abrupt changes in surface separation between two mutually coupled surfaces may

exist because of the presence of a pathology. Traditional graph search based methods

are inefficent and may find difficulty in segmenting such surfaces becuase the surface

constraints generally over smooth the sharp surface jumps or over penalize the abrupt

changes in surface separations. The proposed method with truncated convex priors,

truncates the convex penalty by a pre-defined truncation factor. Thus, allowing for

segmentation of complex surfaces and acts as a disconinuity preserving method. The

method was validated on a variety of such surface segmentation applications and

the experiment results shows the impoved performance and segmentation accuracy

of the method as compared to grpah search methods. The method is also capable of

segmenting a large volumetric image in the original resolution because of the iterative
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nature of the approach based on creating small subgraphs at each iteration and hence,

does not require a multiple resolution approach.

The proposed method for truncated convex priors, may be extended and used to

constrain two closely related surfaces. For example, if the inner and outer aspect of

the retinal pigment epithelial (RPE) in diseased cases follows a similar surface pro-

file (the layer thickness is constant), then while segmenting other complex surfaces

simultaneously with the two RPE layers, a convex penalty without truncation can be

imposed between the two surfaces and the other compex surfaces may be modeled

with the truncated convex priors. Also, similar to the multiple resolution approach,

the image may be segmented in the downsampled version to create the surface ini-

tialization for the upsampled scale, which may allow the method to be more acurate

and achieve faster convergence.

The optimal surface segmentation with convex priors method for irrgularly sam-

pled space is developed for practical purposes of subvoxel and super resolution accu-

rate segmentations. The current graph search methods are not capable of segmen-

tations with subvoxel and super resolution accuracy, due to the inherenet nature of

the construction and encoding of the underlying graph. Herein, nodes in the graph

represent the center of voxels which does not explot the partial volume effects in the

images, which can be utilized to achieve subvoxel and super resolution segmentation

accuracy. Thus, the method optimal surface segmentation method for irregularly sam-

pled space is proposed in this work. The developed method was extensively, validated

for subvoxel and super resolution accuracy applications. The proof of correctenss of

the graph construction with respect to the global optimality of the solution was also

presented. The method, infact generalizes the traditional graph search method, which

is a special case of the developed method.

For future work, it will be interesting to integrate the approach with the trun-

cated convex method by modelling the convex part of the graph using the developed
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method, thus possibly further increasing the segmentation accuracy of the method for

surface segmentations, especially for disease cases. Furthermore, region of interest is

a prominent tool employed for various image segmentation application. The goal of

the region of interest is to reduce the search space for a segmentation solution. Graph

search based methods utilized for multiple surface segmentation of retinal surfaces in

OCT volumes, extensively use region of interests to decrease the size of the solution

space and to provide for a more strict solution space such that the target surface

segmentation is more accurate. Generally, the design of the region of interest in these

methods defines a region with a constant length for each column in the graph (like a

uniformly sized band based on the pre-segmentation result). The developed method

can be applied to simultaneously segment multiple surfaces in irregularly shaped and

possibly disjoint region of interests. Once the region of interest is generated, the

graph is built only inside the region of interest using the proposed method to search

the target segmentations, irrespective of the shape and location of the region of in-

terest. This shall allow for more flexibility and usage of machine learning techniques

to design the region of interests.

From the developed methods for Aim 1 and Aim 2 of this thesis work, it is

clear that even though graph based segmentation methods are flexible and robust,

they suffer from major drawbacks. The methods have to be redesigned for different

kind of applications which requires expert design of the various terms in the energy

function of the graphs. The design of these terms, require expert defined transforms,

feature extractions, constraint design and parameter tuning. The multi-resoltion

method may also require expert defined schemes of the order of segmentation of

the various surfaces. Thus, the multiple surface segmentation method using deep

learning, developed in this work is motivated from the need of a generic method

for surface segmentation which does not require expert human intervention. The

method was developed by exploiting certain aspects of the graph search method,
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specifically the usage of column structure. The developed CNN based method learns

the required transformations from the training data. The method was validated

on normal and AMD OCT volumes for single and multiple surface segmetnation

applications. The experiments clearly demonstrated that the method is infact more

generic and accurate than graph search. The local patch based surface profile learning,

allows the method to be faster and also more generic. The experiments showed that

the developed method is efficient in terms of memory requirement and processing time.

The developed method, has the potential of training one universal network which can

segment the retinal layer in OCTs of any type in clinical settings. However, the

method is limited by the amount of data available.

Future works may include incorporation of surface smoothness and surface sepa-

ration constraints as used in graph search within the loss function used in the training

of the CNN to more closely mimic the graph search framework. Recently, U-Net [100]

has gained a lot of popularity for biomedical image segmentation where the voxels

are classifed as belonging to a class. The U-Net could be used in conjunction with

the developed method by first training the U-Net and then combining the solution of

the U-Net to the patch used in training of the CNN. Such a combination may result

in more robustness and accurate segmentations. Further, another area of future work

may be to extend the developed method to not only segment the surfaces but also

classify the OCT volumes into various classes like disease and no disease.

In this doctoral dissertation novel multiple surface segmentation methods were

developed and validated extensively for a variety of surface segmetnation problems.

The developed methods are readily extendable to higher dimensions and are not

limited to the image modalities or segmentaion applications discussed in this work.
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G. Cloutier, “Intravascular ultrasound image segmentation: a three-dimensional
fast-marching method based on gray level distributions,” IEEE transactions on
medical imaging, vol. 25, no. 5, pp. 590–601, 2006.

[88] M.-H. R. Cardinal, G. Soulez, J.-C. Tardif, J. Meunier, and G. Cloutier, “Fast-
marching segmentation of three-dimensional intravascular ultrasound images: a
pre-and post-intervention study,” Medical physics, vol. 37, no. 7, pp. 3633–3647,
2010.

[89] R. Downe, A. Wahle, T. Kovarnik, H. Skalicka, J. Lopez, J. Horak, and
M. Sonka, “Segmentation of intravascular ultrasound images using graph search
and a novel cost function,” in Proc. 2nd MICCAI workshop on computer vision
for intravascular and intracardiac imaging, 2008, pp. 71–9.



137

[90] C. Gatta, E. Puertas, and O. Pujol, “Multi-scale stacked sequential learning,”
Pattern Recognition, vol. 44, no. 10, pp. 2414–2426, 2011.

[91] F. Ciompi, O. Pujol, C. Gatta, M. Alberti, S. Balocco, X. Carrillo, J. Mauri-
Ferre, and P. Radeva, “Holimab: A holistic approach for media–adventitia
border detection in intravascular ultrasound,” Medical image analysis, vol. 16,
no. 6, pp. 1085–1100, 2012.

[92] E. G. Mendizabal-Ruiz, M. Rivera, and I. A. Kakadiaris, “Segmentation of the
luminal border in intravascular ultrasound b-mode images using a probabilistic
approach,” Medical image analysis, vol. 17, no. 6, pp. 649–670, 2013.

[93] C. V. Bourantas, F. G. Kalatzis, M. I. Papafaklis, D. I. Fotiadis, A. C. Tweddel,
I. C. Kourtis, C. S. Katsouras, and L. K. Michalis, “Angiocare: An automated
system for fast three-dimensional coronary reconstruction by integrating angio-
graphic and intracoronary ultrasound data,” Catheterization and Cardiovascu-
lar Interventions, vol. 72, no. 2, pp. 166–175, 2008.
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