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ABSTRACT

Genome-wide association studies (GWAS) has played an import role in iden-

tifying genetic variants underlying human complex traits. However, its success is

hindered by weak effect at causal variants and noise at non-causal variants. Penal-

ized regression can be applied to handle GWAS problems. GWAS data has some

specificities. Consecutive genetic markers are usually highly correlated due to linkage

disequilibrium.

This thesis introduces a moving-window penalized method for GWAS which

smooths the effects of consecutive SNPs. Simulation studies indicate that this penal-

ized moving window method provides improved true positive findings. The practical

utility of the proposed method is demonstrated by applying it to Genetic Analysis

Workshop 16 Rheumatoid Arthritis data.

Next, the moving-window penalty is applied on generalized linear model. We

call such an approach as smoothed lasso (SLasso). Coordinate descent computing

algorithms are proposed in details, for both quadratic and logistic loss. Asymptotic

properties are discussed. Then based on SLasso, we discuss a two-stage method called

MW-Ridge. Simulation results show that while SLasso can provide more true positive

findings than Lasso, it has a side-effect that it includes more unrelated random noises.

MW-Ridge can eliminate such a side-effect and result in high true positive rates and

low false detective rates. The applicability to real data is illustrated by using GAW

16 Rheumatoid Arthritis data.

iv



The SLasso and MW-Ridge approaches are then generalized to multivariate

response data. The multivariate response data can be transformed into univariate

response data. The causal variants are not required to be the same for different

response variables. We found that no matter how the causal variants are matched,

being fully matched or 60% matched, MW-Ridge can always over perform Lasso by

detecting all true positives with lower false detective rates.
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PUBLIC ABSTRACT

Genome-wide association studies (GWAS) have played an important role in

identifying genetic variants underlying human complex traits. However, its success

is hindered by weak effect at causal variants and noise at non-causal variants. In an

effort to overcome these difficulties, Liu et al. (2013) proposed a regularized regression

method that penalizes on the difference of signal strength between two consecutive

single-nucleotide polymorphisms (SNPs). We provide a generalization to this method

so that more adjacent SNPs can be considered. The choice of the optimal number of

markers is studied. Simulation studies indicate that this penalized moving window

method provides improved true positive findings. The practical utility of the proposed

method is demonstrated by applying it to Genetic Analysis Workshop 16 Rheumatoid

Arthritis data.

The moving-window penalty is then extended to generalized linear model.

We call such an approach as smoothed lasso (SLasso). The asymptotic properties

are studied. A two-stage method called moving-window ridge (MW-Ridge) is then

derived from the moving-window regularized regression approach. Simulation results

show that while SLasso can provide more true positive findings than Lasso, it has a

side-effect that it includes more unrelated random noises. MW-Ridge can eliminate

such a side-effect and result in high true positive rates and low false detective rates.

The practical utility of these two approaches is illustrated by applying them to GAW

16 Rheumatoid Arthritis data.
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1

CHAPTER 1
INTRODUCTION

Variable selection is an important problem in statistics. The purpose of vari-

able selection is to select predictors and measure their effects on the response variable.

Traditional methods for variable selection include forward, backward, and stepwise

regression. In these methods, the model fitness is evaluated at each step. As the

number of predictors increases, the computation expense grows quadratically. In the

context of high-dimensional data where sample size is small and feature size is large, it

is impossible to apply traditional variable selection methods due to collinearity. Reg-

ularized regression methods are becoming more and more popular for the variable

selection problem arising from high-dimensional data.

1.1 Penalized Regression Methods

In classical statistics, consider a linear regression model as:

y = Xβ + ε, (1)

where y is the response variable, X is the feature matrix, β is the regression coefficient

vector and ε is the error term. The least square estimate of β can be defined as:

β̂ = argminβ{||y −Xβ||22}. (2)

We can work out β̂ if there is n > p where n is the sample size and p is the number

of features. However, in high-dimensional data where n� p, there is more than one

solution of β̂. Regularized regression methods have become a feasible way to solve
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the variable selection problems where n � p. LASSO (least absolute shrinkage and

selection operator) (28) is a widely used regularized regression method in which L1

norm is imposed as a penalty for the regression coefficients. The LASSO method is

to minimize

1

2n
||y −Xβ||22 + λ||β||1, (3)

where λ ≥ 0 is the tuning parameter for the L1 penalty which encourages sparsity

of the coefficients. LASSO is able to select features which have strong effects on the

response variable, and at the same time, shrink the coefficients estimates towards

zero. However, LASSO has the following disadvantage: if the features are highly

correlated, which is usually the case for real-world dataset, LASSO tends to select

only one feature from a group of correlated features.

Elastic net (35) is able to accommodate correlated features by incorporating

L1 and L2 penalty. The elastic net method minimizes:

1

2n
||y −Xβ||22 + λ(α||β||1 +

1− α
2
||β||22), (4)

in which λ ≥ 0 and 0 ≤ α ≤ 1. In elastic net, the penalty is imposed as a linear

combination of the penalties in LASSO and ridge regression (14). Ridge regression

will select all coefficients as nonzero regardless how large the tuning parameter λ

is. Besides, although ridge regression doesn’t help in feature selection, it has better

predictive performance than traditional linear regression. As a result, elastic net is

able to both achieve sparse coefficient estimates and handle the case of collinearity.

Both LASSO and elastic net are convex regularized problems. There exists a

biased effect and the coefficient estimates are shrunk towards zero. In recent years,
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there are several non-convex regularized regression methods been developed, including

bridge regression (12), smoothly clipped absolute deviation (SCAD) (8) and minimax

concave penalty (MCP) (34). These non-convex methods are able to result in sparse

coefficients and at the same time, reduce the shrinkage effects that cause bias.

However, these above methods do not take the spatial structure of the feature

matrix into consideration. Usually, there is a natural spatial structure in some real

world dataset. For example, in genome-wide association studies (GWAS), the order

of genetic variants are correspondent to their locations in the chromosomes. Taking

advantage of the spatial structure can help to discover causative factors as well as

remove unrelated noisy variables.

If the predictors can be separated into different groups, then the group LASSO

(33) is a reasonable choice. It imposes the L2-norm of the coefficients in the same

groups. The correspondent convex optimization problem minimizes

1

2n
||y −

L∑
`=1

X`β`||22 + λ
L∑
`=1

||β`||2, (5)

where X` and β` stand for the feature matrix and the regression coefficient for group

`. Group LASSO can achieve the sparsity over groups and the coefficients in the

same group will be estimated as either all zero or all nonzero. Furthermore, if the

L1 penalty of LASSO is also included, then the nonzero coefficients will be sparse in

each group. Similar as group LASSO, there are other group selection methods for

high-dimensional data including group MCP and group bridge (15). Such methods

are the natural extensions of MCP and bridge regression.

Before applying these above group selection methods, there comes a problem



4

difficult to accommodate for real world dataset: how to separate the features into

groups. For example, in GWAS, the consecutive genetic variants are usually highly

correlated (which is called as the linkage disequilibrium (LD) effect) thus it is difficult

to separate them into groups. Unlike group LASSO, fused LASSO (29) is a penalized

regression method which takes advantage of the sequential structure without the need

to determine feature groups.

Fused LASSO introduces a smoothing penalty on the absolute values of the

difference between two consecutive coefficients. This convex optimization problem

minimizes:

1

2n
||y −Xβ||22 + λ||β||1 + η

p−1∑
j=1

|βj − βj+1|. (6)

Thus the distances between consecutive features are encouraged to be zero. There

are some methods sharing some similarities with fused LASSO and smoothing the

absolute values of the differences between the coefficients of two highly correlated

predictors, such as the graph-structured general fused LASSO method (4; 5).

Smoothed minimax concave penalization (SMCP) (22) is developed as a reg-

ularized regression method which proposes a smoothing penalty different from fused

LASSO. In this thesis, the penalty in SMCP is generalized to a moving-window

penalty. Since SMCP is designed specifically for GWAS, I would introduce the genetic

background before discussing the details of SMCP.
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1.2 Genetic Background

Deoxyribonucleic acid (DNA) is a molecule that carries the genetics instruc-

tions used in the growth, development, functioning and reproduction of all known

living organisms and many viruses. DNA molecules consist of two strands coiled

around each other. The two DNA strands are known as polynucleotides. They are

composed of nucleotides. Each nucleotide is composed of a nitrogen-containing nucle-

obase - either cytosine (C), guanine (G), adenine (A), or thymine (T). The nucleotides

are joined to one another. The bases are paired under the rule: A with T while C with

G. The two strands of DNA run in opposite directions to each other. The sequence

of the bases contains the biological information. A gene is a region of DNA which

contains such genetic information. Inside a living cell, DNA is organized into long

structures called chromosomes. There are 23 pairs of chromosomes in human beings.

A genome is the genetic material of an organism which consists of DNA. A

single nucleotide polymorphism (SNP) is a variation that occurs at a specific position

in the genome. For example, at a specific base position in human genome, the base T

might appear in most individuals while A in a minority. The two possible nucleotide

variations (T or A) are called alleles. Mostly, chromosomes are paired. The score

of SNP depends on the choice of reference allele. Assume A and T are alleles for

one locus. The genotypes for such locus can be AA, AT, and TT. Given A as the

reference allele, the genotypes are coded as 2, 1, and 0. However, given T as the

reference allele, the genotypes are coded as 0, 1, and 2.

The alleles at different loci are associated by linkage disequilibrium (LD). LD
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is influenced by many factors, including selection, the rate of mutation, genetic drift,

the system of mating, population structure, and genetic linkage. The pattern of LD in

a genome is a powerful signal of the population genetic processes that are structuring

it.

Genome-wide association studies (GWAS) is the examination of many common

genetic markers in different individuals to see whether the markers are associated

with a trait. It has been found by numerous studies that many complex diseases

are associated with genetic variants among populations. However, these identified

variants explain only a small fraction of the heritability for most complex traits (23;

19; 7). Hence there is a need for improved statistical methods.

Usually, GWAS depends on the single marker analysis which testing the asso-

ciation between each SNP and the disease trait. Such analysis can be marginal linear

regression or marginal logistic regression. However, the single marker analysis has the

following problems: If a strong association does exist, then the single marker analysis

is able to select out the markers. In reality, only few SNPs are associated with the

trait. The single SNP analysis can find out a large set of potential effective signals

and it can be pretty hard to find out the truly effective ones.

From a statistical point of view, identifying SNPs associated with the trait

is a variable selection problem in a sparse, high-dimensional model setting. It is a

sparse problem because those genetic variants are rare between individuals and only a

small number of markers are truly positive. It is a high-dimensional problem because

that the number of SNPs (hundreds of thousands) is usually much larger than the
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sample sizes (thousands). Penalized regressions are powerful tools to deal with such

problem. SMCP is designed specifically for GWAS. Further discussion is provided in

the following section.

1.3 Smoothed Minimax Concave Penalization Method

Let p be the number of SNPs and n the total number of subjects. The SNPs

are indexed in their chromosomal order. The genotype score of subject i at SNP j is

denoted by xij. Let nj be the number of subjects whose genotype at SNP j is non-

missing and Θj the set of indices of such subjects. That is,
∑

i∈Θj
1 = nj. Genotype

scores are normalized as usual such that
∑

i∈Θj
xij = 0 and

∑
i∈Θj

x2
ij = nj. The

phenotype of subject i is denoted by yi.

The loss function, denoted by Q(β), is defined through a set of marginal

models, one for each SNP, in order to magnify the effect of each SNP. Here β is a

vector of regression coefficients. Define the quadratic marginal loss function Q(β) as:

Q(β) =
1

2

p∑
j=1

1

nj

∑
i∈Θj

(yi − xijβj)2,

where β = (β1, · · · , βp)T . The marginal loss function is different from the conventional

joint loss. The joint loss is defined as:

∑
i

(yi −
∑
j

xijβj)
2

The marginal loss is based on single SNP analysis, while the joint loss is based on the

joint linear regression such that

y = Xβ + ε.
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In this thesis, Chapter 2 focuses on marginal loss, while Chapter 3 and 4 focuses on

joint loss.

For dichotomous traits, the loss function is the negative log likelihood loss

defined as

Q(α,β) = −
p∑
j=1

1

nj

∑
i∈Θj

(yi log pij + (1− yi) log (1− pij)),

where pij = Pr(yi = 1|xij) = (eαj+xijβj)/(1 + eαj+xijβj), α = (α1, · · · , αp)T , β =

(β1, · · · , βp)T .

In order to achieve sparsity, SMCP imposes the following MCP penalty

ρ(βj;λ, γ) = λ

∫ |βj |
0

(1− x/(γλ))+dx.

Here λ is the penalty parameter, γ is the regularization parameter which controls

concavity and x+ = x1{x≥0}. It approaches the L1 norm penalty in LASSO as γ →∞

and approaches the hard-thresholding as γ → 1+.

It is expected that adjacent SNPs in high LD should have similar strength of

association with the phenotypes. In SMCP, the following penalty is proposed in order

to encourage smoothness between consecutive |β|s:

S(βj; η) =
η

2
ζj(|βj| − |βj+1|)2,

where η is the tuning parameter and ζj measures the strength of LD, defined as

ζj = |Corr(Xj, Xj+1)|. The smoothing penalty is only encouraged when there exists

strong correlation between adjacent predictors. The estimate β̂ is the minimizer of
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the following objective function:

Q(β) +

p∑
j=1

ρ(βj;λ, γ) +

p−1∑
j=1

S(βj; η).

Replacing Q(β) by the negative log likelihood loss Q(α,β) leads to the objective

function for dichotomous traits.

The score of SNP depends on the choice of reference allele. A genotype can

be coded as either 0 or 2, depending on the reference alleles. The effect of association

will be switched to its opposite if the choice of reference allele is altered. The differ-

ence between two coefficients is sensitive to the choices of reference alleles, while the

magnitudes of coefficients are invariant with such choices. Therefore, fused LASSO

is not suitable for GWAS. Since SMCP shrinks the squared differences between the

magnitudes of two adjacent coefficients, it is applicable to GWAS.

1.4 Overview of This Thesis

In Chapter 2, I introduce the moving-window penalty which is a general form

of the smoothing penalty in SMCP. The moving-window penalty is applied to genome-

wide screening. A coordinate descent algorithm is developed for coefficient estimation.

I discuss how to select the values of tuning parameters. The moving-window method

is applied to genetic analysis workshop (GAW) 16 rheumatoid arthritis (RA) data.

In Chapter 3, I apply the moving-window penalty in a predictive model. The

method is called as smoothed LASSO (SLasso). A coordinate descent algorithm

is proposed in details. I discuss the asymptotic properties. Furthermore, a two-

stage method: moving-window ridge (MW-Ridge) is derived from SLasso. These two
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methods are applied to GAW 16 RA data.

In Chapter 4, SLasso and MW-Ridge are applied to multivariate response data.

I discuss how to transform multivariate response data into univariate response data,

and study the behaviors of these two methods through simulations.

The moving-window method proposed in Chapter 2 is implemented for both

linear and logistic regression models, in the R package MWLasso. MW-Ridge discussed

in Chapter 3 is implemented for both linear and logistic regressions, in the R package

MWRidge.



11

CHAPTER 2
MOVING-WINDOW PENALIZATION METHOD FOR

GENOME-WIDE ASSOCIATION STUDIES

This chapter is organized as follows. Section 2.1 introduces the moving-window

penalty. Section 2.2 discusses the computing algorithm. Section 2.2.1 discusses the

case for continuous trait and Section 2.2.2 discusses the case for dichotomous trait.

Section 2.3 discusses the selection of tuning parameters. Section 2.4 presents the

simulation experiments. In Section 2.5, the moving-window method is applied to

GAW 16 rheumatoid arthritis data.

2.1 The Moving-window Penalization Method

In SMCP, the strength of effects between two adjacent SNPs are smoothed. In

the context of GWAS, the effect of LD may well extend beyond two adjacent SNPs.

Based on this consideration, we replace the smoothing penalty in SMCP by a penalty

that involves d consecutive SNPS, where the value of d is determined by data and can

be larger than two. Consider a moving window of size d that scans all SNPs from the

beginning to the end. For SNPs in the same window, they are considered to be close

enough and are expected to have similar strength of effects. Therefore, there effect

size in terms of |β| are expected to be similar. Let Ws denote the set of SNP indices

in the sth moving window. The total number of Ws is p − d + 1: W1 = {1, · · · , d},

W2 = {2, · · · , d+1},· · · , Wp−d+1 = {p−d+1, · · · , p}. The smoothing penalty within
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Ws, s = 1, 2, · · · , p− d+ 1 is defined as:

S(Ws; η) = η · 1

2(d− 1)

∑
k,j∈Ws,k<j

ζk,j(|βk| − |βj|)2,

where the weight ζi,j is defined as ζi,j = |Corr(Xi, Xj)|. Each pair of adjacent SNPs

will be scanned by d−1 windows, so 1
(d−1)

is used to standardized the smoothing effect

and make sure that for any size d, the overall weight for (|βj| − |βj+1|)2 is fixed as

ζj,j+1. Especially, when d = 2, S(Ws; η) is exactly the same as the smoothing penalty

of SMCP.

As for the penalty responsible for SNP selection, we choose the LASSO penalty

instead of MCP. This is because the LASSO penalty is easier to deal with and it is a

limiting case of MCP. The LASSO penalty is defined as:

ρ(βj;λ) = λ|βj|.

So the objective function is defined as:

Ln(β) = Q(β) +

p∑
j=1

ρ(βj;λ) +

p−d+1∑
s=1

S(Ws; η),

where Q(β) is the quadratic loss in the objective function of SMCP. Replacing Q(β)

by Q(α,β) (negative log likelihood loss in the objective function of SMCP) leads to

the objective function for dichotomous traits, denoted by Ln(α,β).

2.2 Computing Algorithm

As in other high dimensional problems, a major challenge in estimating the

model parameters is to find out a computational feasible way to optimize the objective

function Ln(β) or Ln(α,β). LAR has been discussed as a feasible computation
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method for LASSO (6). Coordinate descent algorithm has been applied for both

LASSO and elastic net (10) and some non-convex problems such as SCAD and MCP

(3). Block coordinate descent algorithm can be applied to grouped LASSO (11; 9).

For fused LASSO, the coordinate descent algorithm diverges. Alternative direction

method of multipliers (ADMM) (31) and majorization-minimization (MM) algorithm

(5) can be applied to minimize the objective function for fused LASSO. For SMCP,

the coordinate descent algorithm is appropriate and there is an explicit solution in

updating each βj (22). For the moving-window regression, the coordinate descent

algorithm is applicable. Details are described below.

2.2.1 Continuous Traits

Given current values βk, k 6= j, βj is updated by the minimizer of L̃n(βj) which

is defined as

L̃n(βj) =
1

2nj

∑
i∈Θj

(yi − xijβj)2 + λ|βj|+ S̃n(βj)

where

S̃n(βj) =
η

2(d− 1)

j∑
s=j−d+1

∑
k∈Ws,k 6=j

ζk,j(|βk| − |βj|)2.

It is straightforward to verify that

L̃n(βj) = Pjβ
2
j +Qjβj +Rj|βj|+ C,
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where C represents a term free of βj and

Pj =
1

2
(

1

nj

∑
i∈Θj

x2
ij +

η

d− 1

j∑
s=j−d+1

∑
k∈Ws,k 6=j

ζk,j),

Qj = − 1

nj

∑
i∈Θj

xijyi,

Rj = λ− η

d− 1

j∑
s=j−d+1

∑
k∈Ws,k 6=j

ζk,j|βk|.

To minimize L̃n(βj) is equivalent to minimize Pjβ
2
j + Qjβj + Rj|βj| over βj. The

minimizer is

β̂j = −sgn(Qj) ·
(|Qj| −Rj)+

2Pj
.

We note that Pj and Qj are free of βk, k = 1, . . . , p. They can be computed in advance.

The coordinate descent algorithm proceeds as Algorithm 2.1.

Algorithm 2.1 Coordinate Descent Method for Continuous Traits

1. Compute Pj, Qj, j = 1, . . . , p for t = 0

2. Input the initial values (β̂
(0)
1 , . . . , β̂

(0)
p )

3. repeat

4. for j = 1, . . . , p do

5. Fix β̂
(t)
k , k 6= j

6. Compute Rj

7. Update β̂
(t)
j

8. end for

9. t← t+ 1

10. until β̂ converges

The convergence of the coordinate descent algorithm can be shown as follows:

the objective function can be written in the form of f0(β1, ..., βp) + f1(β1, ..., βp).
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these two situations are presented in Figure 2.3 and Figure 2.4, respectively.

Figure 2.3. Estimated value of |β| across the genome for the GAW 16 data using moving-window
regression with d = 2.

There is a shrinkage effect on the estimates of |β|. For LASSO, the max value

of |β| is around 0.19. It becomes 0.14 and 0.11 for d = 2 and d = 6, respectively.

Such effect comes from the smoothing penalty. As window size d increases, the effect

of the smoothing penalty becomes stronger. The moving-window method also has

a clustering effect. It tends to choose adjacent SNPs with high LD together. For

instance, as d increases from 0 (i.e., LASSO), 2, to 6, more and more selected SNPs

are located on chromosome 6. The number of selected SNPs is 489 for LASSO, 513

for the case of d = 2, and 540 for d = 6. In order to show the shrinkage effect

and clustering effect more clearly, the β estimates on chromosome 6 are displayed in
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Figure 2.4. Estimated value of |β| across the genome for the GAW 16 data using moving-window
regression with d = 6.

Figure 2.5 for LASSO, d = 2, and d = 6.

In order to explore the effect of different γ2 values, the β estimates on chro-

mosome 6 under different γ2 values are displayed in Figure 2.6, with d = 2. As d = 6,

the β estimates on chromosome 6 under different γ2 values are displayed in Figure

2.7. A lower γ2 value indicates stronger smoothing effect, resulting β estimates closer

to zero.
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Figure 2.5. Estimated values |β| on chromosome 6 for the GAW 16 data. From top to bottom:
1) LASSO; 2) Moving-window method with d = 2; 3) Moving-window method with d = 6.
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Figure 2.6. Estimated values |β| on chromosome 6 as d = 2. From top to bottom: 1) γ2 = 0.1;
2) γ2 = 0.05; 3) γ2 = 0.025.
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Figure 2.7. Estimated values |β| on chromosome 6 as d = 6. From top to bottom: 1) γ2 = 0.1;
2) γ2 = 0.05; 3) γ2 = 0.025.
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CHAPTER 3
TWO-STAGE MOVING-WINDOW RIDGE METHOD

In Chapter 2, the moving-window smoothing penalty has been introduced and

applied in genome-wide association studies to select SNPs. Marginal regression is

used in order to magnify the effect of each genetic variant. In this chapter, the

moving-window penalty is applied to the generalized linear model.

This chapter is organized as follows. Section 3.1 introduces a regularized re-

gression method called smoothed LASSO (SLasso). Section 3.2 discusses a two-stage

method called moving-window ridge (MW-Ridge). In Section 3.3, the performances

of SLasso, MW-Ridge and several other regularized methods are compared in simu-

lation experiments. In Section 3.4, both SLasso and MW-Ridge are applied to GAW

16 RA data.

3.1 Generalized Linear Model with Moving-window Penalty

In classical linear regression model,

yi = β0 +

p∑
j=1

Xijβj + εi, i = 1, . . . , n, (1)

where yi is the outcome of the ith sample, Xij is jth feature of the ith sample, βj

is the coefficient of the jth column of the feature matrix, and εi is iid random noise.

One might combine the L1 penalty and the moving-window penalty when the feature

number p is much larger than the sample size n.
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3.1.1 Model

As defined in Chapter 2, suppose the window size is d, then the smoothing

penalty for the sth moving window Ws, s = 1, . . . , p− d is written as:

1

2(d− 1)

∑
k,j∈Ws,k<j

ζk,j(|βk| − |βj|)2. (2)

The weight of the smoothing effect is defined as ζk,j = |Corr(Xk, Xj)|. One needs to

minimize the objective function:

1

2n

n∑
i=1

(yi −
p∑
j=1

Xijβj)
2 + λ

p∑
j=1

|βj|+
η

2(d− 1)

p−d+1∑
s=1

∑
k,j∈Ws,k<j

ζk,j(|βk| − |βj|)2. (3)

In Chapter 2, the loss function is the marginal loss so it is only good for variable

selection but not good for prediction. Here we use the joint loss instead. With

window size as two, we call such method smoothed LASSO (SLasso).

3.1.2 Computation

We implement the coordinate descent algorithm for both linear model and

binary outcome logistic model.

3.1.2.1 Continuous Outcome

Given current values βk, k 6= j, βj is updated by the minimizer of L̃n(βj) which

is defined as

L̃n(βj) =
1

2n

n∑
i=1

(yi −
p∑
j=1

Xijβj)
2 + λ|βj|+ S̃n(βj),

where

S̃n(βj) =
η

2(d− 1)

j∑
s=j−d+1

∑
k∈Ws,k 6=j

ζk,j(|βk| − |βj|)2.
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It is straightforward to verify that

L̃n(βj) = Pjβ
2
j +Qjβj +Rj|βj|+ C,

where C represents a term free of βj and

Pj =
1

2
(
1

n

n∑
i=1

X2
ij +

η

d− 1

j∑
s=j−d+1

∑
k∈Ws,k 6=j

ζk,j),

Qj = − 1

n

n∑
i=1

Xijri,

Rj = λ− η

d− 1

j∑
s=j−d+1

∑
k∈Ws,k 6=j

ζk,j|βi|,

with ri = yi −
∑

k 6=j Xikβk.

To minimize L̃n(βj) is equivalent to minimize Pjβ
2
j + Qjβj + Rj|βj| over βj.

The minimizer is

β̂j = −sgn(Qj) ·
(|Qj| −Rj)+

2Pj
.

We note that Pj is free of β, which can be computed in advance. The coordi-

nate descent algorithm proceeds as Algorithm 3.1.

As shown in Section 2.2, the objective function can be written in the form of

f0(β1, ..., βp)+f1(β1, ..., βp). Here f0 is the loss function added by the moving-window

penalty, while f1 = λ
∑p

j=1 |βj|. Since f0 is a regular function and f1 is separable,

the coordinate descent solution converges to a coordinatewise minimum of f , which

is also a stationary point of f (30).

3.1.2.2 Binary Outcome

For binary outcome, negative log likelihood is used as the loss function. The

coordinate descent algorithm to minimize the negative log likelihood depends on
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Algorithm 3.1 Coordinate Descent Method for Continuous Outcome

1. Compute Pj, j = 1, . . . , p for t = 0

2. Input the initial values (β̂
(0)
1 , . . . , β̂

(0)
p )

3. Initialize r = y −
∑p

i=1 Xiβ̂
(0)
i

4. repeat

5. for j = 1, . . . , p do

6. Fix β̂
(t)
k , k 6= j

7. Compute r = r +Xjβ̂
(t)
j

8. Compute Qj, Rj

9. Update β̂
(t)
j

10. Update r = r −Xjβ̂
(t)
j

11. end for

12. t← t+ 1

13. until β̂ converges

iteratively reweighted least squares. Unlike linear model, the constant coefficient β0

cannot be centered as zero in advance. Given the current values are βj, j = 0, 1, · · · , p,

we form L̃n(β) as a quadratic approximation to the objective function:

L̃n(β) =
1

2n

n∑
i=1

wi(zi − β0 −
p∑
j=1

Xijβj)
2 + λ

p∑
j=1

|βj|

+
η

2(d− 1)

j−d+1∑
s=1

∑
k,j∈Ws,k 6=j

ζk,j(|βk| − |βj|)2,

where

zi = β0 +

p∑
j=1

Xijβj +
yi − pi
pi(1− pi)

,

wi = pi(1− pi).

Here pi = 1/(1 + exp(−β0 −
∑p

j=1 Xijβj)). For j = 1, ..., p, the loss function can be

rewritten as:

L̃n(βj) = Pjβ
2
j +Qjβj +Rj|βj|+ C,
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where C is free of βj, and

Pj =
1

2
(
1

n

n∑
i=1

wiX
2
ij +

η

d− 1

j∑
s=j−d+1

∑
k,j∈Ws,k 6=j

ζk,j),

Qj = − 1

n

n∑
i=1

wiXijri,

Rj = λ− η

d− 1

j∑
s=j−d+1

∑
k,j∈Ws,k 6=j

ζk,j|βi|,

where ri = zi−β0−
∑p

k 6=j Xikβk. Like in continuous outcome, we are able to get such

explicit update as:

β̂j = −sgn(Qj) ·
(|Qj| −Rj)+

2Pj
.

We initialize β̂0 = ln(Pr(y = 1)/[1 − Pr(y = 1)]). We need to update β̂0: fix βj, j =

1, . . . , p,

β̂0 =
1∑n
i=1wi

(
n∑
i=1

wi(zi −
p∑
j=1

Xijβj))

The coordinate descent algorithm proceeds as Algorithm 3.2.

3.1.3 Asymptotic Properties

We derived the asymptotic properties for the moving-window method which

are analogous to those for the LASSO (18) and fused LASSO (29). The penalized

criterion is:

n∑
i=1

(yi − xTi β)2 + λn

p∑
j=1

|βj|+
ηn

2(d− 1)

p−d+1∑
s=1

∑
k,j∈Ws,k<j

ζk,j(|βk| − |βj|)2, (4)

with β = (β1, β2, ..., βp)
T and xi = (xi1, xi2, ..., xip)

T . The Lagrangian multiplier λn

and ηn are functions of sample size n. For simplicity, we assume that p is fixed while
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Algorithm 3.2 Coordinate Descent Method for Binary Outcome

1. For t = 0, Input the initial values (β̂
(0)
1 , . . . , β̂

(0)
p )

2. Initialize β̂
(0)
0

3. Compute zi, wi, i = 1, . . . , n by using (β̂
(0)
0 , β̂

(0)
1 , . . . , β̂

(0)
p )

4. Compute Pj, j = 1, . . . , p

5. Initialize r = z − β̂(0)
0 −

∑p
j=1Xjβ̂

(0)
j

6. repeat

7. repeat

8. Update β̂
(t)
0

9. for j = 1, . . . , p do

10. Fix β̂
(t)
k , k 6= j

11. Compute r = r +Xjβ̂
(t)
j

12. Compute Qj, Rj

13. Update β̂
(t)
j

14. Update r = r −Xjβ̂
(t)
j

15. end for

16. until β̂ converges

17. Update zi and wi by using the current estimates β̂
(t)
j

18. Update Pj, j = 1, . . . , p

19. t← t+ 1

20. until β̂ converges
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n → ∞. A result when p → ∞ as n → ∞ might be attainable but is out of the

content of this paper.

Lemma 3.1: Assume λn/
√
n → λ0 6= 0, ηn/

√
n → η0 6= 0 and C =

limn→∞( 1
n

∑n
i=1 xix

T
i ). Then there is Vn(u)

d→ V (u), where

Vn(u) =
n∑
i=1

[(εi − uTxi/
√
n)2 − ε2i ] + λn

p∑
j=1

(|βj + uj/
√
n| − |βj|)

+
ηn

2(d− 1)

p−d+1∑
s=1

∑
k,j∈Ws,k<j

ζk,j[(|βk + uk/
√
n| − |βj + uj/

√
n|)2

− (|βk| − |βj|)2], (5)

with u = (u1, . . . , up)
T and

V (u) =− 2uTw + uTCu+ λ0

p∑
j=1

[ujsgn(βj)I(βj 6= 0) + |uj|I(βj = 0)]

+
η0

d− 1

p−d+1∑
s=1

∑
k,j∈Ws,k<j

|Ckj|√
CkkCjj

{(|βk| − |βj|)

∗ [(uksgn(βk)I(βk 6= 0) + |uk|I(βk = 0))

− (ujsgn(βj)I(βj 6= 0) + |uj|I(βj = 0))]}, (6)

where w ∼ N(0, σ2C).

Theorem 3.1: Let

J = {j = 1, ..., p|βj = 0,

j∑
s=j−d+1

∑
k∈Ws,k 6=j

|Ckj|√
CkkCjj

|βk| > 0},

define

η∗ = min
j∈J

(d− 1)λ0∑j
s=j−d+1

∑
k∈Ws,k 6=j

|Ckj |√
CkkCjj

|βk|
,

then β̂
(n) d→ argminV (u) while 0 < η0 ≤ η∗.
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Corollary 3.1: If max {λ, η} = o(
√
n), then β̂

(n)
is a
√
n-consistent estimator

of β.

The proof of Lamma 3.1, Theorem 3.1 and Corollary 3.1 are discussed in

Appendix.

3.2 A Two-stage Method: MW-Ridge

3.2.1 Motivation

Smoothing the coefficients of neighboring features where exist strong corre-

lations, the moving-window method is supposed to select a strong covariate and its

neighboring covariates which are highly correlated with it. We apply the moving-

window regression on a simulated dataset in order to illustrate this effect. There are

20 samples and 50 predictors. The feature matrix X is randomly generated, with

Corr(Xk, Xl) = 0.4|k−l|. The coefficients β are all zero, except for (β11, . . . , β15) =

(3, 2, 3,−3, 2). We apply three methods on such dataset: LASSO, moving-window

regression with d = 2 (MW-2), and moving-window regression with d = 4 (MW-4).

The coefficient paths for the three methods are shown in Fig 3.1. In this experiment,

the tuning parameter η is as large as λ. Moving-window regression detected more

true positives than LASSO. For instance, with λ as three, there are two true positives

with LASSO (in red and green), and four true positives with MW-2. We also find

the moving-window regression might include more false positives, especially when λ

is small, as a price of the increment in true positive findings. In the next subsection,

we propose moving-window ridge (MW-Ridge) in order to reduce the number of noisy
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findings.

3.2.2 Method

With the smoothing penalty, a regression model can result in a larger model

size so it is more likely to detect true positives. However, as a price of more positive

finding, the model might include more false positives. Two-stage variable selection

methods have been developed to remove the false positive noises. Relaxed LASSO (24)

is a widely used two-stage method. It can outperform LASSO by reducing the number

of false positives and providing higher predictive accuracy. In the first stage, LASSO

is applied to perform variable selection. In the second stage, LASSO is performed

again on the predictors selected in the first stage. Since LASSO is applied twice, there

provides a simpler model. Other two-stage methods include relaxed elastic net (25)

which applies elastic net twice, and generalized Dantzig selector (17) which applies

Dantzig selector twice.

In this subsection, a two-stage method is discussed. Similar as relaxed LASSO,

in the first stage, a candidate set of predictors is chosen out by applying moving-

window regression. In the second stage, ridge regression is applied on the candidate

set for prediction and coefficient estimation.

Definition 3.1: The two-stage method is defined as: find β̂λ,η,φ which mini-

mizes:

1

2n

n∑
i=1

(yi −
p∑
j=1

Xij{β · 1Ωλ,η}j)2 +
φ

2

p∑
k=1

β2
k . (7)

Here Ωλ,η ⊆ {1, 2, . . . , p} is the set of the index of β which has nonzero coefficient
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Figure 3.1. The coefficients paths for three methods. From top to bottom: 1) LASSO; 2)
MW-2; 3) MW-4. The paths for the five true positives are shown in different colors. The paths
in pink are for the coefficients of the false positives.
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estimate under the moving window regression with tuning parameters λ and η. 1Ωλ,η

is the indicator function on Ωλ,η such that for all j ∈ {1, 2, . . . , p},

{β · 1Ωλ,η}j =

{
0, j /∈ Ωλ,η

βj, j ∈ Ωλ,η

Only the detected variables in Ωλ,η are covered by the ridge regression. The tuning

parameters λ and η control the feature selection part, while φ controls the estimation

of coefficients. Ridge regression might alter the values of coefficients without forcing

any coefficient to be zero. Thus, all the variables in Ωλ,η will be remained in the final

model. Such method can be proposed as follows:

Step 1. Select three tuning parameters, λ, η and φ.

Step 2. Fit the moving window regression model to response y, using all the

predictors X1, X2, . . . , Xp, by using the tuning parameters λ and η.

Step 3. Identify the q variables with nonzero coefficients as X∗1 , . . . , X
∗
q .

Step 4. Fit a ridge regression to y, by using predictors X∗1 , . . . , X
∗
q and tuning

parameter φ.

We call such method ’Moving-Window Ridge’ (MW-Ridge).

3.3 Simulation

3.3.1 Simulation 0: Experiment on GAW 16 RA Data

First, the simulation experiment is conducted on GAW 16 RA data. 2000

genotypes are randomly selected from chromosome 6. The 2000 genotypes are con-

secutive in order to maintain the sequential structure. 200 subjects are randomly

selected for training dataset and another 200 subjects are randomly selected for test
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Table 3.1. Median value of true positive, median value of model

size, mean(standard deviation) of PPV and TPR, over 100 repli-

cates.

True Positive Model Size PPV TPR
LASSO 10 48 0.212(0.069) 0.364(0.055)
net 12 55 0.218(0.074) 0.454(0.075)
relaxo 8 18 0.536(0.266) 0.319(0.061)
SL 22 90.5 0.218(0.056) 0.771(0.167)
MW-R2 22 23 0.927(0.049) 0.818(0.073)

dataset. The genotypes are standardized such that
∑

i xij = 0 and
∑

i x
2
ij = 200.

The trait y is generated from the linear model:

yi = xTi β + εi, i = 1, ..., 200. (8)

where xi ∈ R2000 is a vector of SNP scores of subject i, β is the vector of genetic

effects for these SNPs. εi is the random residual sampled from a normal distribution

with mean 0 and variance 1. The entries of β are all 0, except that (β1506, . . . , β1512)

= (0.7,-0.5,0.1,-0.5,0.3,-0.6,0.2) and (β1514, ..., β1532)=(0.35,-0.4,0.2,-0.1,0.25,0.3,0.4,-

0.4,-0.15,0.3,-0.4,0.4, -0.5,0.2,-0.3,0.16,0.36,-0.2,0.1). The number of truly non-zero

βs is 26.

As discussed in Chapter 1, fused LASSO is not appropriate for genome-wide

association studies. Thus, these five methods are compared: LASSO, elastic net

(net), relaxed LASSO (relaxo), SLasso (SL) and MW-Ridge with d = 2 (MW-R2).

The simulation results based on 100 replicates are shown in Table 3.1.

First of all, there is a performance improvement in the value of TP after using
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SLasso. The median value of TP is increased by 120%, compared to LASSO (from 10

to 22) and by 83%, compared to elastic net (from 12 to 22). The TPR increases by

112% and 70%, respectively, compared to LASSO (from 0.364 to 0.771) and elastic

net (from 0.454 to 0.771).

Secondly, SLasso results in larger model size. In spite of the improvement in

TP findings, the PPV has little improvement, compared to LASSO and elastic net.

The PPV of SLasso is the same as the PPV of elastic net (0.218).

MW-Ridge performs best among all the five methods. The TP value of MW-

R2 is the same as the TP value of SLasso. The TPR of MW-R2 is even a little

higher than the TPR of SLasso (from 0.771 to 0.818). Furthermore, MW-R2 results

in simpler models with model size as only 23. The PPV increased by 337% and 73%,

respectively, compared to LASSO (from 0.212 to 0.927) and relaxed LASSO (from

0.536 to 0.927).

Next, the simulation study is conducted in four different settings: continuous

outcome with uncorrelated predictors, continuous outcome with correlated predictors,

binary outcome with uncorrelated predictors, and binary outcome with correlated pre-

dictors. SLasso and MW-Ridge are implemented on both linear and logistic models.

The purpose is to explore how these two methods behave in different aspects and to

compare them with other methods.
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3.3.2 Simulation 1: Continuous Outcome and Uncorrelated Predictors

The first simulation study focuses on continuous outcome and uncorrelated

predictors. The simulated training dataset and test dataset both contain n = 100

observations, with different number of predictors: p = 50, p = 100 or p = 200. There

are 100 different simulation experiments generated. The methods are fitted using the

training data, while the tuning parameters are chosen so as to minimize the deviance

on the test datasets. The response y is generated as:

yi = xTi β + εi,

with xi being the ith row of X and εi ∼ N(0, σ2) for i ∈ {1, . . . , n}. The stan-

dard deviation of the error term, σ, is varied. We test the performances of differ-

ent methods under σ = 1, 4, 7, 10. The larger value of σ indicates a lower signal-

noise ratio. Xj for j ∈ {1, . . . , p} refers to the jth column of X, is standardized

such that:
∑n

i=1 Xij = 0 and
∑n

i=1X
2
ij = n. The true coefficients of β are all

zero, except that (β11, . . . , β17) = (0.6, 1.8, 2.5, 1.6, 0.8,−0.5,−0.5), (β23, . . . , β27) =

(−0.4, 0.5, 1.2, 2, 0.75), and (β41, . . . , β46) = (−0.3, 0.8, 2, 1.2, 0.5,−1). There are to-

tally 18 true positives. The methods which are compared are as follows:

• LASSO: classical LASSO implemented using ’glmnet’ in R pakcage ’glmnet’

• elastic net: elastic net regression implemented using ’glmnet’

• fused LASSO: fused LASSO implemented by ’fusedLASSO1d’ function in R

package ’genLASSO’

• SLasso: moving-window regression with window size d = 2
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• relaxed LASSO: relaxed LASSO implemented using ’relaxo’

• MW-Ridge2 (MW-R2): moving-window ridge method with window size d = 2

• MW-Ridge4 (MW-R4): moving-window ridge method with window size d = 4

A grid search is applied in the tuning parameter selection for SLasso, MW-R2

and MW-R4. The maximum value of λ is set as λmax = maxj |
∑n

i=1 Xijyi|/n, and the

grid of λ is set as (0.01λmax, 0.02λmax, . . . , λmax). A new parameter α is introduced

as the proportion of λ in the sum of tuning parameters: α = λ/(λ + η). The grid

of α is (0.1, 0.2, . . . , 0.9). The tuning parameter η can be derived from α and λ. For

SLasso, the performance of every combination of λ and η is evaluated, and the pair of

parameters which can minimize the predictive mean squared error on the test dataset

is chosen out. For MW-R2 and MW-R4, there is a third parameter φ, for the ridge

regression. In each pair of λ and η, ’glmnet’ is use to choose φ. After evaluating

the performances of all combinations of tuning parameters, we choose the parameters

which work best on the test dataset.

Table 3.2 shows the predictive mean squared error over σ2 (PMSE/σ2), true

positive rate (TPR) and false detective rate (FDR) for these methods with different

σ values. Here TPR and FDR are defined as:

TPR = TP/(TP + FN),

FDR = FP/(TP + FP).

Here TP stands for true positive, FN for false negative and FP for false positive. We

see PMSE/σ2 increases as p increases. The performances of MW-R2 and MW-R4
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are close. They have close values in PMSE/σ2, TPR and FDR, for different p and

σ values. Relaxed LASSO results in lower PMSE than LASSO, and similarly, MW-

R2 results in lower PMSE than SLasso. Fused LASSO obtains lower PMSE than

SLasso. Using smoothing penalty, fused LASSO and SLasso both attain apparently

higher TPR and FDR than other methods, which indicates that these two methods

might select more features including both true positives and false positives. MW-R2,

MW-R4 and relaxed LASSO result in significantly lower FDR, compared with other

methods. As a price, these three methods result in lower TPR. With a high value of

σ (low signal-noise ratio), such price might be eliminated. As σ = 10 and p = 200,

there are very strong noises. MW-R2 and MW-R4 result in higher TPR than all other

methods except fused LASSO. Besides, there are 17 out of 100 experiments which

select zero features for LASSO and 16 out of 100 for relaxed LASSO, while MW-R2

always select one or more features.

Fig 3.2 shows the median number of false positives (FP) over 100 simulation

experiments, from top to bottom: 1) for p = 50, 2) for p = 100 and 3) for p = 200.

MW-R2, MW-R4 and relaxed LASSO all result in much fewer FP than other methods.

There is an apparent discrepancy between the number of FP for these three methods

and the number of FP for other methods. Such discrepancy is larger at lower values

of σ (higher signal-noise ratio). Fused LASSO and SLasso result in much more FP

than other methods. As σ increases, the gaps between these two methods and other

methods becomes wider, which indicates that these two methods are still able to

provide findings even there exist strong noises. Such behavior should be driven by
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Table 3.2. Mean of predictive mean squared error over σ2 (PMSE/σ2), true positive

rate (TPR), and false detective rate (FDR), for seven different methods with different

σ values, using 100 simulations each with p = 50, p = 100, and p = 200. Continuous

outcome, uncorrelated predictors.

p=50 p=100 p=200

σ = 1

Method PMSE
σ2 TPR FDR PMSE

σ2 TPR FDR PMSE
σ2 TPR FDR

LASSO 1.37 0.999 0.484 1.73 0.99 0.620 2.40 0.973 0.699
net 1.37 0.999 0.492 1.74 0.989 0.622 2.45 0.974 0.704
FusedL 1.32 0.999 0.510 1.55 0.993 0.654 1.81 0.980 0.738
SL 1.36 0.999 0.490 1.70 0.992 0.632 2.25 0.984 0.714
relaxo 1.24 0.991 0.202 1.40 0.961 0.309 1.92 0.930 0.435
MW-R2 1.35 0.979 0.146 1.59 0.956 0.250 2.11 0.917 0.349
MW-R4 1.35 0.987 0.202 1.56 0.964 0.294 2.12 0.925 0.408

σ = 4

LASSO 1.28 0.834 0.471 1.45 0.708 0.618 1.63 0.616 0.679
net 1.28 0.856 0.496 1.44 0.726 0.632 1.63 0.629 0.690
FusedL 1.20 0.891 0.503 1.30 0.826 0.654 1.40 0.807 0.718
SL 1.23 0.909 0.501 1.39 0.825 0.670 1.57 0.739 0.741
relaxo 1.23 0.714 0.290 1.36 0.562 0.356 1.50 0.441 0.355
MW-R2 1.19 0.730 0.252 1.31 0.581 0.271 1.47 0.492 0.308
MW-R4 1.19 0.778 0.285 1.30 0.628 0.308 1.44 0.508 0.339

σ = 7

LASSO 1.20 0.631 0.448 1.28 0.471 0.611 1.36 0.334 0.673
net 1.18 0.706 0.497 1.27 0.555 0.661 1.35 0.414 0.715
FusedL 1.12 0.803 0.502 1.19 0.741 0.666 1.23 0.678 0.717
SL 1.17 0.811 0.503 1.26 0.684 0.681 1.30 0.574 0.747
relaxo 1.16 0.481 0.283 1.27 0.354 0.397 1.32 0.258 0.406
MW-R2 1.12 0.534 0.269 1.23 0.456 0.412 1.29 0.366 0.474
MW-R4 1.12 0.557 0.279 1.21 0.488 0.427 1.28 0.400 0.491

σ = 10

LASSO 1.12 0.412 0.438 1.17 0.271 0.610 1.20 0.152 0.620
net 1.11 0.558 0.445 1.16 0.387 0.678 1.20 0.165 0.624
FusedL 1.07 0.649 0.488 1.12 0.625 0.622 1.16 0.572 0.720
SL 1.11 0.643 0.497 1.15 0.501 0.695 1.18 0.348 0.757
relaxo 1.11 0.303 0.299 1.16 0.195 0.390 1.19 0.117 0.506
MW-R2 1.07 0.502 0.339 1.12 0.410 0.517 1.15 0.351 0.641
MW-R4 1.07 0.512 0.339 1.12 0.447 0.545 1.15 0.363 0.643

1 net, elastic net; FusedL, fused LASSO; SL, SLasso; relaxo, relaxed LASSO; MW-R2,

MW-Ridge2; MW-R4, MW-Ridge4.
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the smoothing penalties in these two methods.

Fig 3.3 shows the median number of true positives (TP), from top to bottom:

1) for p = 50, 2) for p = 100 and 3) for p = 200. As σ = 1, all methods attain

high TP which are close to 18. There are totally 18 true positives, so all methods are

able to choose out all or almost all true signals. The numbers of TP decrease as σ

increases, for all methods. Fused LASSO and SLasso always result in more TP than

other methods, at a price of obtaining more FP as shown in fig 2. Elastic net always

results in more TP and more FP than LASSO. As σ = 10, there are very strong

noises and we can see that under different values of p, relaxed LASSO obtains less

TP than LASSO while MW-R2 and MW-R4 always obtain more TP.

In the context of continuous outcome with uncorrelated predictors, MW-R2

behaves quite similar with MW-R4. Compared with classical LASSO, SLasso tends to

select more features, which results in higher TPR and higher FDR. MW-Ridge method

can maintain the advantage of SLasso as keeping true signals and eliminating the side-

effect by removing noises. Compared with relaxed LASSO, MW-Ridge tends to detect

more TP at the price of more FP. Such price might be eliminated in the context of

continuous outcome with correlated predictors, as shown in the next subsection.

3.3.3 Simulation 2: Continuous Outcome and Correlated Predictors

Simulation 2 uses a continuous outcome and correlated predictors. Like in

Simulation 1, the training dataset and test dataset both contain n = 100 observations,

with different numbers of predictors: p = 50, p = 100 or p = 200. There are 100
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Figure 3.2. Median number of false positives, continuous outcome and uncorrelated predictors,
with different values of σ. From top to bottom: 1) p = 50, relaxo covered by MW-R4 before
σ = 7, MW-R2 covered by MW-R4 after σ = 7; 2) p = 100; 3) p = 200.
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Figure 3.3. Median number of true positives, continuous outcome and uncorrelated predictors,
with different values of σ. From top to bottom: 1) p = 50; 2) p = 100; 3) p = 200, MW-R2
covered by MW-R4 after σ = 7, relaxo covered by MW-R2 before σ = 4.
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different experiments randomly generated. The outcome y is generated as:

yi = xTi β + εi,

with xi being the ith row of X and εi ∼ N(0, σ2) for i ∈ {1, . . . , n}. The standard

deviation of the error term, σ, is varied as σ = 1, 4, 7, 10. Xj refers to the jth

column of X, are standardized such that:
∑n

i=1 Xij = 0 and
∑n

i=1X
2
ij = n. The

true coefficients β is the same as that in Simulation 1. The predictors are correlated

as Corr(Xk, Xl) = ρ|k−l|, with ρ = 0.4. Like in Simulation 1, the performances

of seven methods are explored: LASSO, elastic net, fused LASSO, SLasso, relaxed

LASSO, MW-Ridge2 and MW-Ridge4. Table 3.3 shows the simulation results over

100 replicates.

We can see PMSE/σ2 increases as p increases. Like in simulation 1, the perfor-

mances of MW-R2 and MW-R4 are quite close. Relaxed LASSO results in lower pre-

dictive error than LASSO and MW-R2 results in lower predictive error than SLasso.

MW-R2 and MW-R4 always obtain lower PMSE than relaxed LASSO except for

p = 50 and σ = 1. Fused LASSO obtains lower PMSE than SLasso. TPR decreases

as σ increases and p increases for all methods. Compared with relaxed LASSO, as

σ = 1, 4, 7, MW-R2 results in lower FDR and higher TPR; as σ = 10, MW-R2 results

in higher TPR with a slight increment in FDR. The TPR of relaxed LASSO is ap-

parently lower than LASSO, while that of MW-R2 is close to LASSO or even higher.

As σ = 10 when there exist strong noises, MW-R2 always performs higher TPR than

LASSO. Fused LASSO and SLasso always result in the highest values in TPR and

FDR among all methods, indicating that they tend to select more true signals as well
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Table 3.3. Mean of predictive mean squared error over σ2 (PMSE/σ2), true positive

rate (TPR), and false detective rate (FDR), for seven different methods with different

σ values, using 100 simulations each with p = 50, p = 100, and p = 200. Continuous

outcome, correlated predictors.

p=50 p=100 p=200

σ = 1

Method PMSE
σ2 TPR FDR PMSE

σ2 TPR FDR PMSE
σ2 TPR FDR

LASSO 1.37 0.992 0.464 1.66 0.974 0.591 2.10 0.942 0.672
net 1.36 0.992 0.471 1.66 0.975 0.597 2.11 0.942 0.676
FusedL 1.32 0.996 0.504 1.53 0.986 0.650 1.81 0.967 0.723
SL 1.33 0.995 0.461 1.59 0.986 0.596 1.93 0.971 0.682
relaxo 1.27 0.968 0.237 1.46 0.919 0.294 1.80 0.879 0.368
MW-R2 1.29 0.981 0.189 1.44 0.957 0.217 1.64 0.948 0.286
MW-R4 1.34 0.983 0.195 1.47 0.967 0.243 1.64 0.940 0.306

σ = 4

LASSO 1.22 0.791 0.435 1.35 0.669 0.550 1.47 0.612 0.622
net 1.22 0.817 0.459 1.34 0.696 0.582 1.46 0.636 0.644
FusedL 1.16 0.876 0.491 1.24 0.794 0.641 1.31 0.759 0.709
SL 1.17 0.901 0.492 1.27 0.868 0.641 1.39 0.810 0.714
relaxo 1.16 0.603 0.178 1.23 0.526 0.206 1.30 0.431 0.125
MW-R2 1.10 0.756 0.159 1.14 0.677 0.150 1.19 0.593 0.106
MW-R4 1.10 0.767 0.175 1.14 0.694 0.172 1.20 0.614 0.137

σ = 7

LASSO 1.16 0.630 0.418 1.23 0.518 0.569 1.31 0.457 0.631
net 1.15 0.714 0.464 1.22 0.576 0.598 1.30 0.508 0.669
FusedL 1.09 0.808 0.482 1.14 0.734 0.642 1.19 0.686 0.705
SL 1.11 0.853 0.495 1.17 0.797 0.668 1.25 0.742 0.740
relaxo 1.11 0.462 0.169 1.17 0.387 0.241 1.21 0.328 0.217
MW-R2 1.05 0.587 0.148 1.10 0.536 0.197 1.15 0.432 0.183
MW-R4 1.05 0.618 0.172 1.10 0.556 0.210 1.15 0.455 0.208

σ = 10

LASSO 1.11 0.497 0.415 1.17 0.409 0.588 1.23 0.329 0.627
net 1.10 0.606 0.460 1.15 0.517 0.632 1.21 0.413 0.675
FusedL 1.06 0.743 0.485 1.10 0.663 0.637 1.14 0.647 0.714
SL 1.08 0.788 0.496 1.12 0.727 0.681 1.18 0.691 0.771
relaxo 1.08 0.358 0.201 1.13 0.278 0.280 1.18 0.224 0.290
MW-R2 1.04 0.510 0.187 1.08 0.467 0.317 1.13 0.389 0.314
MW-R4 1.04 0.517 0.203 1.08 0.486 0.313 1.13 0.412 0.318

1 net, elastic net; FusedL, fused LASSO; SL, SLasso; relaxo, relaxed LASSO; MW-R2,

MW-Ridge2; MW-R4, MW-Ridge4.
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as more noises.

Fig 3.4 shows the median number of FP, from top to bottom: 1) for p = 50,

2) for p = 100 and 3) for p = 200. Relaxed LASSO, MW-R2 and MW-R4 detect

apparently less FP than all other methods. Fused LASSO and SLasso detect more

FP than others. With a lower value of σ (higher signal-noise ratio), fused LASSO

results in more FP than SLasso. With a higher value of σ (lower signal-noise ratio),

fused LASSO results in less FP than SLasso.

Fig 3.5 shows the median number of TP, from top to bottom: 1) for p = 50,

2) for p = 100 and 3) for p = 200. For all methods, the number of TP decreases as

σ increases. MW-R2 and MW-R4 over perform relaxed LASSO by detecting more

TP. The graph of MW-R2, MW-R4 and LASSO are very close, indicating that the

numbers of TP discovered by MW-Ridge are close to that by LASSO. This is different

with Simulation 1 in which MW-Ridge methods detect less TP than LASSO when σ

has lower values. Like in Simulation 1, elastic net always detects more TP and more

FP than LASSO. SLasso results in highest values in TP while fused LASSO results

in the second highest.

In the context of continuous outcome with correlated predictors, MW-Ridge

can over perform LASSO and relaxed LASSO. MW-R2 and MW-R4 result in close

performances again. Compared with relaxed LASSO, MW-R2 results in less PMSE

and detects more TP with little increment in FP. Compared with LASSO, MW-R2

achieves close numbers in TP, and significantly reduces the numbers in FP.
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Figure 3.4. Median number of false positives, continuous outcome and correlated predictors,
with different values of σ. From top to bottom: 1) p = 50, MW-R2 covered by MW-R4 before
σ = 7, relaxo covered by MW-R2 after σ = 7; 2) p = 100; 3) p = 200.
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Figure 3.5. Median number of true positives, continuous outcome and correlated predictors,
with different values of σ. From top to bottom: 1) p = 50, MW-R2 fully covered by MW-R4;
2) p = 100, LASSO covered by MW-R2 before σ = 7, net covered by MW-R4 after σ = 7; 3)
p = 200, LASSO covered by MW-R2 before σ = 7.
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3.3.4 Simulation 3: Binary Outcome and Uncorrelated Predictors

Simulation 3 focuses on binary outcome with uncorrelated predictors. The fea-

ture matrix X is generated from independent standard normal distribution. Sample

size n is fixed at 100 and predictor number p is varied and takes the following values:

50, 100, 200. The coefficient β is the same as that in Simulation 1. The number of

true positives is 18. The response vector y is generated as

yi ∼ Bernoulli(cpi),

where pi refers to the logit:

pi =
1

1 + e−x
T
i β

The parameter c controls the signal-noise ratio in the logistic regression context.

Here c is varied and takes the following values: 0.25, 0.5, 1, 2. The higher value of

c indicates a higher signal-noise ratio. Feature matrix X is standardized such that:∑n
i=1 Xij = 0 and

∑n
i=1 X

2
ij = n, for j = 1, . . . , p. The performances are evaluated

based on a separate test dataset with n = 100. These methods are compared:

• LASSO: classical LASSO implemented using ’glmnet’ in R pakcage ’glmnet’

• elastic net: elastic net regression implemented using ’glmnet’

• svm: support vector machine implemented using R package ’rminer’

• random forest: binary outcome random forests implemented using R package

’randomForest’

• SLasso: moving-window regression with window size d as two

• MW-Ridge2 (MW-R2): moving-window ridge method with window size d = 2
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• MW-Ridge4 (MW-R4): moving-window ridge method with window size d = 4

As mentioned in Simulation 1, grid search is applied to select tuning parame-

ters for SLasso, MW-R2 and MW-R4. The R package ’rminer’ provides the ’Impor-

tance’ function, which performs as a variable selection approach for support vector

machine. For random forest, there is no variable selection method available.

Table 3.4 shows the mean predictive error rate (PER), TPR and FDR for

the above methods. For all methods, PER increases as p increases and c decreases.

Random forest is significantly over-performed by other methods in prediction. There

is an apparent gap between the PER of random forest with other methods. MW-

R2 and MW-R4 result in the lowest predictive error rates among all methods. Like

in the context of continuous outcome, MW-R2 and MW-R4 perform closely in both

prediction and variable selection. The FDR for MW-R2 is apparently lower than that

for LASSO. The gap in FDR between these two methods is enlarged as higher c value

(stronger signals) and eliminated as lower c value (weaker signals). For MW-R2, there

is a slight decrement in TPR as a price of lower FDR, compared with LASSO.

Fig 3.6 shows the median number of FP, from top to bottom: 1) for p = 50,

2) for p = 100 and 3) for p = 200. As p increases, SLasso results in more FP than

other methods. The performances of MW-R2, MW-R4 and svm are similar and their

graphs cross over each other’s. These three methods result in much lower numbers of

FP than other methods.

Fig 3.7 shows the median number of true positives, from top to bottom: 1) for

p = 50, 2) for p = 100 and 3) for p = 200. The number of TP decreases as c decreases
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Table 3.4. Mean of predictive error rate (PER), true positive rate (TPR), and false

detective rate (FDR), for eight different methods and for different c values, using 100

simulations each with p = 50, p = 100, and p = 200. Binary outcome, uncorrelated

predictors.

p=50 p=100 p=200

c = 2

Method PER TPR FDR PER TPR FDR PER TPR FDR
LASSO 0.136 0.799 0.458 0.166 0.689 0.566 0.190 0.561 0.639
net 0.129 0.801 0.439 0.160 0.668 0.542 0.187 0.531 0.584
svm 0.166 0.644 0.352 0.196 0.544 0.409 0.217 0.406 0.381
forest 0.296 - - 0.337 - - 0.375 - -
SL 0.121 0.861 0.475 0.144 0.753 0.578 0.166 0.681 0.686
MW-R2 0.119 0.707 0.289 0.145 0.582 0.346 0.168 0.443 0.363
MW-R4 0.120 0.705 0.292 0.144 0.574 0.330 0.168 0.460 0.381

c = 1

LASSO 0.175 0.814 0.470 0.197 0.648 0.595 0.220 0.550 0.669
net 0.165 0.81 0.470 0.190 0.637 0.579 0.215 0.563 0.674
svm 0.193 0.659 0.376 0.216 0.456 0.388 0.241 0.447 0.486
forest 0.311 - - 0.345 - - 0.379 - -
SL 0.155 0.859 0.453 0.177 0.709 0.596 0.196 0.648 0.712
MW-R2 0.153 0.715 0.314 0.172 0.537 0.385 0.193 0.494 0.439
MW-R4 0.152 0.749 0.339 0.172 0.541 0.381 0.193 0.502 0.453

c = 0.5

LASSO 0.244 0.725 0.481 0.270 0.553 0.595 0.284 0.452 0.642
net 0.235 0.696 0.455 0.256 0.589 0.598 0.274 0.471 0.655
svm 0.255 0.603 0.388 0.272 0.521 0.489 0.290 0.452 0.599
forest 0.350 - - 0.380 - - 0.418 - -
SL 0.231 0.728 0.461 0.249 0.626 0.605 0.264 0.545 0.688
MW-R2 0.219 0.661 0.386 0.237 0.536 0.479 0.265 0.424 0.495
MW-R4 0.218 0.667 0.385 0.234 0.541 0.491 0.253 0.423 0.502

c = 0.25

LASSO 0.344 0.671 0.550 0.361 0.468 0.679 0.380 0.321 0.758
net 0.333 0.648 0.513 0.347 0.525 0.666 0.367 0.383 0.763
svm 0.339 0.528 0.479 0.350 0.503 0.638 0.364 0.374 0.754
forest 0.421 - - 0.447 - - 0.456 - -
SL 0.333 0.666 0.530 0.346 0.534 0.690 0.365 0.401 0.785
MW-R2 0.311 0.612 0.485 0.321 0.451 0.595 0.336 0.360 0.731
MW-R4 0.308 0.592 0.474 0.319 0.466 0.599 0.336 0.368 0.727

1 net, elastic net; svm, support vector machine; forest, random forest; SL, SLasso; MW-R2,

MW-Ridge2; MW-R4, MW-Ridge4.
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Figure 3.6. Median number of false positives, binary outcome and uncorrelated predictors, with
different values of c. From top to bottom: 1) p = 50, MW-R2 covered by MW-R4 after c = 0.5;
2) p = 100; 3) p = 200.
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and p increases. Similar as the context of continuous outcome, SLasso always results

in a highest number of TP. The numbers of TP for MW-R2 and MW-R4 are close,

higher than that for svm. As a price of detecting fewer noises, MW-R2 detects less

true signals than LASSO and elastic net, especially with higher c values (higher

signal-noise ratio). With c = 0.25, there are strong noises and MW-R2 achieves a

close number of TP and lower FP, compared with LASSO.

In the context of binary outcome and uncorrelated predictors, MW-R2 and

MW-R4 result in close performances. MW-Ridge can generally overperform support

vector machine in prediction and feature selection. MW-Ridge might detect less FP

than LASSO, at the price of detecting less TP. Such price might be eliminated in the

context of binary outcome and correlated predictors.

3.3.5 Simulation 4: Binary Outcome and Correlated Predictors

Simulation 4 studies binary outcome with correlated predictors. The feature

matrix X is correlated as Corr(Xk, Xl) = ρ|k−l|, with ρ = 0.4. Sample size n is fixed

at 100 and predictor number p is varied as 50, 100, 200. The coefficients β is the same

as that in Simulation 1. The response vector y is generated as yi ∼ Bernoulli(cpi).

Parameter c is varied and takes these values: 0.25, 0.5, 1, 2. The performances of

LASSO, elastic net, support vector machine, random forest, SLasso, MW-R2 and

MW-R4 are explored and compared.

Table 3.5 shows the mean of PER, TPR and FDR of the above methods.

Similar to Simulation 3, random forest results in highest predictive error. MW-
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Figure 3.7. Median number of true positives, binary outcome and uncorrelated predictors, with
different values of c. From top to bottom: 1) p = 50, LASSO fully covered by net, net covered
by SL after c = 0.5. MW-R2 covered by MW-R4 after c = 0.5; 2) p = 100, net covered by
SL after c = 0.5; 3) p = 200, LASSO covered by net before c = 1, MW-R2 fully covered by
MW-R4.
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R2 and MW-R4 result in close PER, which are lower than other methods. SLasso

produces higher TPR and higher FDR. MW-Ridge can keep TPR as high as that of

LASSO, and apparently decrease FDR at the same time. Compared with support

vector machine, MW-R2 and MW-R4 result in better predictive performances, higher

TPR and lower FDR.

Fig 3.8 shows the median number of FP, from top to bottom: 1) for p = 50,

2) for p = 100 and 3) for p = 200. SLasso detects highest number of FP among

all methods. Generally speaking, svm detects less FP than LASSO and elastic net.

However, as c = 0.25 (low signal-noise ratio), svm detects no less FP than LASSO.

The graphs of MW-R2 and MW-R4 are almost overlapping. There is a clear gap

between the graph of MW-R2 and svm. This is different from Simulation 3 in which

the graphs of MW-R2 and svm are quite close. Such phenomenon indicates that MW-

Ridge can detect apparently less false signals than svm and all the other methods, in

the context of correlated predictors.

Fig 3.9 shows the median number of TP, from top to bottom: 1) for p = 50,

2) for p = 100 and 3) for p = 200. SLasso always detects highest number of TP. The

graphs of MW-R2 and MW-R4 are almost overlapping. As p = 50, MW-R2 behaves

similar with svm. As p = 100 or 200, MW-R2 detects more TP than svm. Under

the context of uncorrelated predictors, as shown in Fig 3.7, LASSO detects more TP

than MW-R2 when c has higher values (stronger signals). For correlated predictors,

it is different and MW-R2 results in similar numbers of TP with LASSO, under both

higher and lower values of c.
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Table 3.5. Mean of predictive error rate (PER), true positive rate (TPR), and false

detective rate (FDR), for eight different methods and for different c values, using 100

simulations each with p = 50, p = 100, and p = 200. Binary outcome, correlated

predictors.

p=50 p=100 p=200

c = 2

Method PER TPR FDR PER TPR FDR PER TPR FDR
LASSO 0.096 0.711 0.404 0.114 0.616 0.533 0.128 0.533 0.579
net 0.085 0.732 0.393 0.102 0.639 0.503 0.116 0.552 0.522
svm 0.117 0.654 0.334 0.137 0.522 0.336 0.151 0.508 0.332
forest 0.197 - - 0.239 - - 0.278 - -
SL 0.074 0.846 0.403 0.088 0.797 0.577 0.096 0.747 0.641
MW-R2 0.069 0.697 0.237 0.082 0.603 0.239 0.090 0.541 0.228
MW-R4 0.070 0.711 0.242 0.083 0.605 0.236 0.091 0.541 0.248

c = 1

LASSO 0.133 0.674 0.407 0.139 0.584 0.502 0.148 0.513 0.573
net 0.122 0.697 0.406 0.126 0.627 0.503 0.137 0.516 0.510
svm 0.149 0.628 0.340 0.149 0.547 0.378 0.173 0.456 0.419
forest 0.221 - - 0.253 - - 0.302 - -
SL 0.113 0.802 0.430 0.112 0.777 0.568 0.122 0.707 0.630
MW-R2 0.101 0.646 0.220 0.103 0.563 0.212 0.110 0.511 0.216
MW-R4 0.103 0.643 0.231 0.102 0.567 0.211 0.112 0.519 0.236

c = 0.5

LASSO 0.192 0.629 0.408 0.201 0.535 0.531 0.212 0.458 0.617
net 0.175 0.646 0.404 0.186 0.576 0.519 0.199 0.482 0.590
svm 0.193 0.624 0.382 0.208 0.483 0.426 0.222 0.389 0.462
forest 0.261 - - 0.293 - - 0.338 - -
SL 0.171 0.804 0.441 0.172 0.729 0.576 0.183 0.646 0.668
MW-R2 0.155 0.634 0.257 0.161 0.552 0.322 0.168 0.478 0.340
MW-R4 0.155 0.647 0.259 0.161 0.555 0.323 0.169 0.471 0.334

c = 0.25

LASSO 0.282 0.592 0.467 0.302 0.442 0.590 0.306 0.337 0.638
net 0.269 0.606 0.451 0.285 0.493 0.569 0.292 0.403 0.629
svm 0.282 0.587 0.441 0.298 0.508 0.575 0.308 0.443 0.666
forest 0.345 - - 0.382 - - 0.406 - -
SL 0.263 0.716 0.471 0.274 0.581 0.590 0.281 0.536 0.689
MW-R2 0.247 0.599 0.363 0.253 0.456 0.425 0.262 0.410 0.512
MW-R4 0.245 0.612 0.364 0.253 0.479 0.431 0.263 0.409 0.489

1 net, elastic net; svm, support vector machine; forest, random forest; SL, SLasso; MW-R2,

MW-Ridge2; MW-R4, MW-Ridge4.
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Figure 3.8. Median number of false positives, binary outcome and correlated predictors, with
different values of c. From top to bottom: 1) p = 50, MW-R2 covered by MW-R4 before c = 1;
2) p = 100, MW-R2 fully covered by MW-R4; 3) p = 200, MW-R2 covered by MW-R4 between
c = 1 and c = 0.5.
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In the context of binary outcome with correlated predictors, MW-Ridge can

over performs LASSO and svm. First, MW-Ridge results in lower PER. Secondly,

MW-Ridge performs better in denoising (detect less FP) and feature detection (detect

more TP). In the aspect of denoising, svm might remove noises if there is a high value

of c. However, as noises become stronger, such denoising effect will be eliminated.

In comparison, MW-Ridge always achieves small FP numbers, in both high and low

signal-noise ratio settings. In the aspect of feature detection, svm discovers less TP

than LASSO, which is a side-effect of removing noises. Without suffering such side-

effect, MW-Ridge detects close numbers of TP as LASSO. In a sum, by applying

SLasso in the first step, MW-Ridge enjoys more positive findings. By using the two-

stage setting, MW-Ridge is able to remove unrelated noises and remain true features.

3.4 Application

We examined the GAW 16 RA data in order to compare the performances

of SLasso and MW-Ridge with other methods. The predictors are the genotypes on

chromosome 6. There are 34385 SNPs. The response variable y is binary, where y = 0

for controls and y = 1 for cases. The data consisted of 2062 samples. We randomly

chose 1031 samples as the training set and the other 1031 samples as the validation

set.

Considering MW-R2 and MW-R4 behaved very similarly in the simulation

study, we didn’t apply MW-R4 and the methods applied to this real dataset were

LASSO, elastic net, SLasso and MW-R2. A grid search was applied to search for
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Figure 3.9. Median number of true positives, binary outcome and correlated predictors, with
different values of c. From top to bottom: 1) p = 50, svm covered by MW-R2 after c = 1,
net covered by MW-R4 after c = 0.5; 2) p = 100, LASSO and MW-R2 both fully covered
by MW-R4; 3) p = 200, MW-R2 fully covered by MW-R4, LASSO covered by MW-R4 before
c = 0.5, net covered by MW-R4 before c = 1.
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Table 3.6. Results of GAW 16 RA data.

method # misclassified model size
LASSO 226 247
elastic net 211 1903
SLasso 226 399
MW-R2 222 177

tuning parameters. The grid for λ was (0.01λmax, 0.02λmax, . . . , λmax), while the grid

for α was (0.05, 0.1, . . . , 0.95). The results are shown in Table 3.6.

As discussed in Chapter 2, there existed considerable correlation effects in

the GAW 16 data. Therefore it was reasonable to take such correlation effects into

consideration by applying the moving-window penalty. Elastic net resulted in the

least number of misclassification with a model size of 1903 predictors. LASSO and

SLasso both resulted in 226 misclassified number. MW-R2 over performed LASSO

and SLasso by resulting in less number of misclassification and smaller model size.

MW-R2 resulted in 222 number of misclassification, with only 177 features.

There may still be some advantages of MW-Ridge even in such a problem

with a small sample size and relatively much larger feature size. In the aspect of

feature selection, LASSO might find predictors that are highly correlated with the

true factors but unable to distinguish the causative factors under the existence of

collinearity. Elastic net might achieve high classification accuracy by finding both

the true features and highly correlated factors. MW-R2 achieved its high accuracy

as well as using much fewer predictors than elastic net, with the potential of finding

more true factors than LASSO.



69

3.5 Appendix

Proof for Lemma 1:

Consider each terms in Vn. Since p is fixed and n→∞, by the central limit the-

orem (CLT) and the assumption that {εi} are independent and limn→∞( 1
n

∑n
i=1 xix

T
i ) =

C, for the first term,

n∑
i=1

[(εi − uTxi/
√
n)2 − ε2i ] =− 2uT

n∑
i=1

εixi/
√
n+ uT (

n∑
i=1

xix
T
i /n)u

d→− 2uTw + uTCu,

where w ∼ N(0, σ2C). For the second term, it is obvious that

λn

p∑
j=1

(|βj + uj/
√
n| − |βj|)→ λ0

p∑
j=1

[ujsgn(βj)I(βj 6= 0) + |uj|I(βj = 0)].

For the third term, one can obtain that

ηn
2(d− 1)

p−d+1∑
s=1

∑
k,j∈Ws,k<j

ζk,j[(|βk + uk/
√
n| − |βj + uj/

√
n|)2 − (|βk| − |βj|)2]

→ η0

d− 1

p−d+1∑
s=1

∑
k,j∈Ws,k<j

|Ckj|√
CkkCjj

{(|βk| − |βj|)

∗[(uksgn(βk)I(βk 6= 0) + |uk|I(βk = 0))

− (ujsgn(βj)I(βj 6= 0) + |uj|I(βj = 0))]}.

Thus, there is Vn(u)
d→ V (u).

Proof for Theorem 1:

Consider function V (u). Vector u is in Rp and the hyperplanes {u ∈ Rp|uj =

0} separate Rp into 2p subspaces, while V (u) is convex in each of these subspaces.
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However, the convexity is not guaranteed on the boundaries {u ∈ Rp|uj = 0, j =

1, . . . , p}. Suppose Ak, Al are two neighboring subspaces and Ak∩Al ⊆ {u ∈ Rp|uj =

0}. Since V (u) is a piece-wise quadratic function, thus V (u) is convex (2) in Ak ∪Al

if ∂V (u)
∂u
|Ak = ∂V (u)

∂u
|Al . Such result is obvious if βj 6= 0. If βj = 0, consider

∂V (u)

∂uj
|0− = −2wj + 2

p∑
i=1

Cjiui − λ0 +
η0

d− 1

j∑
s=j−d+1

∑
k∈Ws,k 6=j

|Ckj|√
CkkCjj

|βk|,

∂V (u)

∂uj
|0+ = −2wj + 2

p∑
i=1

Cjiui + λ0 −
η0

d− 1

j∑
s=j−d+1

∑
k∈Ws,k 6=j

|Ckj|√
CkkCjj

|βk|.

There needs ∂V (u)
∂uj
|0− = ∂V (u)

∂uj
|0+. One can obtain

η0 = η∗j , η
∗
j =

(d− 1)λ0∑j
s=j−d+1

∑
k∈Ws,k 6=j

|Ckj |√
CkkCjj

|βk|
.

The non-convex term in V (u) is controlled by η0 and a smaller value of η0 results

in a smaller effect of the non-convexity. Thus V (u) is convex in Ak ∪ Al if η0 ≤ η∗j .

Consider all j = 1, . . . , p, one can conclude that V (u) is convex over Rp if

η0 ≤ η∗, η∗ =
(d− 1)λ0∑j

s=j−d+1

∑
k∈Ws,k 6=j

|Ckj |√
CkkCjj

|βk|
,

for j ∈ J : {j = 1, . . . , p|βj = 0,
∑j

s=j−d+1

∑
k∈Ws,k 6=j

|Ckj |√
CkkCjj

|βk| > 0}. Consider

Lemma 1. Define Wn(u) = V (u) + 2uTw − 2uT
∑n

i=1 εixi/
√
n. Assume η0 ≤ η∗.

Wn(u) is convex and V (u) has a unique minimum, it follows (13) that argminWn(u)
d→

argminV (u). Consider φn(u) = Vn(u)−Wn(u). φn(u) converges to zero pointwisely.

Thus φN(u) uniformly converges to zero in any compact set. To any ε > 0, there exists

M > 0 and compact set D ∈ Rp, s.t. for n > M , Pr(argminWn(u) ∈ D) > 1 − ε.

Since φn(u) uniformly converges to zero in D, there is argminVn(u)−argminWn(u)→
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0 in D, which results in Pr(argminVn(u) − argminWn(u) → 0) > 1 − ε. Thus

argminVn(u) − argminWn(u)
p→ 0 and there is argminVn(u)

d→ argminV (u). Let

β̂
(n)

minimize f(β) where f is the objective function defined in (4), it follows that

√
n(β̂

(n) − β) minimizes Vn, thus β̂
(n) d→ argminV (u).

Proof for Corollary 1:

Condition max {λ, η} = o(
√
n) implies that λ0 = η0 = 0 and therefore

V (u) = −2uTw + uTCu.

Then it is obvious that C−1w minimizes V (u). The proof is complete since C−1w ∼

N(0, σ2C−1).
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CHAPTER 4
MULTIVARIATE RESPONSE DATA ANALYSIS

This chapter focuses on analyzing data with multiple response variables. In

classical statistics with a small number of predictors, data with multiple responses

can be accommodated by using multivariate analysis of variance (MANOVA) and

multivariate analysis of covariance (MANCOVA) (27). However, these methods can-

not solve high dimensional problems. It is possible to accommodate high dimensional

data by applying penalized regression and considering each response variable individ-

ually and then combining the feature selection results. However, such an approach

ignores the correlation among response variables. We are interested in learning mul-

tiple correlated responses jointly by analyzing data from all of the response variables

at the same time. When response variables are highly correlated, it is greatly advan-

tageous to borrow the information in the data from other related responses to learn

each response variable more effectively.

In this chapter, Section 4.1 discusses how to transform multi-response data into

uni-response data following the same distribution (21). In Section 4.2, SLasso and

MW-Ridge are compared with classical LASSO for simulated multivariate response

data.

4.1 Method

Assume a sample of n subjects, each represented by a p-dimensional feature

vector and a M -dimensional response vector. Denote Y = (y1, . . . , yM) ∈ Rn×M
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as the response variables and X as the n × p covariate matrix. For each of the M

responses, we assume a linear model:

ym = Xβm + εm,m = 1, . . . ,M, (1)

where βm = (βm1 , . . . , β
m
p )′ ∈ Rp is the regression coefficient corresponding to the

mth response variable. The residue vectors εm, m = 1, . . . ,M are correlated and

the covariance matrix is Σ. We center ym’s and X such that
∑n

i=1 y
m
i = 0 and∑n

i=1 Xij = 0, j = 1, . . . , p, and consider the model without intercepts. Let B =

(β1, . . . , βM) ∈ Rp×M denote the coefficients matrix of all M response variables. By

using LASSO, B̂LASSO is obtained by solving the following optimization problem:

B̂LASSO = argmin
B

1

2n
||Y −XB||2F + λ||B||1, (2)

where || · ||F denotes the matrix Frobenius norm, || · ||1 denotes the entry-wise L1

norm, and λ is the tuning parameter which controls the sparsity level. The LASSO

approach is actually considering each response variable individually, without offering

any mechanism for a joint coefficients estimation for the multiple responses.

We propose the penalization method under a joint modeling framework. First,

multi-response data is transformed to uni-response data (21). We use the symbols

Y u, Xu and Bu for the uni-response problem. Let yi be the length-M vector of

response variables for the ith subject, and Y u = (y′1, . . . , y
′
n)′. For the ith subject,

the covariates are formed as Xi = (xi1IM , . . . , xipIM). Then Xu = (X ′1, . . . , X
′
n)′.

The regression coefficient vector is Bu = (β′1, . . . , β
′
p) where βj = (β1

j , . . . , β
M
j )′. Now

consider a toy example to better illustrate the transformation process. Consider a
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dataset with M = 2 and assume only the first three predictors are related to the

responses. The coefficients are β1 = (1, 2, 3, 0, . . . , 0)′ and β2 = (4, 5, 6, 0, . . . , 0)′.

Then correspondently, the regression coefficient for the uni-response data is Bu =

(1, 4, 2, 5, 3, 6, 0, . . . , 0)′.

Now consider the distribution of the uni-response problem. Suppose each

subject is independent, then the correlation among response variables are driven

from the residuals. Let Eu = (ε′1, . . . , ε
′
n)′ where εi is the length-M vector of residuals

for the ith subject. Thus the covariance matrix of Eu is Σu ∈ RMn×Mn. In Σu, the

blocks in the diagonal are Σ’s, while all other entries are zero. Now we can propose

the uni-response problem as:

Y u = XuBu + Eu, Eu ∼ N(0,Σu). (3)

The least square loss function for the transformed data can be written as

(Y u −XuBu)′(Σu)−1(Y u −XuBu).

In order to take the correlation effect into consideration, we apply smoothed LASSO

(SLasso) by adding a moving-window penalty to the loss function. Then B̂SL is

obtained by solving the optimization problem:

B̂SL = argmin
Bu

(Y u −XuBu)′(Σu)−1(Y u −XuBu) + λ||Bu||1

+
η

2

Mp−1∑
s=1

∑
k,j∈Ws,k<j

ζk,j(|Bu
k | − |Bu

j |)2. (4)

Besides, we apply MW-Ridge with window size d = 2 to the uni-response data

and set B̂MW−R2 as the coefficient estimate.
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By applying the smoothing penalty on Bu, the following two pairs of co-

efficients: β1
j and β2

j , β
2
j and β1

j+1, are smoothed. The correlation between re-

sponse variables encourages (|β1
j |− |β2

j |)2 to be smoothed towards zero. Furthermore,

(|β2
j |−|β1

j+1|)2 are encouraged to be zero, enabling β1 and β2 to be smoothed together.

4.2 Simulation

In the simulation, we compare the performances of these three approaches:

LASSO, SLasso and MW-Ridge. In MW-Ridge, the window size is set as two. In

both of the training and test dataset, there are 400 subjects and the number of

predictors is set as 1000 or 4000. For each subject, we simulate two response vari-

ables. The two residual vectors are both under the standard normal distribution.

The correlation between the two residual vectors is set as ρ = 0.1, 0.5, 0.9, rep-

resenting weak, moderate or strong correlations. Thus the two response variables

are correlated through the residuals. For each response variable, there are fifteen

non-zero predictor variables, which can be grouped into three clusters. In each clus-

ter, the correlation between two predictors Xk and Xj is 0.2|k−j|. The correlation

among predictors not associated with responses is set in the same way. Response-

associated and noisy predictors are independent. For the first response variable,

the regression coefficients are all zero, except for (β1
21, . . . , β

1
26) = (1, 2, 2, 1, 2, 1),

(β1
41, . . . , β

1
44) = (1, 1, 1, 1), and (β1

61, . . . , β
1
65) = (1, 2, 2, 1, 1). For the second response

variable, the coefficients are all zero except for (β2
21, . . . , β

2
26) = (0.5, 0.5, 1, 1, 0.5, 0.5),

(β2
41, . . . , β

2
44) = (0.5, 0.5, 0.5, 0.5), and (β2

61, . . . , β
2
65) = (1, 1, 0.5, 0.5, 1). The two re-
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sponse variables depend on the same set of predictors. For the first response variable,

the signal-noise ratio is higher, while for the second response variable the signal-noise

ratio is lower. Grid search approaches are applied to choose tuning parameters. The

parameters are those which are able to minimize the predictive squared error on the

test dataset. There are 50 replicates when the number of predictors is 1000, and 20

replicates when the number is 4000.

Results of simulation studies are summarized in Table 4.1 and Table 4.2. Table

4.1 shows the results for the first response variable and Table 4.2 shows the results

for the second one. SPC stands for specificity, while FDR stands for false detective

rate. SPC and FDR are defined as follows:

SPC = TN/(TN + FP),

FDR = FP/(TP + FP).

Here TN, TP, and FP stand for true negative, true positive, and false positive, re-

spectively. Since the noises are not too strong thus all of the three methods are able

to detect all or almost all true positives. In the context of moderate correlations,

SLasso tends to select more variables than classical LASSO. In the context of high

correlation, SLasso is able to select fewer variables and remove some unrelated noises.

MW-R2 always results in the best performances by significantly reducing false detec-

tive rates. Especially for the second response variable (weaker signals and stronger

noises), the model sizes are very close to the number of true positives and the false

detective rates are close to zero.
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Table 4.1. Simulation results for the first response variable in mean(standard devia-

tion) with all matched non-zero βs.

method ρ True Positive Model Size SPC FDR
p=1000 LASSO 0.1 15(0.0) 74.30(18.32) 0.940(0.019) 0.784(0.062)

SLasso 0.1 15(0.0) 89.24(44.80) 0.925(0.045) 0.773(0.126)
MW-R2 0.1 15(0.0) 15.02(0.14) 1.000(1e-4) 0.001(0.009)
LASSO 0.5 15(0.0) 72.74(19.42) 0.941(0.020) 0.779(0.059)
SLasso 0.5 15(0.0) 130.42(19.32) 0.883(0.020) 0.881(0.026)
MW-R2 0.5 15(0.0) 15.62(0.92) 1.000(9e-4) 0.037(0.052)
LASSO 0.9 15(0.0) 70.54(16.84) 0.944(0.017) 0.774(0.060)
SLasso 0.9 15(0.0) 57.44(9.86) 0.957(0.010) 0.731(0.047)
MW-R2 0.9 14.98(0.14) 23.12(8.32) 0.992(0.008) 0.291(0.184)

p=4000 LASSO 0.1 15(0.0) 96.0(21.80) 0.980(0.005) 0.837(0.035)
SLasso 0.1 15(0.0) 95.6(46.91) 0.980(0.012) 0.818(0.060)
MW-R2 0.1 15(0.0) 15.1(0.31) 1.000(8e-5) 0.006(0.019)
LASSO 0.5 15(0.0) 107.3(40.81) 0.977(0.010) 0.844(0.051)
SLasso 0.5 15(0.0) 199.3(15.24) 0.954(0.004) 0.924(0.006)
MW-R2 0.5 15(0.0) 17.3(2.20) 1.000(5e-4) 0.120(0.105)
LASSO 0.9 15(0.0) 95.6(28.39) 0.980(0.007) 0.833(0.039)
SLasso 0.9 15(0.0) 94.6(12.49) 0.980(0.003) 0.839(0.021)
MW-R2 0.9 14.8(0.41) 28.95(15.39) 0.996(0.004) 0.372(0.258)
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Table 4.2. Simulation results for the second response variable in mean(standard

deviation) with all matched non-zero βs.

method ρ True Positive Model Size SPC FDR
p=1000 LASSO 0.1 15(0.0) 72.42(20.82) 0.942(0.02) 0.778(0.056)

SLasso 0.1 15(0.0) 84.42(44.72) 0.930(0.05) 0.752(0.140)
MW-R2 0.1 15(0.0) 15(0.0) 1(0.0) 0(0.0)
LASSO 0.5 15(0.0) 74.12(21.16) 0.940(0.021) 0.781(0.064)
SLasso 0.5 15(0.0) 125.14(19.01) 0.888(0.019) 0.876(0.030)
MW-R2 0.5 15(0.0) 15.08(0.27) 1.000(2e-4) 0.005(0.017)
LASSO 0.9 15(0.0) 72.92(19.60) 0.941(0.020) 0.780(0.060)
SLasso 0.9 14.72(0.614) 48.08(9.39) 0.966(0.009) 0.682(0.066)
MW-R2 0.9 14.92(0.342) 16.1(5.48) 0.999(0.006) 0.029(0.133)

p=4000 LASSO 0.1 15(0.0) 104.3(33.43) 0.978(0.008) 0.842(0.048)
SLasso 0.1 15(0.0) 91.85(45.80) 0.981(0.011) 0.809(0.065)
MW-R2 0.1 15(0.0) 15.05(0.22) 1.000(6e-5) 0.003(0.014)
LASSO 0.5 15(0.0) 101.1(26.60) 0.978(0.007) 0.841(0.044)
SLasso 0.5 15(0.0) 190.85(15.17) 0.956(0.004) 0.921(0.006)
MW-R2 0.5 14.95(0.224) 16.05(2.18) 0.999(0.001) 0.055(0.106)
LASSO 0.9 15(0.0) 98.95(21.16) 0.979(0.005) 0.843(0.030)
SLasso 0.9 14.6(0.598) 73.8(11.07) 0.985(0.003) 0.798(0.029)
MW-R2 0.9 14.6(0.503) 17.35(12.17) 0.999(0.003) 0.040(0.178)
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Table 4.3. Values of α’s for SLasso and MW-R2 in mean(standard deviation) with

all matched non-zero βs.

p=1000 p=4000
ρ = 0.1 ρ = 0.5 ρ = 0.9 ρ = 0.1 ρ = 0.5 ρ = 0.9

SLasso 0.644(0.298) 0.786(0.154) 0.85(0.079) 0.615(0.260) 0.81(0.137) 0.87(0.057)
MW-R2 0.284(0.172) 0.608(0.203) 0.22(0.167) 0.36(0.160) 0.7(0.14) 0.17(0.181)

Consider α = λ/(λ + η), the α’s values are illustrated in Table 4.3. A lower

value of α indicates a stronger effect of the moving-window penalty compared with

the L1 penalty. MW-R2 always results in a lower value of α than SLasso, which helps

to provide clusters of non-zero coefficients and significantly remove noisy predictors.

With the proposed approaches, it is assumed that the multiple responses have

the same set of important predictors. Such assumption is not always true in practice.

In order to get a more comprehensive understanding of the proposed methods, we

conducted a simulation in which the two sets of important predictors are partially

matched. We consider the simulation setting where 40% of the important predictors

are not matched. Let β1 be the same value, while for the second response vari-

able, the coefficients are all zero except for (β2
19, . . . , β

2
24) = (0.5, 0.5, 1, 1, 0.5, 0.5),

(β2
43, . . . , β

2
46) = (0.5, 0.5, 0.5, 0.5), and (β2

59, . . . , β
2
63) = (1, 1, 0.5, 0.5, 1). The simula-

tion results are shown in Table 4.4 and Table 4.5.

Even when the regression coefficients are not matched, MW-R2 still results

in the best performances among the three approaches. All of the three approaches

are able to detect all true positives. However, LASSO and SLasso also detect many
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Table 4.4. Simulation results for the first response variable in mean(standard devia-

tion). 40% of the regression coefficients are not matched.

method ρ True Positive Model Size SPC FDR
p=1000 LASSO 0.1 15(0.0) 69.3(17.17) 0.945(0.017) 0.770(0.056)

SLasso 0.1 15(0.0) 91.14(43.58) 0.923(0.044) 0.778(0.129)
MW-R2 0.1 15(0.0) 15.08(0.27) 1.000(2e-4) 0.005(0.017)
LASSO 0.5 15(0.0) 73.38(22.10) 0.941(0.022) 0.778(0.063)
SLasso 0.5 15(0.0) 119.7(17.82) 0.894(0.018) 0.871(0.028)
MW-R2 0.5 15(0.0) 16.06(1.42) 0.999(0.001) 0.060(0.073)
LASSO 0.9 15(0.0) 71.92(20.19) 0.942(0.021) 0.775(0.062)
SLasso 0.9 15(0.0) 43.08(7.99) 0.971(0.008) 0.639(0.073)
MW-R2 0.9 15(0.0) 23.58(3.60) 0.991(0.004) 0.352(0.078)

p=4000 LASSO 0.1 15(0.0) 81.0(23.57) 0.983(0.006) 0.800(0.057)
SLasso 0.1 15(0.0) 87.25(43.15) 0.982(0.011) 0.798(0.070)
MW-R2 0.1 15(0.0) 15.35(0.67) 1.000(2e-4) 0.021(0.040)
LASSO 0.5 15(0.0) 81.3(22.75) 0.983(0.006) 0.801(0.062)
SLasso 0.5 15(0.0) 170.75(40.87) 0.961(0.010) 0.903(0.043)
MW-R2 0.5 15(0.0) 16.5(1.64) 1.000(4e-4) 0.083(0.081)
LASSO 0.9 15(0.0) 85.65(20.68) 0.982(0.005) 0.814(0.488)
SLasso 0.9 15(0.0) 76.75(13.95) 0.984(0.003) 0.798(0.038)
MW-R2 0.9 15(0.0) 26.75(6.22) 0.997(0.002) 0.414(0.115)
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Table 4.5. Simulation results for the second response variable in mean(standard

deviation). 40% of the regression coefficients are not matched.

method ρ True Positive Model Size SPC FDR
p=1000 LASSO 0.1 15(0.0) 83.0(22.34) 0.931(0.023) 0.806(0.054)

SLasso 0.1 15(0.0) 90.46(44.12) 0.923(0.044) 0.772(0.138)
MW-R2 0.1 15(0.0) 15.18(0.44) 1.000(1e-4) 0.011(0.027)
LASSO 0.5 15(0.0) 78.52(21.58) 0.936(0.022) 0.795(0.054)
SLasso 0.5 15(0.0) 116.54(18.67) 0.897(0.019) 0.867(0.032)
MW-R2 0.5 15(0.0) 15.76(1.25) 0.999(4e-4) 0.043(0.066)
LASSO 0.9 15(0.0) 79.04(24.31) 0.935(0.025) 0.793(0.062)
SLasso 0.9 14.26(1.05) 38.86(9.81) 0.975(0.009) 0.614(0.080)
MW-R2 0.9 15(0.0) 21.46(0.54) 0.993(5e-4) 0.301(0.017)

p=4000 LASSO 0.1 15(0.0) 113.35(21.31) 0.975(0.005) 0.863(0.026)
SLasso 0.1 15(0.0) 86.6(35.94) 0.982(0.009) 0.807(0.055)
MW-R2 0.1 15(0.0) 15.25(0.44) 1.000(1e-4) 0.016(0.028)
LASSO 0.5 15(0.0) 113.3(26.96) 0.975(0.007) 0.860(0.036)
SLasso 0.5 15(0.0) 168.0(45.59) 0.962(0.011) 0.896(0.059)
MW-R2 0.5 14.95(0.22) 15.7(1.45) 1.000(3e-4) 0.042(0.073)
LASSO 0.9 15(0.0) 112.95(31.76) 0.975(0.008) 0.857(0.040)
SLasso 0.9 14.45(0.89) 62.15(11.40) 0.988(0.003) 0.761(0.038)
MW-R2 0.9 15(0.0) 21.5(0.51) 0.998(1e-4) 0.302(0.017)
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Table 4.6. Values of α’s for SLasso and MW-R2 in mean(standard deviation). 40%

of the regression coefficients are not matched.

p=1000 p=4000
ρ = 0.1 ρ = 0.5 ρ = 0.9 ρ = 0.1 ρ = 0.5 ρ = 0.9

SLasso 0.84(0.163) 0.886(0.053) 0.9(0.0) 0.9(0.0) 0.895(0.022) 0.9(0.0)
MW-R2 0.3(0.181) 0.712(0.151) 0.152(0.091) 0.28(0.188) 0.715(0.190) 0.17(0.122)

unrelated noises and these two methods have high FDR. MW-R2 is able to signif-

icantly reduce the noises. When there are slight or moderate correlations, MW-R2

is able to remove almost all unrelated noises and find out the exact set of non-zero

coefficients. When there exist high correlations, the FDR of MW-R2 is 30%, which

is still an acceptable value.

The α values are displayed in Table 4.6. MW-R2 always results in a lower

value of α which indicates a stronger effect of the smoothing penalty.
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CHAPTER 5
CONCLUSION AND FUTURE WORK

Penalized regression is a modern approach to handling the variable selection

problem when p � n. This thesis focuses on penalized regression with a moving-

window smoothing penalty.

In Chapter 2, we have proposed a penalized moving-window regression method

that incorporates adjacent LD information in genome-wide association studies. This

method is an extension to the SMCP method in that the smoothing penalty considers

more than 2 SNPs. By including more SNPs in a smoothing window, it is expected

that valuable LD information among neighboring SNPs can be better utilized. For

dense SNPs typically seen in nowadays association studies, LD information captures

by 2 SNPs may be rather limited. Indeed, our simulation has demonstrated that

including more than 2 SNPs in a moving-window does improve the PPV and TPR

of association studies. The proposed moving-window regression also has a clustering

effect in which SNPs in LD tend to be selected together. The simulation study also

confirms the intuition that including too many SNPs has a negative effect on the

performance of the proposed method as true signals tend to be smoothed out while

false signals tend to be picked up.

We also described two coordinate descent algorithms for the proposed method.

One for quadratic loss and the other for logistic loss. To enhance the computation

speed, explicit expressions for updating parameter estimates are given for each step

of the algorithm.
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We have used a constant window size d across the genome in order to achieve

computation efficiency. In theory, it is possible to make d adaptive to local features

of the genetic structure such as the density of SNPs and the strength of LD at the

cost of extra computation time.

We note that
∑

k,j∈Ws,k<j
(|βk| − |βj|)2 is proportional to the sample vari-

ance of the |β|s that are in window Ws. So the smoothing penalty S(Ss; η) ∝∑
k,j∈Ws,k<j

ζk,j(|βk|− |βj|)2 can be regarded as a measure of variation in |β|s that are

in Ws but with pair-wise weights {ζk,j}.

In Chapter 3, we proposed two methods for generalized linear regressions:

SLasso and MW-Ridge. In Chapter 2, there proposed a feature selection approach

by using the marginal loss function under the context of the genome-wide association

study. Here we applied the joint loss as opposed to the marginal loss, so the model can

serve for both variable selection and prediction. Such approach has been introduced

(20) before, but the predictive performances have never been studied. In this chapter,

we studied the predictive performances and found that compared with LASSO, SLasso

tends to select more true positives with a price as including more random noises. Two

coordinate descent algorithms are developed to implement the SLasso method. One

for quadratic loss and the other for logistic loss.

In order to eliminate the unrelated noises, we proposed the MW-Ridge ap-

proach. As a two-stage method, in the first stage, SLasso is applied in order to find

the candidate set of the non-zero coefficients. In the second stage, ridge regression is

applied for coefficient estimates. MW-Ridge is able to significantly reduce the ran-
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dom noises and at the same time, maintain the true positives in the model. In the

circumstance of highly correlated data, MW-Ridge is able to over perform relaxed

LASSO by achieving higher TPR and lower FDR.

In the simulation, with different window size as two and four, MW-Ridge

results in very similar performances. Consider the computational expense, it is rea-

sonable to set two as the window size.

Using MCP instead of the L1 penalty, SMCP is able to relax the biases from

LASSO. However, SMCP doesn’t relax the smoothing penalty and the coefficients are

shrunk towards zero (22). Compared with SMCP, the main advantage of MW-Ridge

is the relaxation of both the L1 penalty and the moving-window penalty. As shown

in Chapter 2, the moving-window penalty is able to improve the selection accuracy,

while at the same time, shrink the coefficient estimates towards zero. The relaxation

of the moving-window penalty can release such biases and result in good performances

in both selection and prediction.

In Chapter 4, the SLasso and MW-Ridge approaches are implemented on

multivariate response data. The response variables are correlated through residuals.

By using some algebra, the multivariate response data can be transformed to the

univariate response data. Then SLasso and MW-Ridge are applied on the univariate

response problem. In the simulation, we found classical LASSO can detect true

causative factors but including many random noises and result in high FDR. In the

circumstance of low or moderate correlations, MW-Ridge is able to detect the exact

set of true positives and remove almost all random noises. In the circumstance of
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high correlations, the FDR of MW-Ridge is around 30%, which is still an acceptable

value. MW-Ridge performs well no matter the non-zero regression coefficients are all

matched or 40% are unmatched. Compared with SLasso, the moving-window penalty

is encouraged to be stronger in MW-Ridge.

The moving-window penalty encourages the smoothing effects between consec-

utive predictors. In some circumstance, the feature matrix can be transformed into

a graph. Each feature can be considered as a vertex and if two features are highly

correlated, there is an edge connecting the two corresponding vertices. Regularized

regression can be applied to such graph-structured problem. If two vertices are con-

nected by an edge, then the moving-window penalty can be proposed to smooth the

corresponding regression coefficients.
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