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ABSTRACT

This dissertation consists of three essays in microeconomic theory with an

emphasis on consumer search and strategic experimentation. Among many issues, I

shed some lights on search frictions, commitment and information.

In Chapter 1, together with Michael Choi and Kyungmin Kim, I consider

an oligopoly model in which consumers engage in sequential search based on par-

tial product information and advertised prices. We derive a simple condition that

fully summarizes consumers’ shopping outcomes and use the condition to reformulate

the pricing game among the sellers as a familiar discrete-choice problem. Exploit-

ing the reformulation, we provide sufficient conditions that guarantee the existence

and uniqueness of pure-strategy market equilibrium and obtain several novel insights

about the effects of search frictions on market prices. Among others, we show that

a reduction in search costs increases market prices, but providing more pre-search

information raises market prices if and only if there are sufficiently many sellers.

In Chapter 2, I study the effects of limited price commitment on consumer

search and optimal pricing. I consider an environment in which consumers are un-

certain about a seller’s commitment to the advertised price. I characterize the set of

pure-strategy equilibria and find that a higher degree of commitment is beneficial to

the consumers. I evaluate the effects of regulation that limits the extent of a seller’s

deviation from the advertised price and demonstrate that stricter regulation may not

be welfare improving. I also consider the case where sellers have heterogeneous levels
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of commitment power and investigate how the difference in commitment power influ-

ences market outcomes. I find that a higher degree of commitment does not direct

consumers’ search order when all sellers have limited commitment. Conversely, full

commitment allows a seller to dictate consumers’ visit when his rivals have limited

commitment. Finally, I show that the impact of search costs on prices depends on

the level of commitment, the magnitude of the search cost and whether consumers

have ex-ante heterogenous valuations of the product.

In Chapter 3, together with Kyungmin Kim, I consider a two-player exit game

in which each player faces a one-armed bandit problem and the two players’ types

are negatively correlated. We provide a closed-form characterization of the unique

(perfect Bayesian) equilibrium of the game. We show that, in stark contrast to the

case of positive correlation, the players exit the game at an increasing rate over time

and one player exits for sure before a deterministic time.
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CHAPTER 1
CONSUMER SEARCH AND PRICE COMPETITION

1.1 Introduction

We consider an oligopoly model in which consumers sequentially search for

the best product based on partial product information and advertised prices. A key

distinguishing feature from traditional consumer search models is the observability

of prices before consumer search. Consumers still face a non-trivial search problem,

because they do not possess full information about their values for the products. In

this environment, prices affect each seller’s demand not only through their effects on

consumers’ final purchase decisions, but also through their effects on consumer search

behavior. We study how the presence of the latter channel affects sellers’ pricing

incentives and what its economic consequences are. In particular, we investigate the

effects of search frictions on market prices.

Consumer search models with observable prices have been drawing growing

attention in the literature. The Internet has significantly lowered the cost of collecting

price information. Now it is common to check prices online and visit stores only to

get hands-on information and/or finalize a purchase. In the meantime, the model

captures some salient features of online marketplaces and price comparison websites.

A consumer typically begins with a summary webpage displaying multiple items. She

clicks a certain set of items, collects more detailed information, and then makes a

final purchase decision. Our model captures such consumer behavior particularly
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well. The analysis of our model can produce meaningful insights about the role of

the Internet in traditional markets and the working of online marketplaces.

Similar models have been studied in three recent papers, Armstrong and Zhou

(2011), Shen (2015), and Haan, Moraga-González and Petrikaite (2015).1 All three

papers analyze a symmetric duopoly environment but consider different correlation

structures for consumers’ prior (known) and match (hidden) values. Both prior and

match values are perfectly negatively correlated between the products in Armstrong

and Zhou (2011), whereas both are independent in Haan, Moraga-González and

Petrikaite (2015). Shen (2015) examines an intermediate case where each consumer’s

prior values are perfectly negatively correlated, while her match values are indepen-

dent, between the two products. Our model adopts the same independence structure

as Haan, Moraga-González and Petrikaite (2015) but allows for general market struc-

ture and asymmetric sellers.

It is well-recognized that such consumer search models do not admit tractable

characterization. There are two main difficulties. First, consumer search behavior

is complicated and hard to summarize. Each consumer undergoes sequential search,

whose complexity grows fast as the number of sellers increases or new features are

introduced into the model. This is likely to be the reason why all previous studies have

restricted attention to the duopoly case. Second, the sellers’ best response functions

1An early precursor to these papers is Bakos (1997), who studies several versions of a
(circular) location model. One of his extensions considers the case where quality (value)
information is significantly costlier than price information. The limit version where price
information can be obtained at zero cost is equivalent to the case where prices are publicly
observable.
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do not behave well in general. There may not exist a pure-strategy equilibrium, and

the model rarely produces sharp comparative statics results.

We overcome the first difficulty by identifying a necessary and sufficient condi-

tion that summarizes consumers’ search outcomes.2 We utilize an elegant solution by

Weitzman (1979) for a class of sequential search problems and show that, although

Weitzman’s solution is necessary to fully describe optimal search behavior, the optimal

search outcome (i.e., a consumer’s eventual purchase decision) can be fully summa-

rized by a simpler condition that is familiar in discrete-choice models. The condition

pinpoints the extent to which search frictions distort consumers’ purchase decisions

(i.e., how a consumer’s purchase decision under sequential search differs from that

under perfect information) and allows us to reformulate the pricing game among the

sellers as a discrete-choice problem.

For the second difficulty, we obtain sufficient conditions under which the seller’s

best response functions are well-behaved and, therefore, there exists a unique pure-

strategy market equilibrium. We exploit the induced discrete-choice structure of our

model and characterize sufficient conditions on the primitives of our model under

which we can apply both general results in the literature on supermodular games and

specific results in discrete-choice models. Despite certain limitations,3 our charac-

2An effectively identical condition has been independently discovered by Armstrong
(2016). See also Armstrong and Vickers (2015), who consider a more general problem of
which demand systems have discrete-choice foundations and show that the demand system
under consumer search belongs to the class.

3In particular, our sufficient conditions do not encompass a benchmark case where con-
sumers are ex ante symmetric (i.e., do not possess any prior product information), for which
it is known that there does not exist a pure-strategy equilibrium (see Armstrong and Zhou,
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terization allows us to derive some sharp comparative statics results and, therefore,

learn more about the working of the model, as we elaborate below. In addition, our

analysis is likely to be informative for the environments that are not covered by our

sufficient conditions.

We pay special attention to the relationship between search frictions and mar-

ket prices. It was recognized early on that the Internet dramatically reduces market

frictions and, therefore, should deliver more efficient market outcomes, by transform-

ing traditional businesses as well as creating many new markets. This promise has

been fulfilled in various ways by now, but several phenomena that are at odds with it

still persist. In particular, it has been repeatedly reported that the Internet has nei-

ther significantly lowered markups nor reduced price dispersion (see, e.g., Ellison and

Ellison, 2005; Baye, Morgan and Scholten, 2006) These suggest that search frictions

are significant even in online markets and cast doubt on the conventional wisdom that

a reduction in search frictions is necessarily beneficial to consumers. The following

results provide some new insights for these important issues.

As a methodological contribution, we show that the effects of various changes

in search frictions can be summarized by their effects on dispersion of the induced

discrete-choice distributions. This is useful, because there is a systematic relation-

ship between preference diversity and equilibrium prices in discrete-choice models:

equilibrium prices increase as consumers’ preferences become more diverse.4 In other

2011).

4This is a classic idea in the literature on Bertrand competition under product differen-
tiation. We contribute to the literature by providing an appropriate measure of preference
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words, we derive several comparative statics results regarding search frictions, which

are hard to obtain directly, by studying their effects on the induced distributions and

utilizing a result that links between preference diversity and equilibrium prices in

discrete-choice models.

We show that an increase in the value of search raises market prices. Specifi-

cally, we establish that, provided that the sellers are symmetric, the equilibrium price

increases as search costs decrease or the distribution of match values becomes more

dispersive (which increases the expected return of search).5 Note that this is opposite

to the standard result in the literature. As the value of search decreases, a consumer

is less likely to leave for another seller and, therefore, more likely to purchase from

the current seller. The sellers then have an incentive to extract more surplus from

visiting consumers and, therefore, charge higher prices. This is the main mechanism

behind the opposite result in the literature. However, it crucially depends on the

assumption of unobservable prices (i.e., no price advertisement), which implies that

the sellers cannot influence consumer search behavior. In our model, the sellers com-

pete in prices to attract consumers. When the value of search falls, price competition

becomes more severe, which induces the sellers to lower their prices.

In contrast, improving pre-search information quality has an ambiguous effect

diversity (product differentiation). See Section 1.5.1 for a more comprehensive discussion
and our result.

5We note that, whereas the first result regarding search costs has also been established
by Armstrong and Zhou (2011) and Haan, Moraga-González and Petrikaite (2015), the
second result regarding the distribution of match values is, to our knowledge, new to the
literature.
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on market prices. We show that providing more precise information for consumers

before search increases market prices if and only if the number of sellers is above

a certain threshold. There are two opposing effects. On the one hand, it reduces

consumers’ incentives to explore more products, which, as above, intensifies price

competition among the sellers. On the other hand, consumers’ preferences before

search (prior values) become more dispersed, which relaxes price competition. We

prove that the latter effect dominates the former, and thus providing more product

information before search increases market prices if and only if there are sufficiently

many sellers.

These results allow us to reinterpret various empirical findings in the literature,

which, conversely, justifies the empirical relevance of our model. For instance, Lynch

and Ariely (2000) run a field experiment with online wine sales and find that providing

more product information lowers consumers’ price sensitivity. Bailey (1998) and

Ellison and Ellison (2014) report that online prices are often higher than off-line prices.

This naturally arises in our model, given that search costs are significantly lower online

than off-line. Ellison and Ellison (2009) report that markups are relatively higher for

high-quality products than for low-quality products. Within our model, this can be

understood as consumer preferences being more diverse, or the relative cost of search

being lower, for high-quality products.

We also provide two novel insights for the case where the sellers are asym-

metric. First, we study which sellers have a stronger incentive to post higher prices.

We show that Weitzman index, which is the most natural candidate in the current
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sequential search context, does not provide enough guidance in general. We provide

a sufficient condition under which the sellers’ prices can be clearly ranked and also

show that Weitzman index can be still useful to predict price rankings in some specific

contexts. Second, we analyze the effects of search costs on asymmetric sellers. We

show that when one seller has a higher marginal cost than the other, an identical in-

crease in search costs raises demand for the low-cost seller but lowers demand for the

high-cost seller. Intuitively, this is because consumers become more price-sensitive

as search costs increase, and the low-cost seller posts a lower price. One noteworthy

implication of this result is that the high-cost seller has a stronger incentive to lower

his price than the low-cost seller as search costs increase. Since the former posts a

higher price than the latter, this means that the price difference between the two

sellers falls as search costs rise. In other words, an increase in search frictions may

reduce price dispersion. This result contrasts well with a classical insight in search

theory that price dispersion is a symptom of search frictions.

This paper joins a growing literature on ordered search, which investigates

the effects of (both exogenous and endogenous) search order on market outcomes and

various ways sellers influence consumer search behavior (order). See Armstrong (2016)

for a comprehensive and organized introduction of the literature and several useful

discussions. In light of this literature, we consider the case where each consumer’s

search order is fully endogenized and a seller influences search behavior through the

choice of her price, which is arguably the most basic instrument.

One interpretation of our model is to introduce consumer search into a canon-
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ical model of Bertrand competition under product differentiation. Indeed, our model

reduces to that of Perloff and Salop (1985) if consumers incur no search costs. We

make it transparent how consumer search models with price advertisements are re-

lated to discrete-choice models (and what the former can learn from the latter). In

addition, we show that dispersive order is an appropriate measure for preference di-

versity and explain how the result can be used to obtain several comparative statics

results regarding search frictions.

As explained above, our model can be interpreted as a model of online market-

places. In this regard, our paper is related to two strands of literature on electronic

commerce. First, there are several theoretical studies that develop an equilibrium on-

line shopping model. For example, Baye and Morgan (2001) analyze a model in which

both the sellers and consumers decide whether to participate in an online marketplace,

while Chen and He (2011) and Athey and Ellison (2011) present an equilibrium model

that combines position auctions with consumer search. Our paper is unique in that

the focus is on consumer search within an online marketplace. Second, a growing

number of papers draw on search theory to study online markets. For example, Kim,

Albuquerque and Bronnenberg (2010) develop a non-stationary search model to study

the online market for camcoders. De los Santos, Hortaçsu and Wildenbeest (2012)

test some classical search theories with online book sale data and argue that fixed

sample size (i.e., simultaneous) search theory explains the data better than sequential

search theory. Dinerstein, Einav, Levin and Sundaresan (2014) estimate online search

costs and retail margins with a consumer search model based on the “consideration
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set” approach, and apply them to evaluate the effect of search redesign by eBay in

2011. Although empirical analysis is beyond the scope of this paper, we think that

our equilibrium model is tractable and structured enough to be taken to data.

The rest of the paper is organized as follows. We introduce the environment

in Section 1.2. We analyze consumers’ optimal shopping problems in Section 1.3 and

characterize the market equilibrium in Section 1.4. We study the effects of search

frictions on market prices in Section 1.5 and provide two results, one about price

rankings and the other about price dispersion, in Section 3.5. All omitted proofs are

in the appendix.

1.2 Environment

The market consists of n sellers, each indexed by i = {1, ..., n}, and a unit mass

of consumers. The sellers face no capacity constraint, while each consumer demands

one unit among all products. The sellers simultaneously announce prices. Consumers

observe those prices and search optimally.

Each seller i supplies a product at no fixed cost and a constant marginal cost

ci. We denote by pi ∈ R+ seller i’s price. In addition, we let p denote the price

vector for all sellers (i.e., p = (p1, ..., pn)) and p−i denote the price vector except for

seller i’s price (i.e., p−i = (p1, ..., pi−1, pi+1, ..., pn)). Denote by Di(p) the measure of

consumers who eventually purchase product i. Seller i’s profit is then defined to be

πi(p) ≡ Di(p)(pi − ci). Each seller maximizes his profit πi(p).

A (representative) consumer’s random utility for seller i’s product is given
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by Ṽi = Vi + Zi. The first component Vi represents the consumer’s prior value for

product i, while the second component Zi is the residual part that is revealed to the

consumer only when she visits seller i and inspects his product. As for prices, we let

v = (v1, ..., vn) and z = (z1, ..., zn) denote the realization of a consumer’s value profile

for each component.

The products are horizontally differentiated. We assume that Vi and Zi are

drawn from the distribution functions Fi and Gi, respectively, identically and inde-

pendently across consumers and products (and independently each other), where both

Fi and Gi have full support over the real line and continuously differentiable density

fi and gi, respectively. Independence across products allows us to utilize the optimal

search solution by Weitzman (1979), while independence between Vi and Zi leads to

a clean and easy-to-interpret characterization.6

Search is costly, but recall is costless. Specifically, each consumer must visit

seller i and discover her match value zi in order to be able to purchase product i. She

needs to incur search cost si(> 0) on her first visit. She can purchase the product

immediately or recall it at any point during her search. Each consumer can leave the

market at any point and take an outside option u0.

A consumer’s ex post utility depends on her value for the purchased product

ṽi, its price pi, and her search history. Let N be the set of sellers a consumer visits.

6We note that independence between Vi and Zi is restrictive not by itself, but because
of a joint additive-utility specification (Ṽi = Vi + Zi). It is always possible to reinterpret
(redefine) Zi, so that it is independent of Vi (see, e.g., Eső and Szentes, 2007). In this
case, a restriction is only due to the utility specification. On the other hand, Zi can always
be defined as Zi ≡ Ṽi − E[Ṽi|Vi] (see, e.g., Krähmer and Strausz, 2011). In this case,
independence between Vi and Zi imposes a restriction.
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If she purchases product i (in N), then her ex post utility is equal to

U(vi, zi, pi, N) = vi + zi − pi −
∑
j∈N

sj.

If she does not purchase and takes an outside option, then her ex post utility is equal

to

U(N) = u0 −
∑
j∈N

sj.

Each consumer is risk neutral and maximizes her expected utility.

The market proceeds as follows. First, the sellers simultaneously announce

prices p. Then, each consumer shops (searches) based on available information (p,v).

We study subgame perfect Nash equilibrium of this market game.7 We first character-

ize consumers’ optimal shopping behavior (given any price vector) and then analyze

the pricing game among the sellers.

1.3 Consumer Behavior

In this section, we analyze consumers’ optimal sequential search problems.

1.3.1 Optimal Shopping

Given prices p and prior values v, each consumer faces a sequential search

problem. She decides in which order to visit the sellers and, after each visit, whether

to stop, in which case she chooses which product to purchase, if any, among those she

has inspected so far, or visit another seller. Although this is, in general, a complex

7For notational simplicity, we do not formally define consumers’ search strategies. See
Weitzman (1979) for a formal (recursive) description of search strategy.
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combinatorial problem, an elegant solution is known by Weitzman (1979). Indepen-

dence between vi and zi leads to an even sharper characterization, as reported in the

following proposition.8

Proposition 1.1. Given p = (p1, ..., pn) and v = (v1, ..., vn), the consumer’s optimal

search strategy is as follows: for each i, let z∗i be the value such that

si =

∫ ∞
z∗i

(1−Gi(zi))dzi. (1.1)

(i) Search order: the consumer visits the sellers in the decreasing order of vi+z
∗
i −pi

(i.e., she visits seller i before seller j if vi + z∗i − pi > vj + z∗j − pj).

(ii) Stopping: let N be the set of sellers the consumer has visited so far. She stops,

and takes the best available option by the point, if and only if

max{u0,max
i∈N

vi + zi − pi} > max
j /∈N

vj + z∗j − pj.

Weitzman’s solution is based on a single index for each option (seller). Let ri

be the reservation value such that a consumer is indifferent between obtaining utility

ri immediately (which saves additional search costs si) and visiting seller i (which

gives her an option to choose between ri and vi + zi − pi):

ri = −si +

∫
max{ri, vi + zi − pi}dGi(zi).

Weitzman (1979) shows that the optimal search strategy is to visit the sellers in the

decreasing order of ri and stop as soon as the best realized value by the point exceeds

8The measure of consumers who are indifferent over multiple choices is negligible, because
Fi and Gi are assumed to be continuously increasing for all i. For notational convenience,
we ignore those consumers throughout the paper.
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all remaining ri’s. In our model, due to the additive-utility specification, Weitzman’s

index simplifies to ri = vi + z∗i − pi, where z∗i is given by equation (1.1).

1.3.2 Shopping Outcomes

Despite its elegance, Weitzman’s solution cannot be directly used to sum-

marize consumers’ shopping outcomes and derive the demand functions. Consider

the simplest case where there are two sellers and there is no outside option (i.e.,

u0 = −∞). Even in this case, there are three different paths through which a con-

sumer eventually purchases product i. First, a consumer may visit seller i first and

purchase immediately. Second, a consumer may visit seller i first, try seller j as well,

but recall product i. Third, a consumer may visit seller j first but purchase product

i. Total demand for seller i is the sum of all these demands. The number of paths

grows exponentially fast as the number of sellers n increases.

One of our main breakthroughs is to identify a necessary and sufficient condi-

tion for consumers’ eventual purchase decisions and, therefore, provide a simple way

to summarize shopping outcomes. In order to motivate the result, consider the same

duopoly case as above. The three paths through which a consumer purchases product

i correspond to each of the following conditions:

(i) vi + z∗i − pi > vj + z∗j − pj (visit i first) and vi + zi− pi > vj + z∗j − pj (stop at i).

(ii) vi + z∗i − pi > vj + z∗j − pj (visit i first), vi + zi − pi < vj + z∗j − pj (not stop at

i), and vi + zi − pi > vj + zj − pj (prefer i to j).

(iii) vi + z∗i − pi < vj + z∗j − pj (visit j first), vi + z∗i − pi > vj + zj − pj (not stop at
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j), and vi + zi − pi > vj + zj − pj (prefer i to j).

Notice that the first condition can be simplified to vi+min{z∗i , zi}−pi > vj +z∗j −pj,

while the second and the third conditions together can be reduced to vi+min{z∗i , zi}−

pi ≤ vj + z∗j − pj and vi + min{z∗i , zi} − pi > vj + zj − pj. Intuitively, a consumer

purchases product i if she either does not visit seller j or finds a sufficiently low

realized value of zj. Combining these inequalities, we arrive at the following single

inequality:

vi + min{zi, z∗i } − pi > vj + min{zj, z∗j } − pj.

This simple condition can be extended for the general case by considering each pair of

sellers and accommodating the outside option, as formally reported in the following

lemma.

Lemma 1.1 (Eventual Purchase). Let wi ≡ vi + min{zi, z∗i } for each i. Given p, v,

and z, the consumer purchases product i if and only if wi−pi > u0 and wi−pi > wj−pj

for all j 6= i.

Lemma 1.1 suggests that consumer shopping behavior can be summarized as

in canonical discrete-choice models.9 The only difference is that consumers’ purchase

decisions are made based, neither on true values ṽi nor on prior values vi, but on

newly identified values wi, which we call effective values from now on. Clearly, wi is

9Lemma 1.1 holds even if prices are not observable to consumers before search, as long as
consumers have correct beliefs about prices (i.e., in equilibrium). However, the result does
not hold if a seller deviates, because consumers’ search decisions are based on their expec-
tations about prices, while their final purchase decisions depend on actual prices charged.
That property makes Lemma 1.1 less useful in such a setting.
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related to underlying values ṽi and vi. In particular, wi converges to ṽi as si tends to

0 (in which case z∗i approaches∞) and is determined only by vi as si tends to infinity

(in which case z∗i approaches −∞). Intuitively, search frictions prevent consumers

from making fully informed decisions, and the problem becomes more severe, and

consumers rely more on their prior information v, as search frictions increase. The

specific truncation structure is driven by a monotonicity property of Weitzman’s

solution. If a consumer visits seller i, Weitzman’s indices for all remaining sellers are

lower than vi + z∗i − pi. Therefore, the consumer necessarily stops if zi exceeds z∗i ,

which implies that the probability that a consumer purchases product i stays constant

above z∗i .

In order to utilize Lemma 1.1, we let Hi denote the distribution function for

the new random variable Wi = Vi + min{Zi, z∗i }, that is,

Hi(wi) ≡
∫ z∗i

−∞
Fi(wi − zi)dGi(zi) +

∫ ∞
z∗i

Fi(wi − z∗i )dGi(zi). (1.2)

The distribution function Hi crucially depends on si. If si tends to 0, then z∗i becomes

arbitrarily large (see equation (1.1)) and, therefore, Hi becomes the convolution of Fi

and Gi. If si explodes, then z∗i approaches negative infinity, in which case Hi depends

only on Fi.

1.4 Market Equilibrium

In this section, we consider the pricing game among the sellers and provide

sufficient conditions under which there exists a unique pure-strategy equilibrium.

Lemma 1.1 implies that the demand function for each seller can be derived
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as in standard discrete-choice models. A consumer purchases product i if and only

if his effective utility for product i, wi − pi, exceeds the outside option u0 and the

corresponding utility for each other product, wj − pj. Therefore, the measure of

consumers who purchase product i is given by

Di(p) =

∫ ∞
u0+pi

(∏
j 6=i

Hj(wi − pi + pj)

)
dHi(wi).

This demand system exhibits standard properties for imperfect substitutes: demand

for seller i decreases in own price pi and increases in competitors’ prices p−i. However,

the demand system does not behave well in general: Di(pi,p−i) may not be quasi-

concave in pi, and a seller’s best response does not necessarily increase in p−i.

The literature has found that log-concavity is an appropriate restriction for

the distribution functions. It not only guarantees the existence and uniqueness of

equilibrium, but also generates intuitive comparative statics results (such as declining

market prices as the number of sellers increases). The following result by Quint (2014),

translated into our environment, is well applicable to our model.10

Theorem 1.1 (Quint, 2014). Suppose that for each i, both Hi(wi) and 1−Hi(wi) are

log-concave. Then, Di(p) is log-concave in pi, and logDi(p) has strictly increasing

differences in pi and pj. In addition, there exists a unique pure-strategy equilibrium

in the pricing game among the sellers.

Distributional log-concavity ensures log-concavity and log-supermodularity in

10Quint (2014) provides further relevant discussions, including common distribution func-
tions that satisfy the log-concavity condition and weaker conditions sufficient for each result.
For more thorough technical treatments of log-concavity, see, e.g., Bagnoli and Bergstrom
(2005).
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demand. These two properties imply that the pricing game is a supermodular game

and, therefore, has a pure-strategy equilibrium, as an application of more general

existence theorems (see Vives, 2005). Uniqueness is not implied by general theory,

but driven by a specific structure of the model, namely that Di(p) is invariant when

all prices, together with −u0, increase by the same amount, which is not a general

property in supermodular games.

As shown above, Hi in our model is not exogenously given but depends on

Fi, Gi, and si in a specific way. Therefore, log-concavity cannot be directly imposed

on Hi and 1 −Hi. A natural assumption is that all primitive distribution functions

Fi, 1 − Fi, Gi, and 1 − Gi are log-concave. However, the assumption alone does

not guarantee the log-concavity of H. In fact, even a stronger assumption that the

density functions fi and gi are log-concave is not sufficient.11

In order to understand the origin of the problem, consider the case where

Fi is degenerate at vi. In this case, Hi(w) jumps up at vi + z∗i (see the solid line,

corresponding to α = 0, in the left panel of Figure 1.1) and, therefore, cannot be

globally log-concave. This is driven by the upper truncation structure of the random

variable Wi, which is, in turn, due to the sequential search nature of consumers’

problems, as explained in the previous section. When Fi is continuously distributed

over the real line, the atom at vi + z∗i is continuously scattered, which ensures the

continuity of Hi. However, if Fi is sufficiently concentrated around vi, then the slope

11If the density function f is log-concave, then both distribution function F and survival
function 1− F are log-concave. See Bagnoli and Bergstrom (2005) for more details.
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Figure 1.1: Log-Concavity of the Distribution Function

vi + z∗i wi

1

Hi(wi)

α = 0

α = 0.1

α = 0.3

α = 0.5

vi + z∗i wi

1

1−Hi(wi)

α = 0

α = 0.1

α = 0.3

α = 0.5

Hi(wi) and 1 − Hi(wi) for different dispersion levels of Fi. For both
panels, Fi(vi) = 1/(1 + e−vi/α) (logistic distribution), and Gi = N (0, 1)
(standard normal distribution).

of Hi at vi+z∗i can be arbitrarily large (see the dashed line, corresponding to α = 0.1,

in the left panel of Figure 1.1). Therefore, Hi may still fail to be log-concave.

We provide sufficient conditions under which this problem is not binding and

Theorem 1.1 applies. We begin by imposing sufficiently strong log-concavity on the

primitive distributions.

Assumption 1.1. For each i, both density functions fi and gi are log-concave.

Although this assumption does not guarantee the log-concavity ofHi, it suffices

for 1−Hi, as formally stated in the following lemma.

Lemma 1.2. Under Assumption 1.1, 1−Hi is log-concave.
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Proof. Integrating by parts the first term in equation (1.2) leads to

1−Hi(wi) =

∫ z∗i

−∞
f(wi − zi)(1−Gi(zi))dzi (1.3)

The log-concavity of g ensures the same property for 1−Gi. Since both f and 1−G are

log-concave, the integrand is log-concave in (wi, zi). The desired result then follows

from Prekopa’s theorem, which states that if the integrand is log-concave, then the

integral is also log-concave.12

To understand the difference between Hi and 1−Hi, consider, again, the case

where Fi is degenerate. Both Hi and 1 −Hi are discontinuous at vi + z∗i . However,

1 − Hi jumps down and, therefore, preserves log-concavity over the interval below

vi + z∗i (see the right panel of Figure 1.1). In addition, 1 −Hi(wi) remains equal to

0 above vi + z∗i . These two properties ensure that 1 − Hi is log-concave when Fi is

degenerate. When Fi is not degenerate, 1−Hi(wi) is continuous and stays positive.

However, these properties do not disrupt log-concavity, and thus 1 − Hi is always

log-concave under Assumption 1.1.

Our first result provides a sufficient condition under which Hi is globally log-

concave. It states that if Fi is sufficiently dispersed, then Hi is log-concave under

Assumption 1.1.13

Proposition 1.2. Fix random variables Vi and Zi with density fi and gi, respectively.

12See, e.g., Caplin and Nalebuff (1991) and Choi and Smith (2016) for a formal statement
of the theorem and its uses in related contexts.

13Haan, Moraga-González and Petrikaite (2015) conjecture this result and provide a set
of confirming numerical examples. Our result formalizes their conjecture.
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Define V σ
i ≡ σVi and W σ

i ≡ V σ
i + min{Zi, z∗i }. Let Hσ

i denote the distribution

function for W σ
i . Then, there exists σ <∞ such that the distribution function Hσ

i is

log-concave whenever σ > σ.

To understand this result, recall that the failure of log-concavity of Hi is due

to the probability mass at z∗i . Now notice that, since Wi = Vi + min{Zi, z∗i } (also

see equation (1.2)), dispersion on Fi scatters this atom through the real line, which

makes Hi increase more slowly and, therefore, mitigates the main problem. When Fi

is sufficiently dispersed, the effect of the mass point is small (i.e., Hi does not increase

too fast at any point), and thus Hi can be log-concave (see the left panel of Figure

1.1).

Our second condition is based on the idea that global log-concavity is not

necessary for Theorem 1.1. Specifically, it is clear that in equilibrium pi exceeds

ci. Therefore, it suffices that Hi is log-concave only on the parameter region where

wi ≥ u0 + ci.

Proposition 1.3. Suppose Assumption 1.1 is satisfied. (i) Given u0 > −∞, there

exists si <∞ such that if s > si, then Hi(wi) is log-concave above u0 + ci. (ii) Given

si > 0, there exists u0 such that if u0 > u0, then Hi(wi) is log-concave above u0 + ci.

Intuitively, if si is sufficiently large, then the value of visiting seller i is small.

In this case, z∗i lies in the irrelevant (sufficiently negative) region, while Assumption

1.1 ensures that Hi is log-concave in the relevant region. Similarly, if u0 is sufficiently

large, then consumers’ effective values are relevant only when they are sufficiently
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large and, in particular, far exceed z∗i . Again, Assumption 1.1 guarantees that Hi

behaves well in the relevant region.

In the remaining sections, we restrict attention to the parameter space where

Hi and 1−Hi are log-concave at least over the relevant region and, therefore, there

exists a unique pure-strategy equilibrium. Although restrictive, this allows us to go

one step further and investigate sellers’ pricing incentives in our model. In addition,

we maintain Assumption 1.1. As in many existing studies, log-concavity allows us to

derive clean and intuitive comparative statics results.

1.5 Symmetric Sellers: Search Frictions

In this section, we study how search frictions influence the sellers’ pricing

incentives.14 For clear insights as well as tractability, we restrict attention to the case

where the sellers are symmetric. Precisely, we assume that buyers’ values for each

product are drawn from identical distribution functions F and G, the sellers have

an identical marginal cost c, and consumers face identical search costs for all sellers

(i.e., for all i, Fi = F , Gi = G, ci = c, and si = s). We let p∗ and π(p∗) denote the

symmetric equilibrium price and profit, respectively.

1.5.1 Preference Diversity

We begin by establishing a result that is useful through this section. The result

is, in fact, of interest by itself, in regard to the literature on Bertrand competition

14We omit some standard comparative statics results. For example, it is easy to show
that more intense competition, such as introducing an additional seller or increasing the
outside option, lowers market prices. See Quint (2014) for further results and illustrations.
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under product differentiation. It is well-known that horizontal product differentia-

tion provides a way to overcome the Bertrand paradox: each seller has some loyal

consumers (who value the seller’s product more than other products) and, therefore,

can set a positive markup even under Bertrand competition. It is natural that the

more differentiated consumers’ preferences are, the higher prices the sellers charge. A

challenge has been to identify an appropriate measure of preference diversity (product

differentiation). In their seminal work, Perloff and Salop (1985) show that constant

scaling of consumers’ preferences necessarily increases the equilibrium price, but find

that the result does not extend for mean-preserving spreads. Our result provides an

answer to the long-standing open question.15

We utilize the following measure of stochastic orders, so called dispersive order.

Definition 1.1. The distribution function H2 is more dispersed than the distribution

function H1 if H−1
2 (b)−H−1

2 (a) ≥ H−1
1 (b)−H−1

1 (a) for any 0 < a ≤ b < 1.

Intuitively, a more dispersed distribution function increases more slowly (its

inverse increases faster), as it density is more spread out. This order is location-free

and, therefore, neither is implied by nor implies first-order or second-order stochas-

tic dominance. Mean-preserving dispersive order, however, implies mean-preserving

spread: if H2 is more dispersed than H1 with the same mean, then H2 is a mean-

15Zhou (2017) studies the effects of bundling in the Perloff-Salop framework and inde-
pendently discovers an almost identical result. Precisely, his Lemma 2 is equivalent to our
Proposition 1.4, provided that there is no outside option (i.e., u0 = −∞). Our result is
slightly more general than his, in that we account for the outside option. In addition,
whereas his lemma is an isolated result in his paper, we fully utilize it for subsequent
comparative statics.
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preserving spread of H1.16

The following result shows that there is a good sense in which dispersive order

is an appropriate measure of product differentiation.

Proposition 1.4. The equilibrium price p∗ increases as H becomes more dispersive

and H(u0 + c) weakly decreases.

Proof of Proposition 1.4. The equilibrium condition for p∗, which stems from an in-

dividual seller’s first-order condition and the symmetry requirement, can be rewritten

as

1

p∗ − c =
−∂Di(p

∗)/∂pi
Di(p∗)

=

∫
h(max{u0 + p∗, w})dH(w)n−1

1
n
(1−H(u0 + p∗)n)

.

Letting φ ≡ H(u0 + p∗) and changing the variable with a = H(w), we get

1

p∗ − c =
h(H−1(φ))φn−1 +

∫ 1

φ
h(H−1(a))dan−1

1
n
(1− φn)

. (1.4)

If H becomes more dispersive, dH−1(a)/da = 1/h(H−1(a)) increases (i.e., h(H−1(a)

decreases) for each a. If, in addition, H(u0 + c) decreases, then φ = H(u0 + p∗) also

decreases for any p∗ ≥ c, because a distribution function crosses a less dispersive

one only once from above. Notice that both of these lower the right-hand side. The

desired result now follows from the fact that the left-hand side is strictly decreasing

in p∗, while the right-hand side is increasing in p∗ (see the appendix for a proof of

this last claim).

16See Shaked and Shanthikumar (2007) for further details. Dispersive order has been
adopted and proved to be useful in other economic contexts. See, for example, Ganuza and
Penalva (2010).
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The relevance of dispersive order is particularly transparent when there is

no outside option (i.e., u0 = −∞), which is the case considered by Perloff and Salop

(1985) and many subsequent studies. In that case, the second condition about H(u0+

c) is vacuous, and thus dispersive order alone dictates how market prices vary: market

prices rise (fall) if H becomes more (less) dispersive.

1.5.2 Search Costs

The following result reports the effects of varying search costs s on the equi-

librium price p∗ and each seller’s equilibrium profit π(p∗).

Proposition 1.5. Both equilibrium price p∗ and equilibrium profit π(p∗) decrease as

s increases.

Proof. We utilize Proposition 1.4 to prove the price result. Specifically, we show that

the random variable W = V +min{Z, z∗} falls in the first-order stochastic dominance

(which implies that H(u0 + c) increases) and becomes less dispersive as s increases.

Notice that z∗ decreases in s (see equation (1.1)). This immediately implies that

W decreases in the sense of first-order stochastic dominance. For the dispersion

result, let G̃(z) denote the distribution function of the random variable min{Z, z∗}.

By its definition, G̃(z) = G(z) if z < z∗ and G̃(z) = 1 if z ≥ z∗, which implies

that G̃−1(a) = min{G−1(z), z∗} for a ∈ (0, 1). Clearly, the quantile function G̃−1(a)

becomes weakly flatter at any a ∈ (0, 1) as z∗ decreases. This implies that min{Z, z∗}

becomes less dispersive as s increases. The desired result follows once this result is
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combined with the fact that the density function f is log-concave.17

An increase in s affects each seller’s profit πi(p) = Di(pi, p−i)(pi − c) through

the following three channels:

dπi(p)

ds
=
∂pi
∂s

∂πi(p)

∂pi
+
∂p−i
∂s

∂πi(p)

∂p−i
+
∂z∗

∂s

∂πi(p)

∂z∗
.

Each term represents the marginal effect of own price, that of the other sellers’ prices,

and that of consumer search behavior, respectively. In equilibrium, the first term is

equal to 0 by the envelope theorem (∂πi(p)/∂pi = 0). The second term is negative

because ∂p∗/∂s ≤ 0, as shown above, and ∂πi(p)/∂p−i ≥ 0, as the products are

imperfect substitutes one another. The last term is also negative because ∂z∗/∂s < 0

and ∂πi(p)/∂z∗ ≥ 0: the latter inequality stems from the fact that an increase in z∗

increases the distribution function H in the sense of first-order stochastic dominance,

induces less consumers to take the outside option and, therefore, increases each seller’s

demand Di(p
∗). Overall, it is clear that dπ(p∗)/ds ≤ 0.

Both price and profit results are in stark contrast to those of most existing con-

sumer search models where consumers discover prices through search. When prices

are not observable before search, an increase in search costs decreases the value of

additional search and, therefore, increases the probability that a consumer purchases

from the current seller.18 This induces the sellers to charge higher prices as search

17See Theorem 3.B.8 in Shaked and Shanthikumar (2007). If a random variable X is the
convolution of two random variables X1 and X2 (i.e., X = X1 +X2) and X1 has log-concave
density, then X becomes more dispersive as X2 becomes more dispersive.

18To be precise, the result in consumer search models with unobservable prices crucially
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costs increase. When prices are observable before search, they directly influence con-

sumer search (see Proposition 1.3): the lower price a seller offers, the more consumers

visit him first. As search costs increase, consumers search less and are more likely to

purchase from their first visit. This intensifies price competition among the sellers

and leads to lower prices.

Proposition 1.5 raises an interesting possibility that consumer surplus may

increase when search costs increase. An increase in search costs has a direct negative

effect on consumer welfare. However, if the sellers lower their prices dramatically in

response, overall consumer welfare may rise. Indeed, there is an example in which an

increase in search costs is beneficial to consumers. It arises when consumers’ outside

option is sufficiently unfavorable and there are sufficiently few sellers. In this case, the

sellers possess strong market power and, therefore, charge a high price. An increase

in search costs induces them to drop their prices quickly, up to the point where the

indirect effect outweighs the direct effect and, therefore, consumer welfare increases.

The following proposition addresses a closely related question of how an in-

crease in returns to search affects the equilibrium price p∗. To obtain clean insights,

we restrict attention to the case where consumers have no outside option.

Proposition 1.6. Provided that consumers have no outside option, the equilibrium

price p∗ increases as G becomes more dispersive.

depends on the log-concavity property of the relevant distributions. For example, in Ander-
son and Renault (1999) where prices are not observable and F is degenerate, the equilibrium
price increases in s if 1 − G is log-concave but decreases in s if 1 − G is log-convex (and
assuming that there exists a symmetric pure-strategy equilibrium). Our comparison applies
only to the former case.
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Proof. By the logic given for the price result in the proof of Proposition 1.5, it suffices

to show that the random variable min{Z, z∗} becomes more dispersive as G (z) be-

comes more dispersive. To this end, recall that the quantile function for the random

variable min{Z, z∗} is given by G̃−1(a) = min{G−1(a), z∗} for a ∈ (0, 1). It suffices

to show that the slope of G̃−1(a) increases for all a ∈ (0, 1). For a < G(z∗), the

result is immediate from G̃−1(a) = G−1(a). For a = G(z∗), the result follows from

the fact that G(z∗) rises as G becomes more dispersive: rewriting equation (1.1) with

b∗ = G(z∗) and b = G(z) yields s =
∫ 1

b∗
(1 − b)∂G−1(b)/∂bdb. If G becomes more

dispersive (∂G−1(b)/∂b rises), the integrand rises, and thus the lower support b∗ must

rise in order to maintain the equation.19

Notice that this is consistent with Proposition 1.5, as a decrease in search

costs can be interpreted as a proportional increase in search returns. Proposition 1.6

demonstrates that the main insight in Proposition 1.5 extends beyond proportional

changes and holds with any dispersive perturbations.

1.5.3 Pre-search Information Quality

In our model, consumers search because they have imprecise information about

their values for the products. This means that search frictions can also be measured

by the extent to which consumers are uncertain about their match values. We now

examine the effects of improving pre-search information quality on the equilibrium

price p∗.

19This argument is due to Choi and Smith (2016).



28

For tractability, we specialize our model into a Gaussian learning environment,

where both F and G are given by normal distributions with mean 0. In addition, we

assume that F has variance α2, while G has variance 1−α2, for some α ∈ (0, 1) (i.e.,

V ∼ N (0, α2) and Z ∼ N (0, 1 − α2)). Our choices of the variances are deliberate.

Notice that Ṽ = V +Z ∼ N (0, 1) for any α. In other words, our variance specification

ensures that the distribution for consumers’ ex post values Ṽi stays unchanged when

α varies. The parameter α measures the quality of pre-search information: as α

increases, consumers’ ex post values Ṽ = V + Z are influenced more by (known) V

and less by (hidden) Z. We also assume that consumers have no outside option.

We find that, unlike Propositions 1.5 and 1.6, the equilibrium price may or

may not increase as pre-search quality information improves. In particular, if the

number of sellers is sufficiently small, then p∗ decreases in α.

Proposition 1.7. There exists an integer n∗(α) such that a marginal increase in α

increases p∗ if and only if n ≥ n∗(α).

Recall that the equilibrium price increases when H becomes more dispersive

(Proposition 1.4). Importantly, the result depends only on H, not separately on F

and G. This means that a decrease in α has two effects on p∗. On the one hand, it

spreads out G, which, as shown in Proposition 1.6, tends to increase p∗. On the other

hand, it reduces dispersion of F , which may translate into lower dispersion of H and,

therefore, push down p∗.20

20Unlike G, H may not become more dispersive when F becomes more dispersive. This
is, of course, because of asymmetry between F and G. In particular, the upper truncation
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The following lemma, which establishes the relationship between α and dis-

persion of H, is useful to understand the specific pattern in Proposition 1.7.

Lemma 1.3. There exists w∗(< ∞) such that the slope of H−1(a) decreases in α if

and only if a > H(w∗).

This lemma states that an increase in α has disproportionate effects on disper-

sion of H: the left portion of H becomes less dispersive, while the right portion grows

more dispersive. Recall that W = V + min{Z, z∗}. Since min{Z, z∗} is bounded

above by z∗, if w is rather large, H(w) is mostly determined by the behavior of F .

Since F becomes more dispersive in α, H(w) also does so for w large. If w is rather

small, H(w) is affected by all three V , Z, and z∗. The effects of the first two can-

cel each other out, because V + Z ∼ N(0, 1). The last effect through z∗, however,

makes H less dispersive, because z∗ decreases in α (see equation (1.1) and the proof

of Proposition 1.5).

When there are many sellers, the effective value of a consumer’s purchased

product is likely to exceed w∗. This implies that the equilibrium price p∗ mainly

depends on the right side of H (i.e., the region above w∗). As shown in Lemma 1.3,

H grows more dispersive in α over the region. The opposite reasoning holds if there

are few sellers. In either case, Proposition 1.7 follows from Proposition 1.4.

structure of Z generates a probability mass for each V . This does not interfere in dispersion
of Z being translated into that of W , but may between V and W . The result still holds if
the density function f is decreasing over the relevant region, but not in general.
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1.6 Asymmetric Sellers: Prices and Price Dispersion

In this section, we return to the general setting with asymmetric sellers and

study some questions that arise in the presence of seller asymmetry.

1.6.1 Who Post Higher Prices?

In the presence of seller asymmetry, the most natural question is which sellers

post higher prices. This has not been addressed thoroughly in the literature, partly

because most theoretical studies restrict attention to the symmetric case and partly

because of its complexity. We take one step forward by providing a sufficient condi-

tion under which one seller posts a higher price than another. We demonstrate the

usefulness of our condition with a series of corollaries.

Proposition 1.8. If Wi − ci dominates Wj − cj in the hazard rate order and the

reverse hazard rate order,21 then pi − ci ≥ pj − cj.

For the intuition, consider the duopoly case with no outside option. In this

case, seller i’s profit function is given by

πi(pi, pj) = (pi − ci)
∫
Hj(wi − pi + pj)dHi(wi).

If, hypothetically, Hj were degenerate at wj, then the integral would be equal to

1−Hi(wj + pi − pj), and thus seller i’s first-order condition would reduce to

1

pi − ci
=

hi(wj + pi − pj)
1−Hi(wj + pi − pj)

.

21A random variable X1 with distribution function F1 dominates another random variable
X2 with distribution function F2 in the hazard rate order if f1(t)/(1− F1(t)) ≤ f2(t)/(1−
F2(t)) for all t. Similarly, X1 dominates X2 in the reverse hazard rate order if f1(t)/F1(t) ≥
f2(t)/F2(t) for all t.
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As Hi increases in the hazard rate order, the right-hand side decreases, which implies

that the optimal price pi increases. Similarly, if Hi were degenerate at wi, then seller

i’s first-order condition simplifies to

1

pi − ci
=
hj(wi − pi + pj)

Hj(wi − pi + pj)
.

Applying a similar argument, it follows that pi increases as Hj decreases in the reverse

hazard rate order. In the appendix, we prove that these two conditions suffice for the

result in general (i.e., without hypothetical degeneracy assumptions).

Our first application of Proposition 1.8 concerns the relationship between

marginal costs and markups. We show that otherwise symmetric sellers with higher

marginal costs charge lower markups.

Corollary 1.1. If Fi = Fj, Gi = Gj, si = sj and ci > cj for some i and j, then

pj − cj ≥ pi − ci.

Proof. Given Proposition 1.8, it suffices to show that Wi− ci rises in the hazard rate

order and the reverse hazard rate order as ci falls. The result follows from the log-

concavity of H and 1 −H: the former implies that h(wi + ci)/H(wi + ci) increases,

while the latter implies that h(wi + ci)/(1−H(wi + ci)) deceases, as c decreases.

It is a tempting conjecture that Weitzman index based only on the value dis-

tributions and search costs (i.e., vi+z
∗
i ) would be closely tied with prices. Specifically,

if pi is equal to 0 for all i, consumers visit the sellers in the decreasing order of vi+z∗i .

Since a seller with a higher index would attract more consumers, it is plausible that
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the seller would post a higher price. Our second corollary of Proposition 1.8 shows

that this conjecture does not hold in general.

Corollary 1.2. Suppose Fi = Fj, ci = cj, and z∗i = z∗j for some i and j. If zj

dominates zi in the likelihood ratio order,22 then pj ≥ pi.

Corollary 1.2 shows that even if two sellers have the same Weitzman index

(based on the value distributions and search costs) and share other characteristics,

one seller may post a higher price than the other. Intuitively, Weitzman index cap-

tures only the average behavior of a distribution above a certain point. However, a

seller’s optimal price depends on the entire behavior of the distribution, which cannot

be summarized by a single index. To be more concrete, suppose pi = pj, so that con-

sumers are equally divided between the two sellers. In this case, seller j has relatively

fewer consumers on the margin and, therefore, faces a stronger incentive to increase

her price than player i, which ultimately leads to the outcome pj > pi.

Our final application of Proposition 1.8 illustrates the relationship between

associated search costs and prices. For the same reason as above, it is plausible that

sellers with lower search costs would post higher prices. Unlike in the previous case,

we present an affirmative result for this conjecture. Specifically, we provide a sufficient

condition under which prices are inversely related to search costs (i.e., if si < sj, then

pi > pj). Notice that, since Weitzman index is decreasing in search costs, this result

22A random variable X1 with distribution function F1 dominates another random variable
X2 with distribution function F2 in the likelihood ratio order if f1(x)/f2(x) rises in x. The
likelihood ratio order is equivalent to the monotone likelihood ratio property. Even if zj
dominates zi in the likelihood ratio order, z∗i can be equal to z∗j , because z∗k depends not
only on Gk but also on sk (see equation (1.1)).
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also shows that the index, despite Corollary 1.2, may still provide useful guidance for

price rankings.

Corollary 1.3. Suppose all sellers are identical except that s1 < ... < sn, and the

common density function f(v) is such that −f ′(v) is positive and log-concave in v for

all v > u0 − z∗, where z∗ ≡ maxi z
∗
i . Then, p1 ≥ ... ≥ pn.

Intuitively, when the sellers differ only in associated search costs, the difference

is unidimensional and, therefore, can be fully captured by a single-valued Weintz-

man index. The result, although clearly limited, is useful because various common

distributions in the exponential family, including Gaussian, Gumbel, and Laplace

distributions, have the right tails that satisfy the necessary distributional properties.

1.6.2 Search Costs

We now study the effects of search costs in the presence of seller asymmetry.

We focus on two questions, who benefits from a reduction in search costs and what is

the relationship between price dispersion and search costs. For tractability, we restrict

attention to the simplest duopoly environment where there is no outside option and

the two sellers differ only in their marginal costs. We assume that seller 1’s marginal

cost is strictly lower than seller 2’s (c1 < c2), which implies that in equilibrium seller

1 charges a lower price than seller 2 (p1 < p2).23

Our first result shows that a reduction in search costs is beneficial to the

disadvantaged seller (with a higher marginal cost).

23See the proof of Proposition 1.9 in the appendix.
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Proposition 1.9. Demand for seller 1 (D1(p)) increases in s, while demand for

seller 2 (D2(p)) decreases in s.

Notice that this result counters a common belief that more efficient firms will

flourish, while less efficient firms will eventually vanish, as search costs decrease.

Consumers search more actively (visit more sellers) when search costs are lower. In

particular, more consumers make a purchase decision after visiting both sellers. This

is more beneficial to seller 2, who charges a higher price and, therefore, attracts less

fresh visitors.24

Proposition 1.9 suggests that the disadvantaged seller has a stronger incentive

to lower the price as search costs increase. This generates a unique implication for

the relationship between price dispersion and search costs, as formally stated in the

following proposition.

Proposition 1.10. The relative markup ratio (p2 − c2)/(p1 − c1) decreases in s. If

c2− c1 is sufficiently large, then the absolute price difference p2− p1 also decreases in

s.

The result indicates that an increase in search costs may reduce price dis-

persion. This is contrary to a well-established insight in search theory that price

dispersion is a symptom of search frictions and market prices are more dispersed

24Armstrong (2016) finds a similar result in an environment where one seller is “promi-
nent” and, therefore, visited by all consumers first. A reduction in search costs, which in-
duces more consumers to visit both sellers, is beneficial to the non-prominent seller. Unlike
our result, his result builds upon an asymmetric equilibrium in the symmetric environment,
which exists because it is assumed that all consumers have an identical prior value (i.e., Fi
is degenerate for each i) and prices are unobservable before search.
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when there are more search frictions (see, e.g., Burdett and Judd, 1983; Stahl, 1989).

Again, the result is driven by the fact that prices are observable to consumers and

the role of search is only to gather more information about their values.

We conclude this section with another consequence of Proposition 1.9. When

the sellers are symmetric, market prices necessarily decrease as search costs s increase

(Proposition 1.5). If the sellers are asymmetric, the result may not apply to some

sellers. In particular, the advantaged seller (seller 1) may increase her price when s

increases. This occurs when an increase in search costs discourages lots of consumers

from visiting seller 2 after seller 1, and thus demand for seller 1 increases sufficiently

fast. In this case, seller 2 has an even stronger incentive to lower her price, while seller

1 may find it more profitable to increase her price. This also means that, unlike the

symmetric case where all firms’ profits fall as search costs increase (see Proposition

1.5), some firms may benefit from an increase in search costs and obtain higher profits.

1.7 Conclusion

We study an oligopoly model in which the sellers advertise their prices and

consumers conduct optimal sequential search. We derive a simple condition that fully

summarizes consumers’ search outcomes and allows us to reformulate the pricing

game as a familiar discrete-choice problem. We also provide sufficient conditions

under which there exists a unique pure-strategy market equilibrium. Based on the

characterization, we obtain a set of results that shed new light on the effects of search

frictions on market prices. We show that a reduction in the value of search increases
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market prices, whereas providing more information before consumer search may or

may not increase market prices. We also provide a sufficient condition under which

one seller posts a higher price than another and demonstrate that a reduction in

search costs may lead to more price dispersion in the presence of seller asymmetry.

Many interesting questions remain open. To name a few, we assume that all

sellers are fully committed to their advertised prices. However, hidden fees, in various

forms, are prevalent in reality. How does their potential presence affect consumer

behavior and sellers’ pricing incentives?25 We consider the case where each seller sells

only one product, but it is the exception rather than the rule. How should a multi-

product seller price (or position) his products? Should the seller choose an identical

price, or introduce difference prices, for ex ante symmetric products? If the products

are asymmetric, which product should the seller make prominent and how?26 We

plan to address these and other related problems in the future.

25See Ellison (2005) and Dai (2016) for some developments along this line.

26See Gamp (2016) and Petrikaitė (2016) for some related problems.
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CHAPTER 2
CONSUMER SEARCH AND OPTIMAL PRICING UNDER LIMITED

COMMITMENT

2.1 Introduction

Advertised prices are often different from final prices in many markets. For

example, stores may charge unexpectedly high shipping and installation fees when

consumers shop for furniture and appliances. Moreover, online shopping usually in-

volves shipping and handling fees, which may be observed only after adding a product

to a shopping cart or filling out all the relevant shipping and payment information.

According to Ellison and Ellison (2009), on Pricewatch.com, “shipping charges grew

to the point that it was not uncommon for firms to list a price of $1 for a mem-

ory module and inform consumers of a $40 shipping and handling fee at check out.”

Likewise, a report in the Washington Post documents a case in which one consumer

expected a $25 ride from Uber, but a “peak surcharge” led to a $120 bill. In a sep-

arate case, Airbnb listings included $25 cleaning fees were not disclosed until well

into the booking process. These phenomena are the major reasons that consumers

abandon shopping carts after expressing interest in purchasing a product. A 2009

Forrester survey finds that 44% of Web shoppers said that they did not complete an

online transaction because shipping and handling costs were too high.

In this paper, I present a consumer search model in which there is uncertainty

regarding a seller’s commitment to the advertised price. Specifically, I analyze a

game in which a seller posts his price and consumers decide whether or not to visit
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the seller after observing the posted price. Once a consumer visits the seller, she

learns both the actual price and her valuation of the product. There are two types

of sellers: the commitment type and the non-commitment type.1 The commitment

type seller always charges the advertised price, while the non-commitment type can

deviate from the advertised price and charge a different price. The seller’s type is his

private information.

This model unifies two strands of consumer search literature. One studies en-

vironments in which prices are unobservable,2 while the other considers cases in which

prices are observable.3 The former is the traditional approach, while the later has

been receiving growing attention recently because the Internet makes price informa-

tion more accessible. These two approaches can be partly interpreted as two extreme

cases in my model. The first approach can be interpreted as the case where the seller

is the non-commitment type for sure. In other words, it is common knowledge that

1Commitment power may come from several sources. First, the seller may interact with
consumers repeatedly. If high surcharges over the advertised price deters consumers from
purchasing, fear of building a bad reputation for not committing to the advertised price
could contribute to the formation of commitment power. Second, with the popularity of
online shopping and the sharing economy, sellers are increasingly likely to be individuals
rather than large firms, and may therefore be subject to lie aversion, as documented in the
behavioral and experimental literature (Gneezy (2005), Hurkens and Kartik (2009). Third,
platform providers and consumer protection associations may have an incentive to punish
sellers who are not committed to advertised prices, even if they cannot afford to monitor
every transaction. Fear of being punished can also justify the commitment type seller in the
market. Nevertheless, as the above examples of Pricewatch, Uber and Airbnb make clear,
not all sellers are of the commitment type.

2See, e.g., Wolinsky (1986), Anderson and Renault (1999), Armstrong et al. (2009) and
Chen and He (2011).

3See, e.g., Armstrong and Zhou (2011), Shen (2015), Haan et al. (2015) and Choi et al.
(2016).
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the advertised price is purely cheap talk and is therefore not related to the actual

price. The second approach can be understood as the case where the seller is the

commitment type for sure, in which case the advertised price surely coincides with

the actual price.

There is a continuum of separating equilibria, but all of them are essentially

identical to the market outcome where the seller has no commitment power. In

any separating equilibrium, the advertised price fully reveals the seller’s type. This

means the non-commitment type does not benefit from limited commitment at all

and therefore charges the same price as when his type is known to consumers. In

the mean time, due to the non-commitment type seller’s incentive to pool with the

commitment type, the commitment type cannot credibly advertise a profitable price.

There is also a continuum of pooling equilibria with different pooling prices.

Unlike separating equilibria, lower profitable market prices can be supported in pool-

ing equilibria. Limited commitment may yield a even lower market price than full

commitment, because of the seller’s concern about consumers’ inferences. Intuitively,

such a price can be supported in equilibrium if consumers believe that the deviating

seller is the non-commitment type for sure. Moreover, increasing the degree of com-

mitment makes each advertised price more credible and thus allows a higher price to

be supported as an equilibrium advertised price because even though the advertised

price is higher, consumers are less likely to encounter surcharges over the advertised

price.

A natural response to limited commitment power is to regulate the extent to
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which the actual price can deviate from the advertised price. Recently, several plat-

form providers have adopted this form of regulation. For example, Pricewatch.com

mandated that all firms offer UPS ground shipping for a fee no greater than an item-

specific amount (i.e., $11 for memory modules). Ebay also has its own policy on

maximum shipping and handling fees, while Airbnb does not permit cleaning fees to

exceed a certain amount.

I find that stricter regulation (that is, allowing a smaller maximum price differ-

ence) may or may not improve market efficiency. On the one hand, stricter regulation

limits the non-commitment type seller’s deviation from his posted price and, there-

fore, has a direct effect of lowering the market price. On the other hand, stricter

regulation relaxes the commitment type seller’s fear of being perceived as a non-

commitment type and induces the commitment type to charge a higher price and

thus raise the market price. Consequently, there exists an interior optimal regulation

level for consumer surplus and social welfare, at which the commitment type seller

is willing to commit to a low advertised price, while the non-commitment type seller

cannot surcharge arbitrarily.

I also investigate the impact of heterogenous levels of commitment on mar-

ket outcomes. In particular, I examine if there are multiple sellers, in which order

consumers visit the sellers and whether consumers prioritize visiting the seller who is

more likely to be the commitment type. I show that if one seller has full commitment

power, while the other seller has limited commitment, consumers unambiguously visit

the seller with full commitment power first. In contrast, when both sellers have lim-
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ited commitment, a higher degree of commitment does not dictate consumers’ search

order. The difference between this pair of results originates from the observation that

the seller with full commitment power can credibly advertise a low price while the

seller with limited commitment is unable to do so.4

I then demonstrate that the main insights carry through to an environment

with ex-ante heterogenous consumers. The only difference lies in the effects of the

search cost, on which the two existing frameworks on consumer search generate op-

posite results. When the seller is the non-commitment type for sure, the equilibrium

price rises as search cost rises due to the “hold-up effect” and the “selection effect”:

the seller can not influence consumers’ visiting decisions and, therefore, exploits vis-

iting consumers as much as possible. In contrast, when the seller is the commitment

type for sure, the equilibrium price falls as search cost rises due to the “directed

search effect”: when search cost rises, the seller can retain consumers by advertising

a lower price.5 In the current model with ex-ante homogenous consumers, conditional

4This result links this paper to the literature on prominence in consumer search, where
prominence refers to a seller who is sampled by all consumers first. See, e.g., Arbatskaya
(2007), Zhou (2011), Armstrong et al. (2009) and Armstrong and Zhou (2011). The litera-
ture has focused on the environment in which a prominent seller has an incentive to lower
his price below all other sellers to justify his prominent position. This paper contributes
to this literature in two aspects. First, full commitment power endogenizes the prominent
position in the market, while in the literature, prominence acts as a coordination device,
and every seller can be made prominent. Second, commitment power provides an additional
source of prominence other than the existing ones in the literature: commission payments,
price comparison websites, and existing suppliers (Armstrong and Zhou (2011)).

5This result is also related to the price advertising literature where it is shown that
firms must advertise lower prices to get consumers’ visits when search cost rises. See,
Butters (1977), Stegeman (1991), Robert and Stahl (1993), Konishi and Sandfort (2002)
and Anderson and Renault (2006).
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on visiting, a marginal increase in search cost neither influences consumers’ purchas-

ing decision nor provides additional information about match values. Hence both

the “hold-up effect” and the “selection effect” vanish. The “directed search effect”

from both types of seller works to ensure that consumers still visit the seller as search

cost rises. It follows that prices decrease with respect to search cost. Opposingly,

with ex-ante heterogenous consumers, a marginal increase in search cost reduces the

measure of consumers visiting the seller and implies that the visiting consumers have

higher ex-ante valuations of the product. Therefore, how the equilibrium price set

varies with search cost is mainly governed by the “selection effect”. Specifically, the

commitment type seller faces a tradeoff between the “selection effect” when pooling

with the non-commitment type and when being perceived as a non-commitment type

seller. Which “selection effect” is more severe as search cost rises depends on the level

of commitment and the magnitude of the search cost. Prices are often non-monotone

with respect to the search cost.

One interpretation of this model is to regard the non-commitment type seller’s

capability to advertise a different price than the actual price as a tool of obfuscation.

Janssen and Non (2008), Ellison and Wolitzky (2012), and Wilson (2010) model ob-

fuscation as a deliberate attempt to increase consumers’ search costs in order to avoid

Bertrand competition. Their approach examines sellers’ efforts to influence the ac-

cessibility of product information, while I investigate sellers’ endeavors to manipulate

the transparency of information. As the internet makes information more accessible

than before, transparency of information is an aspect that should not be overlooked.
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The literature contains other approaches to account for the difference be-

tween advertised prices and actual prices. Gabaix and Laibson (2006) point out

that shrouded attributes by sellers include two mutually exclusive categories: avoid-

able add-ons and unavoidable surcharges. They analyze the case of avoidable add-ons

with boundedly rational consumers and make a conjecture that regulating the price

difference of add-on products may hurt consumers. Ellison (2005) also studies add-on

pricing with consumers who differ in their sensitivity to price differences or likelihood

of switching between firms. Price differences in the first category are caused by the

quality difference between a product with the add-on and a product without the add-

on. This paper addresses the second category in which price differences are caused

by seller’s deviation from the advertised prices. With the prevalence of online shop-

ping, unavoidable surcharges like shipping and handling fees become an increasingly

relevant issue in daily life.

The rest of the paper is organized as follows. Section 2.2 introduces the model

and discusses the case of complete information. Section 2.3 analyzes the monopoly

model with incomplete information regarding the sellers’ type. Section 2.4 studies

the effect of regulation on equilibrium prices and welfare. Section 2.5 investigates

the duopoly model with sellers differ in levels of commitment. Ex-ante heterogenous

consumers are introduced in Section 3.2. Section 3.6 concludes. All proofs and

omitted details are presented in the Appendix.



44

2.2 Model

2.2.1 Environment

The market consists of one seller and a unit mass of consumers. The seller

supplies one product to different consumers, each with no fixed cost and constant

marginal cost c(≥ 0). At the beginning of the market, the seller posts a price cost-

lessly, denoted by p. The seller may charge a different final price, p′, after a consumer

visits. D(p, p′) is the measure of consumers who eventually purchase from the seller.

The seller’s profit is then defined as π(p, p′) ≡ D(p, p′)(p′ − c). The seller maximizes

his profit π(p, p′).

The seller can be one of two possible types: commitment type and non-

commitment type. The commitment type seller charges the posted price, i.e. p′ = p.

The non-commitment type seller is not restricted by the posted price. The price dif-

ference between the final price and the posted price can be interpreted as the seller’s

adoption of additional fees like shipping and handling fees. The seller is also allowed

to offer a lower final price than the posted price, which can be understood as a dis-

count or a coupon. The prior probability that the seller is of commitment type is

given by µ. The seller’s type is his private information.

Each consumer has unit demand. A (representative) consumer’s random utility

for the seller’s product is given by Y , which is revealed to a consumer only after

she visits the seller. Let y denotes the realization of a consumer’s value for the

product. Y is drawn according to the distribution function G over the interval [y, ȳ],

independently across consumers. I allow each support to be infinite and I assume
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that G has continuously differentiable density g.

I maintain the following regularity assumption about the distribution function

G through the paper.

Assumption 2.1. 1−G is log-concave.6

It is well-known that log-concavity is satisfied with various well-behaved distri-

butions (see, e.g., Bagnoli and Bergstrom, 2005) and is an appropriate distributional

assumption in various contexts. I fully utilize Assumption 2.1 to ensure the existence

and uniqueness of equilibrium in the complete information cases. Assumption 2.1

also guarantees that the problem is well-behaved in the general setup.

Each consumer needs to incur search cost s(> 0) to visit the seller in order

to gauge her match value and discover the actual price. This mainly represents the

transportation cost or the opportunity cost of time spent visiting the seller and testing

the product.

A consumer’s ex post utility depends on her value for the purchased product

y, its actual price p′, and the search cost s if she decides to visit. Specifically, if a

consumer visits the seller and eventually purchases from him, then her ex post utility

is equal to

U(y, p′) = y − p′ − s.

Each consumer can leave the market at any point without making a purchase. A leav-

ing consumer takes an outside option u. Each consumer is risk neutral and maximizes

6g is log-concave is a sufficient condition for Assumption 2.1.
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her expected utility.

The market proceeds as follows. First, the seller announces price p. Then, each

consumer decides whether to visit the seller based on available information (p). If a

consumer decides to visit, she observes (y, p′) and makes her final purchase decision. I

study the sequential equilibrium of this game. I first characterize consumers’ behavior

given any price vector and then analyze the seller’s optimal pricing decision and

market equilibrium.

2.2.2 Consumer Behavior

Each consumer makes two decisions: whether to visit and whether to purchase.

The decision to visit depends on the belief of the final price upon observing the posted

price. The belief is pinned down in equilibrium. The decision to purchase relies on

the final price if the consumer visits the seller. Let Hp(p
′) denotes the belief of the

final price p′ when a consumer sees posted price p.

Given the seller’s posted price p and final price p′, consumers’ visiting and

purchasing decisions are summarized by the following inequalities:

(i) Visit strategy: The consumer visits the seller if and only if r ≥ u, where r is

the value such that

r = −s+

∫ ∞
−∞

∫ ȳ

y

max{r, y − p′}dG(y)dHp(p
′). (2.1)

(ii) Purchase strategy: The consumer purchases from the seller if and only if y−p′ ≥

u.

When a consumer makes her visiting decision, she compares the reservation
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value for seller’s product and the outside option. The reservation value is defined such

that a consumer is indifferent between obtaining utility r immediately and visiting

seller (which requires paying search cost s and gives her an option to choose between

r and y − p′). As the distribution of the match value, belief of the final price and

the search cost are the same across consumers, all consumers make the same visiting

decision. Equation (2.1) also shows that consumers tend to visit the seller less likely

as the unit search cost s increases: as s increases, r decreases. In addition, if belief of

the final price is degenerate at price p, the reservation value can be written explicitly

as r = y∗ − p due to the additive-utility specification, where y∗ is defined by s =∫ ȳ
y∗

[1−G(y)]dy. It follows that as s increases, y∗ decreases.

2.2.3 Complete Information

When there is complete information over seller’s type, the belief of the final

price is degenerate. Consumers compare y∗−p and u to make their visiting decisions.

Once all consumers visit the seller, the optimal price to charge is given by pN ,

argmaxp p[1 − G(p + u)], which is uniquely defined due to Assumption 2.1. This is

also the price that is always charged by the non-commitment type seller. Here I focus

on the interesting case where y∗−pN < u.7 This condition implies that when the seller

is the non-commitment type for sure, consumers do not visit the seller and he obtains

zero profit. No matter what price the seller posts, consumers rationally expect him

7In the other parameter region (y∗−pN ≥ u), consumers visit the seller for sure regardless
of the seller’s commitment power. It follows that both types of seller charge the same price
and earn the same profit. The case of incomplete information is also equivalent to the two
corner cases. Market inefficiency does not present under this parameter region.
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to charge pN , which exceeds their visiting threshold. There is a hold-up problem. On

the contrary, when the seller is the commitment type for sure, it is optimal for him to

post and charge a price such that consumers are indifferent between visiting or not:

pC , y∗−u. I assume pC−u ≥ c to ensure that the seller obtains non-negative profit

π(pC , pC). Trade occurs and consumers earn surplus. Commitment power resolves

the hold-up problem. A simple comparison yields pC < pN .

2.3 Equilibrium with Incomplete Information

In this section, I analyze the market equilibrium when the seller’s type is

uncertain. Under incomplete information, price advertisement serves as a signaling

device. A distinction between two types of seller is that the posted price from the

non-commitment type seller is a cheap talk message while the posted price from

the commitment type seller is a “costly” signal since he charges the price he posts,

which is payoff relevant. Depending on whether the posted price is informative, the

pure strategy equilibrium naturally falls into two categories: separating and pooling

equilibrium. I examine each in turn, and then investigate the effect of search cost,

along with a brief discussion on equilibrium refinement. As is typical in signaling

games, many equilibria arise here due to lack of restriction on consumers’ beliefs

off-the-equilibrium path. To simplify the analysis, I put a restriction on consumers’

beliefs off-the-equilibrium path so that they consider any deviating price to be posted

by the non-commitment type seller. This is one of the beliefs that support the largest

set of equilibria. In section 2.3.4, I apply several refinements to see if some equilibria



49

are more reasonable than the others.

2.3.1 Separating Equilibrium

In any separating equilibrium, because consumers can distinguish the commit-

ment type and the non-commitment type from the posted price, the non-commitment

type faces the same problem as in section 2.2.3. Hence the non-commitment type

charges pN and gets zero demand. It follows that the commitment type seller has to

post and charge a price higher than pC in a separating equilibrium. This is because

if the commitment type seller posts a price lower than pC , the non-commitment type

can attract consumers and obtain higher profit by mimicing this price. The following

proposition summarizes these insights.

Proposition 2.1. There is a continuum of separating equilibria. In any separat-

ing equilibrium, the commitment type seller posts and charges p > pC and the non-

commitment type seller posts p′ 6= p. No matter what price the non-commitment type

posts, he charges pN .

Despite the fact that there is a continuum of equilibria, all the equilibria are

outcome equivalent to the one when the seller is non-commitment type for sure (i.e.,

µ = 0). As in a typical separating equilibrium, the non-commitment type does not

benefit from the uncertainty over seller’s type (enhancing commitment power in the

market), while the commitment type is hurt by the presence of the non-commitment

type.

Proposition 2.1 argues that when the seller is commitment type for sure, in-
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troducing a small degree of uncertainty renders the market inefficient. It creates a

discontinuity in the sense that market price jumps from pC to pN as µ = 1 changes

to µ = 1− ε. The market with minimally limited commitment works as if there is no

commitment power at all. This conclusion depends on the restriction of separating

equilibria. As shown in the next section, unlike the inefficiency result from the sepa-

rating equilibrium, the pooling equilibrium exhibits a different welfare implication.

2.3.2 Pooling Equilibrium

In a pooling equilibrium, upon observing posted price p, consumers know that

there is µ chance that the seller is the commitment type and p is the final price,

while there is 1 − µ chance that the seller is the non-commitment type and charges

a different final price pN . The following result describes what happens in a pooling

equilibrium.

Proposition 2.2. There exists µ̂ such that for µ ≥ µ̂, a continuum of pooling equi-

libria exists, where µ̂ is defined by

u = −s+ µ̂ Emax{u, y − c}+ (1− µ̂)Emax{u, y − pN}. (2.2)

For each µ, there exists p̄(µ) such that, ∀p ∈ [c, p̄(µ)], there exists an equilibrium in

which both types of seller post p and the non-commitment type seller charges pN ≥ p,

where p̄(µ) is defined by

u = −s+ µ Emax{u, y − p̄(µ)}+ (1− µ)Emax{u, y − pN} (2.3)

In addition, p̄(µ) increases in µ.
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Minimum level of commitment, µ̂, is needed to ensure the existence of pooling

equilibrium. Since consumers do not visit the seller when there is no commitment

power, tiny amount of commitment is not enough to attract them to visit. µ̂ is defined

such that consumers are indifferent between taking the outside option and visiting

when they expect the commitment type to charge the marginal cost (lowest price that

is acceptable to the seller) and the non-commitment type to charge the optimal price

(pN).

The pooling equilibrium price set is determined by comparing equilibrium

profit and deviation profit for both types of seller. Deviation profit is zero for both

types of seller as when deviation occurs, the seller is perceived as the non-commitment

type.8 The upper bound of the pooling price set, p̄(µ), is pinned down by both types

of seller’s incentive to deviate. Any price above p̄(µ) deters consumers to visit and

delivers zero profit to both types of seller. The lower bound, c, comes solely from the

commitment type’s incentive constraint. Any price lower than c attracts consumers

to visit but delivers negative profit to the commitment type. In contrast, the non-

commitment type is free to deviate from this price once consumers visit him.

Higher level of commitment enables the seller to post and charge a higher

price in the pooling equilibrium. As µ rises, each posted price is more credible and

consumers are less likely to be charged additional amount. Consumers’ reservation

8There are other off-equilibrium path beliefs that can support the pooling equilibrium.
For instance, if a seller deviates to a price above pN , then the belief associates with this
deviating price is not restricted. This is because the price is so high that no consumer will
visit the seller, no matter what type the seller is. As this is not the major concern of the
paper, I focus on the belief stated in the main text for simplicity.
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value for the seller thus increases given each posted price. p̄(µ) increases to make

consumers indifferent between visiting and taking the outside option (to keep the

equality of equation (2.3)).

Figure 2.1: Pooling Equilibrium varies with Level of
Commitment

The set of equilibrium posted prices given level of com-
mitment, µ, with F,G ∼ N(0, 1) (standard normal dis-
tribution), u = 0 and c = 0. y∗ = 0.25, pN = 0.5 and
µ̂ = 0.5.

The non-commitment type seller benefits from pooling with the commitment

type as partial commitment power mitigates the seller’s hold-up problem. In con-

trast, the commitment type suffers from the presence of the non-commitment type.
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Whatever price the commitment type posts, consumers expect chances to be charged

some higher price. Therefore, the commitment type has to cut his price in order to

attract consumers to come. In a pooling equilibrium all consumers visit the seller and

the non-commitment type seller charges the optimal price. This indicates that the

non-commitment type seller obtains higher profit when he pools with the commit-

ment type than when he obtains full commitment power.9 Consumer surplus stays

constant at the upper bound of the pooling equilibrium. For each price within the

equilibrium price set, consumer surplus increases as level of commitment rises since

they are less likely to be charged additional amount. Consumers are better off when

there is more commitment power in the set sense.

2.3.3 The Effect of Search Cost

In this section, I study the impact of increasing search cost on equilibrium

prices. The following lemma summarizes the results when there is complete informa-

tion of seller’s type.

Lemma 2.1. If the seller is non-commitment type for sure (i.e., µ = 0), then the

unique equilibrium price, pN , stays constant as search cost, s, increases; if the seller

is commitment type for sure (i.e., µ = 1), then the unique equilibrium price, pC,

decreases as search cost, s, increases.

Commitment power plays a crucial role in the direction of this comparative

9In a similar environment, Haan et al. (2015) shows that a seller whose price is hidden
would like to advertise his price to the consumers in order to gain higher profit. It can be
interpreted as the seller with no commitment power would like to gain full commitment
power.
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statics exercise. Conditional on visiting the seller, the decision to purchase is in-

dependent of the magnitude of search cost. Therefore, the optimal price to charge

conditional on visiting is also independent of search cost. As the non-commitment

type seller is unable to use price to dictate consumer’s decision to visit, the equilib-

rium price pN stays constant with respect to search cost. In contrast, the commitment

type seller is able to reduce price to direct consumers’ visiting decisions, mitigating

the impact of rising search cost. I call this the “directed search effect”.

The first part of Lemma 2.1 is related to the same comparative exercise in

Wolinsky (1986) and Anderson and Renault (1999). They show that in an oligopoly

environment with no commitment power, equilibrium price goes up when search cost

rises. With multiple sellers, higher search cost increases the cost of exploring other

options after visiting the current seller. Thus the current seller can extract more

surplus from the visiting consumers. I call this the “hold-up” effect. This effect

is absent in the current model with monopoly.10 Haan et al. (2015) also conducts

the same exercise in a duopoly environment with ex-ante heterogenous consumers.

There another effect to drive the price up is the “selection” effect: when search cost

rises, the visiting consumer has higher ex-ante valuation for the product and thus

is less likely to leave. In section 3.2 I study a model with ex-ante heterogenous

consumers under limited commitment and investigate how “selection” effect interacts

with limited commitment.

10The “hold-up” effect can be also introduced into the current model by inserting quitting
cost to make going back to the outside option more costly after exploring the seller.
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The second part of Lemma 2.1 is related to the same comparative exercise in

Armstrong and Zhou (2011), Haan et al. (2015) and Choi et al. (2016). They find

that in an environment with full commitment power (observable price), equilibrium

price always goes down with search cost. Even when the “hold-up effect” and the

“selection effect” both present, the “directed search effect” dominates both of them.

The following lemma summarizes how search cost affects the equilibrium price

set with uncertainty over seller’s type.

Proposition 2.3. For each µ, the upper bound of the pooling equilibrium price set,

p̄(µ), decreases as search cost, s, increases. The minimum level of commitment power,

µ̂, increases in search cost.

As the separating equilibrium is equivalent to the case of no commitment, the

effective price stays constant in search cost according to Lemma 2.1. The lower bound

of the pooling equilibrium is also independent of the search cost as it equals marginal

cost. The upper bound of the pooling equilibrium is the highest posted price such

that consumers are willing to visit the seller. Therefore, the upper bound decreases

to compensate for higher search cost. Moreover, µ̂ increases in search cost because

when search cost rises, visiting becomes less attractive than taking the outside option

directly at the original level of µ̂. Higher level of commitment is required to make

visiting desirable. With absence of the “hold-up effect” and the “selection effect”,

the “directed search effect” alone leads to this result.
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2.3.4 Equilibrium Refinement

As in other signaling games, this game suffers from equilibrium multiplicity.

In order to see whether one equilibrium is more prominent than the others, several

refinement criteria are applied.

I first apply the Intuitive Criterion by Cho and Kreps (1987) and show that

all the separating and pooling equilibria survive. In the current context, the Intuitive

Criterion regards a proposed equilibrium posted price p as “intuitive” if there does not

exist another price p̃ to deviate to for which the commitment type is better off while

the non-commitment type is worse off, when consumers believe that the deviation

comes from the commitment type. I first argue that any separating equilibrium

satisfies the Intuitive Criterion. In any separating equilibrium, both types of seller

obtain zero profit. If there is a price such that the commitment type is better off by

deviating, then the non-commitment type is also better off by mimicing this price,

as it must attract consumers to visit and deliver positive profit. Therefore, such a

deviating price can never exist. I then argue that any pooling equilibrium is intuitive.

Let p∗ ∈ [c, p̄(µ)] be an equilibrium posted price, then the range of tempting deviating

price for the commitment type is [p∗, p̄(µ)]. None of the price in this range can make

the non-commitment type worse off.

Conversely, applying the Undefeated equilibrium by Mailath et al. (1993) re-

moves all the equilibria that are inefficient from the seller’s point of view and delivers

a unique outcome. In short words, the Undefeated equilibrium is equivalent to the

notion of Pareto efficiency for both types of seller in the current setting. The idea
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of how this refinement works is as follows: consider an equilibrium price p∗ and a

deviating price p̃, if p̃ delivers higher profits for both types of seller than p∗ does, then

the refinement requires consumers to form the same beliefs as those in the deviating

equilibrium. If this belief is different from the one in the proposed equilibrium, then

the original equilibrium is defeated. In the current setup, p̄(µ) delivers highest profit

to the commitment type seller among all pooling equilibrium prices while the non-

commitment type is indifferent among all prices. In addition, all pooling equilibrium

deliver higher profits than all separating equilibrium. Therefore, the only equilibrium

that is undefeated is the pooling equilibrium with p̄(µ) as the posted price.

Even though the Undefeated equilibrium selects the unique equilibrium, it only

considers the efficiency among both types of seller and ignores consumers’ welfare. In

fact, the unique equilibrium it selects delivers lowest consumer surplus. I thus focus

on characterizing the whole equilibrium set in the following analysis, with paying

special attention to the upper and lower bound of the posted price set, as the first

one delivers highest profits to both types of seller and the second one generates the

highest volume of trade and highest consumer surplus.

2.4 Regulation

In this section I study the impact of a platform provider’s regulation on market

behavior. A natural form of regulation to consider is a restriction on the gap between

advertised prices and actual prices.11 Intuitively, as the non-commitment type seller’s

11Another form of regulation is information disclosure. For example, the platform
provider could require the seller to display final price on the search page and inform the
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ability to deviate from the advertised price induces market inefficiency, one might

think that restricting this ability could fix the inefficiency. It is shown in this section

that, however, regulation does not necessarily enhance market efficiency.

Regulation requires the maximum allowed difference between advertised prices

and actual prices to be smaller than ∆; i.e., p′ − p ≤ ∆. At the beginning of the

game, the platform provider announces ∆, then the game proceeds as in previous

sections, with common knowledge among the players that the seller will get unlimited

punishment if the price difference exceeds ∆.12 I normalize outside option, u, and

marginal cost, c, to 0 for simplicity.

When there is complete information over seller’s type, the commitment type

is not influenced by regulation, as he behaves as if he is under the strictest regulation,

∆ = 0. The non-commitment type seller, on the other hand, benefits from regulation.

The following lemma summarizes equilibrium prices with regulation.

Lemma 2.2. If the seller is the non-commitment type for sure (i.e., µ = 0), then the

seller posts price p such that p+ ∆ = y∗ and charges price y∗.

Lemma 2.2 shows that regulation grants full commitment power to the non-

commitment type seller. In equilibrium, the seller posts the highest price such that

consumers are willing to visit, as consumers know regulation prohibits the seller from

consumers about the policy. By doing this, the non-commitment type no longer exists in the
market. The effect of this regulation depends on the original market condition, as discussed
in section 2.3.2.

12Adopting other forms of regulation such as change absolute price difference to rela-
tive percentage price difference, or relate the amount of punishment to the magnitude of
deviation does not change the results qualitatively.
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charging more than the reservation value of the product. The seller then indeed finds

it optimal to charge the reservation value given the regulation constraint.

This result depends on the fact that the posted price can be negative (lower

than marginal cost). It allows situations, for instance, where y∗ = 10 and ∆ = $20.

The non-commitment type seller posts −$10 in equilibrium. Price promotion may be

a common practice but large ∆ is less realistic. It can be shown that if we restrict

the posted price to be non-negative, then with ∆ > y∗, regulation is not effective, as

the seller is unable to utilize it to dictate consumers’ visiting decisions.

When the seller is the non-commitment type for sure, regulation acts as a com-

mitment device and enhances market efficiency. When there is uncertainty over seller’

type, however, the effect of a stricter regulation on welfare is mixed. The following

lemma shows that strict regulation eliminates inefficient separating equilibria.

Lemma 2.3. If there is uncertainty over seller’s type (i.e., µ ∈ (0, 1)), then

(i) if ∆ ≤ y∗ (strict regulation), separating equilibrium does not exist;

(ii) if ∆ > y∗ (weak regulation), the non-commitment type posts price p such

that p+∆ = y∗ and charges price y∗ while the commitment type posts any price higher

than y∗.

If a separating equilibrium exists under strict regulation, the non-commitment

type behaves the same as under the case of µ = 0 by posting y∗ −∆ and charging y∗

because the posted price is informative. It follows that the commitment type cannot

be separated from posting a higher price, since the non-commitment type can post

that price as well. Moreover, the commitment type is not willing to be separated
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by posting a lower price, since he gains more profit by posting y∗ −∆, which is the

highest price that guarantees consumers’ visit. Therefore, there does not exist a pair

of prices that do not induce deviation. The second part of Lemma 2.3 shows that

weak regulation delivers full commitment profit to the non-commitment type but

zero profit to the commitment type. The difference with strict regulation case is that

under weak regulation the commitment type does not have incentive to mimic the

non-commitment type anymore.

Proposition 2.4. If there is uncertainty over seller’s type (i.e., µ ∈ (0, 1)), then

(i) there exist p∆ and p̄∆ such that ∀p ∈ [p∆, p̄∆] can be supported as a pooling

equilibrium posted price. Both p∆ and p̄∆ weakly decrease in ∆;

(ii) for each price p ∈ [p∆, p̄∆], there is a unique optimal price that is charged

by the non-commitment type, φµ∆(p). Both φµ∆(p∆) and φµ∆(p̄∆) weakly increase in

∆;

(iii) the lower bound of the corresponding consumer surplus set stays constant

while the upper bound first increases then decreases in ∆.

Figure 2.2 depicts the effect of regulation as described in Proposition 2.4. As

can be seen from the graph, weak regulation and strict regulation deliver distinct

welfare implications. I focus on the lower bound of the posted price set (upper bound

of the consumer surplus set) since the upper bound is set such that consumer surplus

is 0.

In the region of weak regulation (∆ > y∗), deviation generates zero profit, as

shown in Lemma 2.2. The commitment type seller is thus willing to charge marginal
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Figure 2.2: The Effect of Regulation on Pooling Equilibrium

G ∼ U [0, 1] (standard uniform distribution), c = 0 and u = 0.
y∗ = 4

11
and pN = 1

2
. The left panel shows the equilibrium

posted price set and the actual price set that is charged by the
non-commitment type seller. The right panel displays the cor-
responding consumer surplus set.

cost in equilibrium. Correspondingly, the lowest price that is charged by the non-

commitment type seller decreases as ∆ decreases, since the seller is increasingly re-

stricted by regulation to charge arbitrarily. Overall, consumer surplus increases when

∆ decreases due to regulation’s direct effect of restricting the price difference.

In the region of strict regulation (∆ ≤ y∗), deviation is profitable for the seller,

as shown in Lemma 2.2. The non-commitment type obtains full commitment profit,

which is invariant with respect to ∆. The best deviation profit for the commitment
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type is acquired by posting and charging y∗−∆, as it is the highest price that attracts

consumers to visit, when consumers consider the seller to be a non-commitment type.

It follows that deviation becomes more profitable as ∆ decreases. Stricter regulation

mitigates the commitment type’s concern of being perceived as a non-commitment

type and requires a higher posted price for the commitment type to stay in equilib-

rium. In addition, the price difference between two types of seller when deviation

occurs is ∆. Therefore, regulation’s direct effect on restricting the surcharge over the

posted price is overshadowed by the indirect effect on providing commitment device

and mitigating seller’s concern to deviate. Altogether, consumer surplus decreases

when ∆ decreases.

Consequently, Proposition 2.4 implies that there exists an interior optimal reg-

ulation level (∆ = y∗) for consumer surplus and social welfare in terms of set sense.

At the optimal level of regulation, the commitment type seller adopts large price pro-

motion while the non-commitment type seller is restricted to charge arbitrarily. Since

all consumers visit the seller in equilibrium, social welfare is determined by volume

of trade and moves along the same direction with consumer surplus. The seller, on

the contrary, prefers extreme level of regulation. The commitment type benefits from

stricter regulation while the non-commitment type gets hurt by stricter regulation.

On the one hand, regulation’s ability to limit the non-commitment type’s surcharge

over the posted price is advantageous to the commitment type but disadvantageous to

the non-commitment type. On the other hand, regulation reduces the seller’s concern
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of being perceived as a non-commitment type, which is beneficial for both types.13

2.5 Heterogenous levels of commitment

In this section, I investigate how limited commitment influences equilibrium

price, consumer search order and welfare in a duopoly environment. With an addi-

tional seller, consumers face a more complex problem, as they need to decide which

seller to visit first and whether or not to recall a previously visited seller. This com-

plexity reflects back into sellers’ problem and is further complicated by heterogenous

levels of commitment. With heterogeneity among the sellers, a natural question to

ask is which seller posts a lower price. More specifically, does a seller with higher level

of commitment post a lower price and thus get visited by consumers first? It turns

out that whether seller has full commitment or limited commitment plays a crucial

role in determining market outcome.

2.5.1 Environment

There are two sellers, seller 1 and seller 2. Seller i has probability µi to be

the commitment type. At the beginning of the market, sellers simultaneously post a

price costlessly. I let pi denote seller i’s posted price and p−i denote the other seller’s

posted price. Seller i may charge a different price p′i once consumers visit him.

13A platform provider may also want to use regulation to maximize the expected profit.
The highest expected profit along the lower bound of the equilibrium can be achieved either
at no regulation level (∆ ≥ pN ) or at full regulation level (∆ = 0). Which one is adopted
depends on whether the monopolist profit from the non-commitment type solely or the full
commitment profit from both types is higher. The highest expected profit along the upper
bound of the equilibrium may not be achieved at extreme regulation level. It depends on
the shape of the profit function.
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Each consumer has unit demand. A consumer’s value for seller i’s product is

given by yi, which is revealed to the consumer after she visits seller i. yi is drawn

from a common distribution G(y) which has a density function g(y) over the interval

[y, ȳ], identically and independently across consumers and products. Search is costly

and with perfect recall. Each consumer incurs search cost s to investigate each seller’s

product. Outside option and marginal production cost are normalized to 0.

After sellers post prices, consumers engage in sequential search. LetHi(pi,p−i)(p
′
i)

denotes the belief of the final price of seller i when a consumer observes posted price

(pi, p−i). Given the beliefs of the final prices (H1(p1,p2), H2(p2,p1)), actual prices (p′1, p
′
2),

and match values (y1, y2), according to Weitzman (1979)’s Pandora rule, the con-

sumer’s optimal search strategy is as follows:

Seller i’s reservation value of the product is defined similarly as in equation

(2.1)

ri = −s+
∫∞
−∞

∫ ȳ
y

max{ri, yi − p′i}dG(yi)dHi{pi,p−i}(p
′
i).

(i) Search order: the consumer visits the sellers in the decreasing order of ri given

ri is non-negative.

(ii) Stopping: if the consumer decides to visit a seller, assume seller i, then she stops

searching and purchases from seller i if yi − p′i > max{0, r−i}. If the consumer

visits both sellers, then she purchases from the seller who yields highest surplus

max{y1 − p′1, y2 − p′2} given it is non-negative.
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2.5.2 Complete Information: Symmetric Sellers

When both sellers are the commitment type (µ1 = µ2 = 1), the seller who

posts a lower price gets all consumers’ visit first as they are ex-ante identical. Thus

each seller has incentive to undercut the rival’s price to get a discrete jump in de-

mand. However, product differentiation prevents prices equal marginal costs to be an

equilibrium. Therefore, the equilibrium necessarily involves mixed strategies.14

When both sellers are the non-commitment type (µ1 = µ2 = 0), there are

three pure strategy equilibria: one symmetric and two asymmetric. The symmetric

equilibrium is the focus of Wolinsky (1986) and Anderson and Renault (1999), where

the two sellers set the same price and half of the consumers first visit each seller.

The asymmetric equilibrium is the focus of Armstrong et al. (2009), where one seller

(the “prominent” seller) is believed to charge a lower price than the other seller.

In equilibrium, all consumers visit the prominent seller first and their beliefs are

confirmed. The prominent seller indeed charges a lower price because his demand is

more elastic than the non-prominent seller’s: consumers who visit the prominent seller

can choose to continue searching or to take the outside option, while consumers who

visit the non-prominent seller must be disappointed by the prominent seller already.

Equilibrium multiplicity makes it impossible to predict which equilibrium arises.

For simplicity, from now on suppose that y is uniformly distributed on the

unit interval [0, 1]. Then the reservation value is given by y∗ = 1 −
√

2s ≤ 1. When

14The derivation of mixed strategy equilibrium is tedious, even for the case of exponential
distribution. An example can be found in Choi et al. (2016).
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both sellers are the non-commitment type, the symmetric equilibrium price is given

by p∗ =
−2(1+y∗)+

√
(1+y∗)2+4

2
. y∗ − p∗ ≥ 0 is required to guarantee an active market

where all consumers engage in search. Thus, the range of search cost considered here

is 0 ≤ s ≤ 1
8
.

2.5.3 Complete Information: Asymmetric Sellers

Apart from the two complete information cases discussed above, there is a

third case with complete information: one seller is the non-commitment type while

the other seller is the commitment type. This case serves as a building block to study

heterogenous levels of limited commitment. The following proposition describes what

happens in equilibrium.

Proposition 2.5. (i) If seller 1 is the non-commitment type (µ1 = 0) and seller 2 is

the commitment type (µ2 = 1), there exists a unique equilibrium outcome where seller

2 charges a lower price than seller 1.

(ii) The symmetric equilibrium price is ranked in between the asymmetric equilibrium

prices:

p2 ≤ p∗ ≤ p1.

The first part of Proposition 2.5 states that the seller with full commitment

power necessarily charges a lower price and gets visited by all consumers first. In

equilibrium, even if seller 1 posts a lower price than seller 2, all consumers visit seller

2 first, as they believe that seller 1 will charge a higher price than seller 2 upon their

visits. In order to understand this result, suppose that equilibrium prices are equal
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for both sellers. Seller 2 can credibly lower the price by ε to get a discrete jump in

demand, while seller 1 is unable to manipulate consumers’ beliefs. Moreover, suppose

that seller 1 charges a lower price in equilibrium. Then seller 2 has incentive to

undercut seller 1, unless seller 1’s price is low enough such that seller 2 is unwilling

to commit to it. Nevertheless, seller 1 is unable to maintain such a low price due to

lack of commitment. The second part of Proposition 2.5 comes from the observation

that the demand function of the seller in the symmetric equilibrium is a weighted

average of the demand function of the sellers in the asymmetric case and so does the

elasticity.

The equilibrium prices with asymmetric sellers are identical to the asymmetric

equilibrium prices in the case where both sellers are the non-commitment type and

seller 2 is made to be the prominent seller. The equivalence comes from the fact that

as long as the prominent seller is visited first by all consumers, belief of the prominent

seller’s final price no longer matters. Consequently, the prominent seller’s type does

not have impact on the equilibrium prices.

The equivalence among the equilibrium outcome allows me to borrow results

from Armstrong et al. (2009), in which they discuss the impact of prominence on

welfare and the effect of search cost. As full commitment power brings prominence

to the seller, I investigate the implication of their results on injecting commitment

power into the market. The detailed analysis and formal proof of these results can

be found in their paper.

Corollary 2.1. Compared to the symmetric equilibrium of the case where both sellers
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are the non-commitment type, when one seller gains full commitment power, welfare

and consumer surplus is reduced. The commitment type seller gains more profit while

the non-commitment type seller gains less profit. Industry profit is higher when search

cost is small.15

If the platform provider aims to extract sellers’ profits by charging an entry

fee, then whether to grant commitment power to one seller depends on the magnitude

of search cost. On the contrary, if the goal is to maximize social welfare or consumer

surplus, then granting commitment power to one seller is counterproductive. The

welfare implication here is another example where injecting more commitment power

into the market hurts consumers. In the mean time, a seller would like to gain full

commitment power and prevent his rival from gaining it.

The next corollary states the comparative statics result with respect to search

cost. This result is interesting in the sense that in the literature, as discussed in

section 2.3.3, if all the sellers are the commitment type, equilibrium price decreases

in search cost due to the “directed search effect”; while if all the sellers are the non-

commitment type, equilibrium price increases with search cost due to the “hold-up

effect” and “selection effect”.

Corollary 2.2. Both asymmetric equilibrium prices p1 and p2 increase with search

15Armstrong, Vickers and Zhou(2009) argues that there are two reasons for welfare to
fail. First, prominence induces nonuniform pricing, which misaligns consumer and social
planer’s tradeoff between search costs and match values. Second, total output is lower when
one seller is made prominent. The result with individual sellers is not surprising. Industry
profit only rises when the non-prominent seller does not lose too much by being placed later
into the search order: when search cost is small and consumers still visit the non-prominent
seller even if he charges a higher price.
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cost s.

To see why this is the case, fix the commitment type seller’s price and con-

sider a marginal increase in search cost. It follows that the non-commitment type

seller’s price increases due to the “selection effect”: consumers’ decision to continue

searching reflects that they are disappointed with the commitment type seller’s prod-

uct. Conversely, fix the non-commitment type seller’s price, all consumers still visit

the commitment type seller for a marginal increase in search cost. In addition, less

consumers leave the commitment type seller and continue to search. Therefore, the

“hold-up effect” raises the commitment type seller’s price. The absence of “directed

search effect” and the presence of both “hold-up effect” and “selection effect” drive

both prices to increase.

2.5.4 Incomplete Information

Proposition 2.5 states that seller 2, who has more commitment power than his

rival, charges a lower price and becomes the prominent seller. This result continues

to hold when seller 1, the non-commitment type seller, obtains partial commitment

power. However, it breaks down when seller 2 loses full commitment power, as shown

in the following proposition.

Proposition 2.6. (i) If seller 1 has limited commitment (0 < µ1 < 1), and seller 2

has full commitment power (µ2 = 1), there does not exist any equilibrium where seller

1 posts a lower or equal price than seller 2.

(ii) If both seller 1 and seller 2 have limited commitment (µ1, µ2 < 1), there exists
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Figure 2.3: Asymmetric Equilibrium Prices

How equilibrium prices are ranked and change with respect
to the search cost. p∗, the symmetric equilibrium price, is
represented by the green dotted line. The blue dashed line
represents p1, the asymmetric equilibrium price by the non-
commitment type seller. The red solid line represents p2, the
asymmetric equilibrium price by the commitment type seller.

equilibrium where seller 1 posts a lower price, where seller 2 posts a lower price and

where both sellers post the same price, regardless of how µ1 and µ2 are ranked. All

three equilibria in the case where both sellers are the non-commitment type (µ1 =

µ2 = 0) remain as equilibria.

Proposition 2.6 can be illustrated by an example where seller 2 only has 1%

probability to be the commitment type. If somehow consumers believe that seller 2



71

charges a lower price and visit him first, then seller 1 would like to cut price to redirect

consumers’ attention. If seller 1 has full commitment power, the price cut is effective.

Equilibrium that seller 2 charges a lower price does not exist. However, if seller 1 has

limited commitment (even if seller 1 has 99% probability to be the commitment type),

he cannot use price cut to win everyone back because small amounts of uncertainty

concerning the seller’s commitment power takes away the seller’s ability to use price

to direct consumer search.

In order to understand why all three equilibria of the symmetric case carry

through, consider any equilibrium among the three and fix the equilibrium price for

seller 2. If seller 1 is the non-commitment type, he has no incentive to deviate, as

this is the equilibrium in the case where both sellers are the non-commitment type.

If seller 1 is the commitment type, he is believed to be the non-commitment type

when he deviates from the candidate equilibrium, and is thus expected to charge the

candidate equilibrium price. Consequently, it is optimal for the seller 1 to charge

the equilibrium price. Deviation does not work for the commitment type as he loses

his ability to influence consumers’ belief due to limited commitment. Therefore,

consumers’ inferences determine the seller’s pricing decision.

Proposition 2.5 and 2.6 together imply that only the seller with full commit-

ment power can credibly post a low price and guarantee himself a prominent position.

If a seller is able to engage in some costly investment to enhance his level of commit-

ment, unless he is able to gain full commitment, the investment maybe wasteful.
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2.6 Ex-ante Heterogenous Consumers

In this section, I briefly discuss the impact of limited commitment when con-

sumers differ in their match values before they visit the seller. To be specific, I

introduce ex-ante heterogeneity by assuming that a (representative) consumer’s ran-

dom utility for the seller’s product is given by V = X+Y , where X is known to each

consumer before she visits the seller, while Y is revealed to a consumer only after

she visits the seller. The known component X is based on easily observable charac-

teristics, such as brand and basic design. The hidden component Y captures more

precise information about the product, which is available once a consumer inspects

the product more carefully, such as consumer reviews. Here another effect due to lack

of commitment power emerges: the fact that consumers visit the seller reveals infor-

mation about their ex-ante valuations of the product. Given search cost and belief

of the final price, only consumers who have high enough ex-ante valuations visit the

seller. The non-commitment type seller uses this information to determine the final

price upon observing the visits. This is the “selection effect”.

The characterization is complicated with ex-ante heterogenous consumers.

Nevertheless, most of the implications carry through: higher degree of limited com-

mitment enhances market efficiency; stricter regulation may hurt consumers; higher

degree of limited commitment does not bring prominence to the seller. The major

difference regarding implications lies in the effect of the search cost.

Recall that in the benchmark model with ex-ante homogenous consumers, as

discussed in section 2.3.3, the “directed search effect” requires the upper bound of
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the pooling equilibrium price set to decrease when search cost rises in order to keep

consumers. The impact of search cost on the equilibrium price set is monotone.

With presence of ex-ante heterogenous consumers, in contrast, the impact of

the search cost is non-monotone. Simply put, the effect of the search cost on pooling

equilibrium price set is determined by comparing how equilibrium and deviation profit

vary with search cost. The “selection effect” reduces both equilibrium and deviation

profit when search cost rises. Which profit decreases faster depends on the level of

commitment and the magnitude of the search cost. As displayed in Figure 2.4, the

effect of the search cost varies with different parameters. Nevertheless, examining the

limiting cases provides clean results, which are discussed in detail in the appendix.

In this information age, reducing search cost and providing information to

consumers can be relatively easy with modification of search engine and webpage

design. The comparison of the search cost result with ex-ante homogenous and ex-

ante heterogenous consumers suggests both seller and platform provider to be cautious

in investing in such practices.

2.7 Conclusion

This paper examines the implications of limited commitment power of sell-

ers’ advertised prices, so that consumers are uncertain whether actual prices coincide

with advertised prices. The key to drive all the results is that as long as consumers

have doubt about the seller’s type, the commitment type seller is unable to direct

consumers’ search decisions by posting a lower price, since consumers may assume
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Figure 2.4: The Effect of the Search Cost

F ∼ Laplace(0, 1), G ∼ N(0, 1) (standard normal distri-
bution), c = 0 and u = 0. Different lines represent the
lower bounds of the pooling equilibrium price set for vari-
ous levels of µ. When µ = 0, the solid line also represents
the upper bound of the pooling equilibrium price set.

that this price comes from the non-commitment type seller. This driving force re-

sults in several consequences. I show that a higher degree of limited commitment

leads to higher welfare in the pooling equilibrium. In order to address the inefficiency

caused by lack of commitment power, I study the effect of regulation that restricts

the seller’s deviation from his advertised price. I find that stricter regulation can hurt

consumers and an intermediate level of regulation maximizes consumer surplus and
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social welfare. In an environment where sellers have heterogenous levels of commit-

ment, I demonstrate that only full commitment power can dictate consumers’ search,

while limited commitment, regardless of its level, is incapable of granting a seller the

prominent position. I further check the robustness of these results with an environ-

ment where consumers have ex-ante heterogenous valuations of the product and find

that the implication regarding the effect of search cost is different. With ex-ante

homogenous consumers, the effect is monotone while with ex-ante heterogenous con-

sumers, the effect is non-monotone and relies on level of commitment and magnitude

of search costs.

The model relies on the assumption of fully rational consumers, who can per-

fectly foresee seller’s incentive to deviate from the advertised price. Boundedly ratio-

nal consumers can be introduced into this model by assuming that consumers believe

that the posted price is the actual price before they search. Then the non-commitment

type seller posts a low price to make sure that consumers visit him and charge the op-

timal price. Seller’s type disappears from consumers’ perspective. The commitment

type’s concern of being regarded as a non-commitment type also vanishes. A quick

investigation shows that stricter regulation always helps consumers as the only role it

left with is to restrict seller’s ability to charge arbitrary. Another way of introducing

bounded rationality is to regard the advertised price as a natural reference point for

consumers. When consumers encounter sellers who charge higher price than the ad-

vertised price, they suffer from an increment of price and a deviation from reference

point.
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How level of commitment influences the interaction between seller’s pricing

decision and consumers’ search behavior has important implications for platform

providers and social planers. This paper suggests platform providers be cautious when

they design online shopping environments, as the effects of search cost, regulation and

access to commitment devices for various sellers are non-monotone. Depending on the

goal of platform providers, there may exists different optimal combinations of these

choice variables. For example, how many commitment devices are available in the

market? How much does a seller need to pay to obtain commitment power? Whether

the optimal market structure consists of sellers with various levels of commitment or

not? The framework in this paper may have a wide range of applications in various

contexts.
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CHAPTER 3
SOCIAL LEARNING UNDER NEGATIVE CORRELATION IN AN

EXIT GAME

3.1 Introduction

Learning comes in two ways, private and social. In other words, we learn not

only from our own experiences, but also from others’ behavior. Furthermore, the

two forms of learning are intertwined, because others also learn from our behavior.

Models of strategic experimentation, in which multiple players simultaneously engage

in learning, offer a natural framework to study how private learning and social learning

interact each other and what their economic consequences are.

Most papers in the literature study the case of positive correlation in which

good news to a player is also good news to other players (more precisely, if a player’s

type is good, then the other player’s type is also, or more likely to be, good). Bolton

and Harris (1999), Keller, Rady and Cripps (2005), and Keller and Rady (2010)

consider the case of perfect social learning in which both actions and payoffs are

observable to other players.1 Rosenberg, Solan and Vieille (2007) and Murto and

Välimäki (2011) consider the case of imperfect social learning in which only actions

are observable. Specifically, they analyze an exit game in which each player knows

1They adopt different learning processes. Bolton and Harris (1999) consider a Brownian
learning model, Keller, Rady and Cripps (2005) employ an exponential learning model (in
which Poisson signals arrive at a positive rate only at the good state), and Keller and Rady
(2010) examine a Poisson learning model (in which Poisson signals arrive at different rates
at different states).
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only whether the other players stay in the game or not.2

Negative correlation, with which good news to a player is bad news to the

other player, is equally plausible, but has received disproportionally less attention: to

our knowledge, Klein and Rady (2011) is the only relevant contribution. The form of

correlation is not crucial for social learning per se. In particular, learning is always

valuable, and thus free-riding incentives arise whether correlation is positive or neg-

ative. However, the correlation structure determines the content of social learning

and, therefore, dictates the equilibrium dynamics. Klein and Rady (2011) demon-

strate this in the model with perfect social learning. In their baseline model (with

two players and perfect negative correlation), if both players engage in experimen-

tation, then the players’ beliefs, conditional on no success, stay constant, which has

significant implications for the equilibrium structure and efficiency.3

We consider negative correlation in the context of an exit game. Specifically,

each player decides whether to stay in the game or not (exit). They can exit at any

point in the game, but exit is irreversible.4 Each player is either good or bad. If a

player is good, then he receives lump-sum rewards at a positive Poisson rate. The

2Imperfect social learning raises a non-trivial inference problem regarding the types of the
remaining players. Rosenberg, Solan and Vieille (2007) focus on perfect positive correlation,
but incorporate a more general signal structure, while Murto and Välimäki (2011) consider
a simple signal structure, but allow for imperfect positive correlation.

3Most notably, there exits an equilibrium in which each player plays a simple cutoff
strategy (experimenting if and only if the probability that his type is good exceeds a certain
threshold), and the resulting equilibrium is efficient for a range of parameter values. None
of these results holds in the case of positive correlation (see Keller, Rady and Cripps, 2005).

4In our model, the player who exits first has an incentive to re-enter the game once the
other player also exits. We provide a brief discussion on re-entry in Section 3.6.3.
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other player is bad and never receives a lump-sum reward. Each player prefers staying

if his type is good, but prefers exiting immediately if his type is bad. This model can

be interpreted as an imperfect-learning counterpart to Klein and Rady (2011), or as

a negative-correlation counterpart to Murto and Välimäki (2011).

We provide a closed-form characterization of the unique (perfect Bayesian)

equilibrium of the model and contrast it to the unique equilibrium under positive

correlation. In both cases, the equilibrium features two phases. In the first phase,

no player exits, and thus social learning does not occur. Conditional on no success,

a player becomes more pessimistic solely based on his private learning. Once the

players become sufficiently pessimistic, the second phase begins, in which the players

exit at a positive rate, and thus a player learns not only from his own experience, but

also from the other player’s behavior. In both cases, the second phase ends upon a

player’s exit.

One clear difference between positive correlation and negative correlation lies

in the behavior at the end of the second phase. With positive correlation, a player’s

exit triggers the other player’s exit: a player’s exit reveals that he has not succeeded

yet, which makes the other player more pessimistic and, therefore, willing to exit.

With negative correlation, the same news is good news to the other player, who will

then revise up his belief and stay longer in the game.

More importantly, the correlation structure affects the way private learning

and social learning interact and, therefore, the resulting equilibrium dynamics in the

second phase. For the players to remain indifferent between staying and exiting in the
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second phase (which is necessary for them to exit at a positive rate), the benefit of

social learning must compensate increasing pessimism due to private learning. With

positive correlation, the benefit comes in the form of positive information: a player

is more likely to stay in the game when he is good than when he is bad. Therefore,

the fact that a player stays in the game allows the other player to overcome his own

pessimism and be willing to stay in the game. Formally, this translates into the

players’ beliefs, conditional on no success and no exit by the other player, staying

constant and the second phase stretching without a limit. With negative correlation,

the corresponding benefit comes in the form of an increasing amount (speed) of social

learning. A player’s staying is now bad news to the other player, and thus social

learning makes the players more pessimistic. This implies that the players, conditional

on no success and no exit by the other player, necessarily become more pessimistic

over time. This growing pessimism can be compensated only through even more

amount of social learning, which translates into the players, conditional on no success,

exiting the game at an increasing rate over time. Growing pessimism and increasing

(negative) social learning reinforce each other. As a result, under negative correlation,

in stark contrast to the positive-correlation case, the second phase necesssarily ends

by a finite deterministic time (by which one player exits for sure and, therefore, the

players’ conditional beliefs converge to 0).

The rest of the paper is organized as follows. We introduce the model in

Section 3.2 and present two benchmark models, the single-player problem and the

positive-correlation case, in Section 3.3. We analyze the symmetric case (in which
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the two players are ex ante identical) in Section 3.4 and the asymmetric case in Section

3.5. We discuss three relevant extensions in Section 3.6.

3.2 The Model

We set up the model in continuous time. Time starts from 0 and is indexed by

t ∈ R+. There are two players, player 1 and player 2. Per each time unit [t, t + dt),

the players first decide whether to stay in the game or exit the game. Staying is

costly: each player incurs flow cost c per unit time. Exit is costless but irreversible:

once a player exits, he cannot reenter the game.

Each player is either good or bad. If player i is good, then he constantly

receives lump-sum payoff v(> 0) at a Poisson rate λ. If player i is bad, then he never

receives a lump-sum payoff.5 The payoff a player receives when he exits the game is

normalized to 0. In order to avoid triviality, we assume that a player strictly prefers

staying in the game to exiting if his type is good, while the opposite is true if his type

is bad. Formally, we assume that λv > c > 0.

The players are initially uncertain about their types. Denote by pi the prior

probability that player i’s type is good. The players’ types are perfectly negatively

correlated: if player i is good, then player j is bad. It is necessary that p1 + p2 = 1.

This information structure is common knowledge between the players.

5Notice that once a player receives payoff v, he becomes sure that his type is good. This
is a common simplifying assumption in the literature (see, e.g., Keller, Rady and Cripps,
2005; Klein and Rady, 2011; Murto and Välimäki, 2011; Bonatti and Hörner, 2011). It is
well-known that if this assumption is relaxed (i.e., a player may receive payoff v even if her
type is bad), then the analysis becomes significantly more complicated (see, among others,
Keller and Rady, 2010).
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Each player’s action is observable to the other player, but his payoff is not.

This means that when player j stays in the game, player i is not sure whether player

j has already succeeded or not. Once a player receives a lump-sum payoff, it is a

dominant strategy for him to stay in the game. Therefore, player j’s exit is good

news to player i, as it reveals that player j has not succeeded, which is more likely

when player j is bad (i.e., player i is good).

Denote by 0 “stay” and by 1 “exit”. An action profile at time t is then a vector

at = (at1, a
t
2) ∈ {0, 1}2. The public history of the game is then a sequence of action

profiles. Let H t denote the set of all histories until time t, and H0 ≡ ∅. Finally,

define the set of all histories H ≡ ∪tH t.

Each player’s private history consists of the public history and his past realized

payoffs. Since the optimal strategy of a player who has ever received payoff v is

straightforward, it suffices to consider the private histories up to which each player

has not received payoff v. This implies that each player’s strategy can be defined as

a function of the public history. Formally, player i’s pure strategy, conditional on no

success, can be defined as a function si : H → {0, 1}, where si(h
t) represents player

i’s exit decision following history ht. Since exit is irreversible, player i’s strategy si

is admissible only when if si(h
t) = 1, then si(h

s) = 1 for any history hs following

ht. Player i’s mixed strategy is a probability distribution over the set of player i’s

admissible pure strategies.

Each player maximizes his expected discounted sum of payoffs and is risk

neutral. We study perfect Bayesian equilibrium of this game: for both i = 1, 2, player
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i’s strategy is a best response to player j’s strategy after any history ht ∈ H, and the

players’ beliefs after each history are obtained by Bayes’ rule whenever possible.

3.3 Two Benchmarks

This section provides the results for two benchmark models, one without social

learning (i.e., the single-player problem) and the other with positive correlation.

3.3.1 No Social Learning

We first consider the case where a player does not observe the other player’s

action. This case is formally identical to the single-player experimentation problem,

which is familiar in the literature. In particular, the following result is a straightfor-

ward modification of Proposition 3.1 in Keller, Rady and Cripps (2005).

Proposition 3.1. In the absence of social learning, each player stays in the game if

and only if he assigns a greater probability than p∗ to the event that his type is good,

where

p∗ ≡ c

λ
(
v + λv−c

r

) .
Conditional on no success, his belief (the probability that he is good) decreases accord-

ing to ṗ(t) = −λp(t)(1− p(t)). His expected payoff as a function of his belief is equal

to

V (p) =

{
0, if p ≤ p∗,

pλv−c
r

+ c−p∗λv
r

1−p
1−p∗

(
1−p
p

p∗

1−p∗

)r/λ
, if p > p∗.

The result implies that in the absence of social learning, each player’s optimal

strategy takes a simple form: he stays in the game only until his belief reaches p∗. The
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length of time player i stays in the game, denoted by t∗i , can be explicitly calculated

as follows: if pi ≤ p∗, then t∗i = 0 (i.e., immediate exit). Otherwise, his belief must

be p∗ at time t∗i . Therefore,

p∗ =
pie
−λt∗i

pie−λt
∗
i + 1− pi

⇒ t∗i = −1

λ
log

(
1− pi
pi

p∗

1− p∗
)
. (3.1)

For later use, define t∗ ≡ min{t∗1, t∗2}.

3.3.2 Positive Correlation

Now we consider the case where the players’ types are positively correlated: if

player i is good (bad), then player j is also good (bad). This case has been extensively

studied in the literature. In particular, our model is a special case of Murto and

Välimäki (2011), with two players and perfect correlation. Note that the players

should have the same prior beliefs in this case (i.e., p1 = p2).

The following proposition provides a closed-form characterization of the unique

equilibrium.

Proposition 3.2. In the model with perfect positive correlation, there exists a unique

equilibrium. Until time t∗, no player exits and the players’ conditional beliefs p(t)

decrease according to ṗ(t) = −λp(t)(1− p(t)). After time t∗, each player, conditional

on no success, exits at a decreasing rate:

φ(t) =
λp∗(1− pi)e2λt

((1− pi)e2λt + pi)p∗ − pi
,

and the players’ conditional beliefs p(t) stay constant at p∗. If one player exits, then

the other player follows immediately.
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Figure 3.1: Equilibrium Dynamics under Positive Correlation

Each player’s belief p(t) (left) and exit rate φ(t) (right) at time
t, conditional on no success and no exit by the other player. The
dashed line in the left panel represents the players’ beliefs when
they know that both of them have not succeeded by time t (i.e.,
pie
−2λt/(pie

−2λt + 1− pi)).

Proof. See the appendix.

Figure 3.1 illustrates the resulting equilibrium dynamics. Until time t∗, no

player exists. Therefore, each player learns only from his own experience (failure),

updating his belief as in the single-player problem. Once the players’ beliefs reach

p∗, they randomize between staying and exiting at a well-defined rate: if player i

stays for sure, then player j does not learn from player i’s action and, therefore, exits

immediately, unless he has already succeeded and, therefore, knows that his type is

good. This delivers a significant amount of information to player i, who will then

follow player j’s action: conditional on no success, player i exits if player j exits and
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stays if player j stays. This, in turn, provides a lot of information for player j, which

deters player j’s exit in the first place, unraveling the given equilibrium structure.

Following the same logic, it is also clear that no player exits with a positive probability

at each point in time.

The players’ beliefs p(t), conditional on no success and no exit, stay constant

once they reach p∗ (see the left panel of Figure 3.1). There are two opposing effects.

On the one hand, player i’s own failure pushes down his belief: without social learning,

his belief would keep decreasing as in the single-player problem. On the other hand,

player j’s staying is good news to player i: player j is more likely to stay when he is

good than when he is bad. In equilibrium, these two effects are balanced, and thus

p(t) stays constant after t∗. The equilibrium exit rate φ(t) is strictly decreasing over

time (see the right panel of Figure 3.1). This is because each player is more likely to

know his type and, therefore, staying becomes an increasingly better indicator of the

good type as t increases. The exit rate φ(t) converges to λ. This is because in the

limit, player j knows his type for sure, and thus his exiting at rate λ (when his type

is bad) suffices to compensate player i’s own failure and restore player i’s belief back

to p∗.

3.4 Symmetric Negative Correlation

We now study the main model with negative correlation. We first consider

the symmetric case where p1 = p2 = 1/2, which is directly comparable to the case of

positive correlation.
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Evolution of the players’ conditional beliefs. We begin by characterizing

how the players’ beliefs evolve over time. Specifically, we derive how each player’ belief

p(t), conditional on no success and no exit, changes over time when the other player’s

exit strategy is given by φ(t).

Conditional on player i being good, the probability that player i does not

succeed until time t is equal to e−λt. Player j never succeeds and the probability that

player j does not exit by time t is given by e−
∫ t
0 φ(y)dy.

Conditional on player j being good, player i never succeeds. Player j stays

for sure if he has succeeded, but might have exited if success arrives rather late. To

formally derive the relevant probability, let x denote player j’s first success time,

which is exponentially distributed with parameter λ. Player j stays until time

t as long as he has not exited by time min{x, t}, whose probability is equal to

e−
∫min{x,t}
0 φ(y)dy. It follows that the probability that player j stays until time t is

equal to
∫∞

0
e−

∫min{x,t}
0 φ(y)dyd(1− e−λx).

Combining the above two cases, by Bayes’ rule, the probability that player i

assigns to the event that his type is good at time t, conditional on no success and no

exit, is given by

p(t) =
pie
−λte−

∫ t
0 φ(y)dy

pie−λte
−

∫ t
0 φ(y)dy + pj

∫∞
0
e−

∫min{x,t}
0 φ(y)dyd(1− e−λx)

.

Arranging the terms and using the fact that p1 = p2 = 1/2, the expression shrinks to

p(t) =
1

2 +
∫ t

0
e
∫ t
x(λ+φ(y))dyλdx

, (3.2)
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which implies

ṗ(t) = −λp(t)(1− p(t))− φ(t)p(t)(1− 2p(t)). (3.3)

The players’ conditional beliefs p(t) always decrease over time. There are two rea-

sons. First, each player learns from his own failure. The first term in equation (3.3)

represents this effect. Second, each player learns from the other player’s action. Since

player j is more likely to stay when his type is good, player j’s staying is bad news to

player i, further pushing down player i’s belief. This effect is captured in the second

term in equation (3.3).

The players’ conditional value function.

In the symmetric equilibrium, each player’s expected payoff as a function of his

belief p(t) is identical to that without social learning in Proposition 3.1.6 Intuitively,

player i learns from player j’s action only when player j may exit (i.e., φ(t) > 0).

However, if φ(t) > 0, then exit is an optimal strategy for player i. In other words,

social learning occurs only when it is irrelevant to the players’ expected payoffs.

Together with the fact that p(t) is strictly decreasing, this significantly sim-

plifies the analysis. No player exits until his belief reaches p∗. This implies that p(t)

reaches p∗ at time t∗. If t > t∗, then each player’s expected payoff, conditional on no

success and no exit, stays constant at 0: recall that V (p) = 0 if p ≤ p∗ in Proposition

3.1, and p(t) always decreases.

6Murto and Välimäki (2011) prove this result in the model with positive correlation
(Lemma 1 in their paper). Despite the difference in the correlation structure, their argument
applies unchanged to our model with negative correlation. What is crucial for the result is
the irreversibility of exit. The result does not hold if the players can reenter the game.
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To utilize the fact that the players’ conditional expected payoffs remain equal

to 0 after time t∗, we calculate the probability that player i assigns to the event that

player j has not succeeded, conditional on his staying until time t(> t∗). If player i

is good, then player j is bad and, therefore, has not succeeded for sure. If player j

is good, then the probability that he stays and has succeeded before time t is equal

to
∫ t

0
e−

∫ x
0 φ(y)dyd(1− e−λx), while the probability that he stays but has not succeeded

until time t is equal to e−
∫ t
0 (λ+φ(y))dy. Therefore, the total probability that player j

stays but has not succeeded by time t is equal to

p(t) + (1− p(t)) e−
∫ t
0 (λ+φ(y))dy

e−
∫ t
0 (λ+φ(y))dy +

∫ t
0
e−

∫ x
0 φ(y)dyd(1− e−λx)

= p(t) + (1− p(t)) 1

1 +
∫ t

0
e
∫ t
x(λ+φ(y))dyλdx

.

Applying equation (3.2), the probability simplifies to 2p(t).

Combining all the results so far, the following equation holds whenever t > t∗:

0 = V (p(t)) = −cdt+ 2p(t)φ(t)dt · V (0.5)

+(1− 2p(t)φ(t)dt)(p′(t)λdt · (v + e−rdtV (1))

+(1− p′(t)λdt)e−rdtV (p(t+ dt)))

where

p′(t) =
p(t)(1− φ(t)dt)

p(t)(1− φ(t)dt) + (1− p(t)) (1−φ(t)dt)+
∫ t
0 e

∫ t
x(λ+φ(y))dyλdx

1+
∫ t
0 e

∫ t
x(λ+φ(y))dyλdx

.

The left-hand side is a player’s expected payoff when he exits the game, while the

right-hand side is his expected payoff when staying. The right-hand side consists of

four terms: the first term is the flow cost of staying. The second term represents the
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possibility that the other player exits, in which case the player’s belief jumps to 1/2

and he faces the same problem as in Proposition 3.1. The last two terms correspond

to the case where the other player stays in the game. In that case, the player’s belief

updates to p′(t), the player succeeds with probability p′(t)λdt, and his continuation

payoff becomes either V (1) or V (p(t+dt)), depending on whether he succeeds or not.

Arranging the terms, the expression simplifies to

c = 2p(t)φ(t)V (0.5) + p(t)λ(v + V (1))⇔ φ(t) =

c
p(t)
− λ(u+ V (1))

2V (0.5)
. (3.4)

Intuitively, the left-hand side is the marginal cost of staying an instant longer, while

the right-hand side is the corresponding marginal benefit. The latter comes from

the fact that the other player may exit, which occurs at rate φ(t) in case the other

player has not succeeded yet (whose probability is equal to 2p(t)), or the player may

succeed, which occurs at rate λ when his type is good (whose probability is equal to

p(t)). The value of φ(t) is well-defined whenever t ≥ t∗, because c = p∗λ(u+V (1)) ≥

p(t)λ(u + V (1)). It is strictly decreasing in p(t) and, therefore, strictly increasing in

t. Intuitively, player i becomes increasingly pessimistic as he continues to fail, while

player j does not exit. Since this increases player i’s incentive to exit, player j must

exit at an increasing rate, so as to provide a stronger incentive for player i to stay.

Equilibrium characterization.

Combining equations (3.3) and (3.4) yields the following non-linear differential

equation for p(t):

ṗ(t) = −λp(t)(1− p(t))− c− p(t)λ(v + V (1))

2V (0.5)
(1− 2p(t)).
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Arranging the terms leads to

ṗ(t) = − c

2V (0.5)
+

2c+ λ(v + V (1)− 2V (0.5))

2V (0.5)
p(t)− λ(v + V (1))− λV (0.5)

V (0.5)
p2(t).

(3.5)

This is a quadratic first-order differential equation, known as a Riccati equation, with

constant coefficients, and admits a closed-form solution, as reported in the following

lemma for convenience.7

Lemma 3.1. Suppose p(t) is a deterministic function of time t, p(t∗) = p∗, and

satisfies

ṗ(t) = A+Bp(t) + Cp2(t),

where A, B, and C are constant real numbers. The solution to the differential equation

is8

p(t) = −k2

C

k1
k2

k2+Cp∗

k1+Cp∗
e(k1−k2)(t−t∗) − 1

k2+Cp∗

k1+Cp∗
e(k1−k2)(t−t∗) − 1

, (3.6)

7This equation arises in various contexts in macroeconomics and finance. See, e.g.,
Ljungqvist and Sargent (2004) and Nawalkha, Soto and Beliaeva (2007). In most cases,
the structure is either exogenously imposed or obtained as a solution to a linear quadratic
dynamic programming problem (see Chapter 5 in Ljungqvist and Sargent, 2004). We are
unaware of any other model in which a Riccati equation endogenously arises as in our model.

8Equivalently,

p(t) =
p∗ + 2A+Bp∗√

4AC−B2
tan

(
(t− t∗)

√
4AC −B2/2

)
1− 2Cp∗+B√

4AC−B2
tan

(
(t− t∗)

√
4AC −B2/2

) .
Notice that the solution is not well-defined if B2 = 4AC. In that case, the solution is

p(t) =
1

2C
2Cp∗+B − C(t− t∗)

− B

2C
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where

k1 =
B +

√
B2 − 4AC

2
, and k2 =

B −
√
B2 − 4AC

2
.

Applying Lemma 3.1 to equation (3.5) and the resulting solution p(t) to equa-

tion (3.4), we obtain the following result.

Proposition 3.3. In the symmetric case with negative correlation, there exits a

unique equilibrium. Until time t∗, no player exits and the players’ conditional be-

liefs p(t) decrease according to ṗ(t) = −λp(t)(1 − p(t)). After time t∗, the players’

conditional beliefs p(t) decrease according to equation (3.5) (whose solution can be

obtained through Lemma 3.1), and each player exits at rate φ(t), as given in equation

(3.4). If one player exits, then the other player updates his belief to 1/2 and behaves

as described in Proposition 3.1.

Proof. See the appendix.

Figure 3.2 depicts the resulting equilibrium dynamics. As in the positive cor-

relation case, the players, conditional on no success and no exit, exit at a positive rate

from time t∗. Unlike in the positive correlation case, the players’ beliefs p(t) decrease,

while their exit rate φ(t) increases, over time. As explained above, under negative

correlation, both no success (private learning) and no exit by player j (social learning)

make player i more pessimistic about his type, whereas under positive correlation,

they work in the opposite direction and, in equilibrium, exactly cancel each other

out. In order to compensate increasing pessimism, the players exit at an increasing

rate (see the right panel of Figure 3.2). In other words, despite the fact that their
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Figure 3.2: Equilibrium Dynamics under Negative Correlation
with Symmetric Players

The players’ beliefs p(t) (left) and exit rate φ(t) (right) at time
t, conditional on no success and no exit by the other player.
The dashed line in the left panel represents the players’ beliefs
in the absence of social learning (i.e., pie

−λt/(pie
−λt + 1− pi)).

beliefs fall below p∗, they are willing to stay in the game, because they expect to

learn more from the other player’s action. These two effects reinforce each other:

as p(t) decreases, φ(t) must increase. This pushes down p(t) even further, which in

turn leads to even larger φ(t). These effects grow exponentially fast and result in the

players’ beliefs p(t) converging to 0 and the exit rate φ(t) converging to infinity in

finite time (time t). Notice that this does not mean that the players’ beliefs would

indeed become equal to 0. It simply means that one player exits with probability 1

before time t.
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3.5 Asymmetric Negative Correlation

We now consider the asymmetric case where the players assign different prior

probabilities to the event that their type is good. Without loss of generality, we

assume that player 1 is more likely to be good than player 2, that is, p1 > p2(= 1−p1).

In order to avoid triviality, we also assume that p2 > p∗: otherwise, player 2 exits

immediately.

For each i = 1, 2, we denote by Fi(t) the probability that player i exits by

time t, conditional on no success and no exit by player j. We also let φi(t) denote,

whenever possible, player i’s exit rate at time t (i.e., φi(t) = dFi(t)/(1− Fi(t))) and

pi(t) denote the probability that player i assigns to the event that his type is good at

time t, conditional on no success and no exit by player j.

As in the symmetric case, in equilibrium the two distribution functions F1 and

F2 have a common convex support: otherwise, each player’s best response is a pure

strategy. In addition, the minimum of the support must be equal to t∗ = t∗2(< t∗1):

it is the point at which player 2’s belief p2(t) reaches p∗, and thus social learning

must occur for him not to exit immediately. Unlike in the symmetric case, player 1’s

belief p1(t∗) exceeds p∗. This raises a subtle issue. Player 1 strictly prefers staying to

exiting whenever p1(t) > p∗, while player 1’s exit rate must be positive (i.e., player

1’s action must be informative) in order for player 2 to be willing to stay whenever

p2(t) ≤ p∗. As shown shortly, this issue can be resolved by player 2’s exiting with

a positive probability at time t∗, as it makes player 1’s belief p1(t) drop below p∗

instantly, conditional on no exit by player 2.
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We first solve for player 2’s conditional belief p2(t) and player 1’s exit strategy

F1(t) (equivalently, φ1(t)). Since player 1 never exits with a positive probability (i.e,

the distribution function F1 has no atom anywhere), these two can be derived just as

in the symmetric case. We then characterize player 1’s conditional belief p1(t) and

player 2’s exit strategy F2(t).

Player 2’s equilibrium belief and player 1’s equilibrium exit strategy.

Given player 1’s exit strategy φ1(t), conditional on no success and no exit by

player 1, player 2’s belief evolves as follows:

p2(t) =
p2e
−λte−

∫ t
0 φ1(y)dy

p2e−λte
−

∫ t
0 φ1(y)dy + (1− p2)

∫∞
0
e−

∫min{x,t}
0 φ1(y)dyd(1− e−λx)

.

Arranging the terms as in the symmetric case, it follows

ṗ2(t) = −λp2(t)(1− p2(t))− φ1(t)p2(t)
p2 − p2(t)

p2

. (3.7)

Observe that equation (3.3) is a special case of this equation, with p2 = 1/2.

As in the symmetric case, player 2 must remain indifferent between staying

and exiting whenever t ∈ (t∗2, t). Therefore,

c =
p2(t)

p2

φ1(t)V (p2) + p2(t)λ(v + V (1)). (3.8)

This equation corresponds to equation (3.4) in the symmetric case. The only differ-

ences are that the probability that player 2 assigns to the event that player 1 has

not succeeded by time t is equal to p2(t)/p2, instead of 2p2(t), and that once player

1 exits (and thus player 2 knows that player 1 has not succeeded as well), player 2

updates his belief to p2, instead of 1/2.
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Figure 3.3: Equilibrium Dynamics under Negative Correlation
with Asymmetric Players

The players’ beliefs conditional on no success in the asymmetric
case. The dashed line is for player 1, while the solid line is for
player 2.

Combining equations (3.7) and (3.8) leads to the following Riccati equation:

ṗ2(t) = −λp2(t)(1− p2(t))− c− p2(t)λ(v + V (1))

V (p2)
(p2 − p2(t)). (3.9)

As in the symmetric case, a closed-form solution can be obtained by applying Lemma

3.1, together with the boundary condition p2(t∗) = p∗. Given the solution p2(t),

player 1’s equilibrium exit strategy φ1(t) can also be explicitly derived. As in the

symmetric case, p2(t) converges to 0 in finite time.

Player 1’s equilibrium belief and player 2’s equilibrium exit strategy.

Following the same steps as above, we obtain the following equations: when-
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ever t ∈ (t∗, t),

ṗ1(t) = −λp1(t)(1− p1(t))− φ2(t)p1(t)
p1 − p1(t)

p1

, (3.10)

and

c =
p1(t)

p1

φ2(t)V (p1) + p1(t)λ(v + V (1)). (3.11)

Therefore, we again obtain a Riccati equation for p1(t):

ṗ1(t) = −λp1(t)(1− p1(t))− c− p1(t)λ(v + V (1))

V (p1)
(p1 − p1(t)). (3.12)

The difference from equation (3.9) lies in the boundary condition, because, as

explained above, limt→t∗− p1(t) 6= p∗. A necessary condition comes from the initial

observation that the distribution functions F1 and F2 must have a common support.

In particular, denote by t the upper bound of the support. Then, it must be that

p1(t) = p2(t) = 0. Intuitively, if player j, conditional on no success, exits with

probability 1 by time t, then player i has no reason to stay beyond t and must assign

probability 1 to his type being bad (player j’s type being good), conditional on no

success.

The exact value of t can be calculated from the solution to equation (3.9)

(i.e., the value such that p2(t) = 0). Then, the condition that p1(t) = 0 can be

applied to explicitly solve equation (3.12). Given the solution p1(t) over the interval

(t∗, t), player 2’s equilibrium exit rate φ2(t) can be obtained from equation (3.11). A

necessary condition for p1(t) is that p1(t) < p∗ for any t ∈ (t∗2, t]: otherwise, player

1 strictly prefers staying. This condition is guaranteed because p1(t) = p2(t) = 0,

while p2(t) decreases faster than p1(t) before t∗: if p1(t) = p2(t), then |ṗ1(t)| < |ṗ2(t)|,
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because V (p1) > V (p2). Therefore, p1(t) must always stay below p2(t). Intuitively,

player 1, due to the difference in prior beliefs, obtains more from player 2’s exit than

player 2 does from player 1’s exit. Therefore, for them to be simultaneously indifferent

between staying and exiting, player 1 must remain more pessimistic than player 2.

It remains to pin down player 2’s exit probability at time t∗. Let p−1 (t∗) ≡

limt→t∗− p1(t)(> p∗). Player 1’s belief must jump down from p−1 (t∗) to p1(t∗). Con-

ditional on player 1 being good, player 2 never succeeds and, therefore, exits with

probability F2(t∗). Conditional on player 2 being good, player 2 exits only when he

does not succeed by time t∗ and, therefore, with probability e−λt
∗
F2(t∗). It follows

that the probability that player 2 exits at time t∗, F2(t∗), must satisfy

p1(t∗) =
p−1 (t∗)(1− F2(t∗))

p−1 (t∗)(1− F2(t∗)) + (1− p−1 (t∗))(1− e−λt∗F2(t∗))
. (3.13)

We summarize all the results in the following proposition.

Proposition 3.4. In the model with negative correlation (and p1 ≥ p2), there exits

a unique equilibrium. No player exits until time t∗ = t∗2. At time t∗, player 2 exits

with probability F2(t∗) (as calculated in equation (3.13)), which lowers player 1’s belief

p1(t) below p∗. After time t∗, the players’ beliefs, conditional on no success and no

exit, evolve as in equations (3.9) and (3.12), and each player exits at a positive rate

as given in equations (3.8) and (3.11). Player 2’s expected payoff is identical to that

in Proposition 3.1, while player 1 obtains a strictly higher expected payoff than in

Proposition 3.1 whenever p1 > p2 > p∗.

Proof. See the appendix.
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The result shows that social learning can be valuable under asymmetric nega-

tive correlation. More importantly, it illustrates when, and to whom, social learning

is beneficial. As shown in the positive correlation case and the symmetric case, social

learning does not improve the players’ welfare if it occurs gradually. Intuitively, grad-

ual social learning causes excessive delay, which offsets the benefit of social learning.

If social learning occurs fast (as at time t∗ in the asymmetric case), then it allows a

player to enjoy the benefit, without incurring any delay cost. The player who enjoys

the benefit is the one who is more willing to stay in the game and, therefore, relies

less on social learning.

3.6 Discussion

In this section, we explain how to extend our analysis in various dimensions.

For simplicity, we restrict attention to the symmetric case where the players begin

with an identical probability of being good.

3.6.1 Imperfect Negative Correlation

We first consider the case of imperfect negative correlation, in which both

players may be bad. In other words, now there are three possibilities: (i) player 1 is

good, while player 2 is bad. (ii) player 1 is bad, while player 2 is good. (iii) both

players are bad.9 We denote by p0 the prior probability of the last event. Since we

consider the symmetric case, this means that the prior probability that each player

9One can consider the opposite case where both players may be good. The analysis is
almost identical to the one here and, therefore, omitted.
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is good (and the other is bad) is given by pi = (1− p0)/2.

The equilibrium structure is similar to that of perfect negative correlation in

Section 3.4. Let t∗ be the point at which the players’ beliefs reach p∗ in the absence of

social learning (that is, p∗ = pie
−λt∗/(pie

−λt∗ + 1− pi) for i = 1, 2). Then, the players

do not exit until time t∗, while they exit at a positive rate over the interval [t∗, t).

There are two differences regarding buyers’ conditional beliefs. First, player i’s

belief, conditional on no success and no exit by player j, decreases faster than under

perfect negative correlation. This is because player i’s own failure indicates not only

the possibility that player j is good, but also the possibility that both players are

bad. Formally, if t ∈ (t∗, t), then player i’s conditional belief evolves according to

p(t) =
1

2 +
∫ t

0
e
∫ t
x(λ+φ(y))dyλdx+ 2p0

1−p0 e
λt
,

which implies that

ṗ(t) = −λp(t)(1− p(t))− φ(t)p(t)

(
1− 2p(t)

(
1 +

p0

1− p0

eλt
))

. (3.14)

Notice that equation (3.14) coincides with equation (3.3) when p0 = 0, and the right-

hand side is decreasing in p0.

Second, player i’s belief following player j’s exit depends on the time player

j exits: recall that player i’s belief always goes back to pi after player j’s exit under

perfect negative correlation. This is because the probability that both players are

bad, conditional on no player’s success, is strictly increasing over time. Formally, if

player j exits at time t, then player i’s conditional belief updates to

pie
−λt

p0 + pie−λt + pje−λt
=

1
2p0

1−p0 e
λt + 2

<
1

2
.
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Combining this with the fact that player i must remain indifferent between staying

and exiting whenever t ∈ (t∗, t),

c =

(
2 +

2p0

1− p0

eλt
)
p(t)φ(t)V

(
1

2 + 2p0
1−p0 e

λt

)
+ p(t)λ(v + V (1)). (3.15)

Notice that if p0 = 0, then this equation reduces to equation (3.4).

As in Section 3.4, combining equations (3.14) and (3.15) yields a Riccati equa-

tion for p(t). By standard arguments, there exists a unique solution to the equation.

However, we are not able to derive an explicit solution. Technically, this is because,

although the equation is similar to equation (3.5), its coefficients are time-varying,

in which case closed-form solutions are known only for a limited class of Riccati

equations.

3.6.2 More Players

We have restricted attention to the case where there are only two players.

As explained below with the case of three players, the analysis becomes significantly

more complicated in the general N -player case. This is a severe limitation of our

analysis, given that Murto and Välimäki (2011) provide a characterization for the

general case. A major difference is that buyers’ conditional beliefs in the second

phase remain constant even in the general case under positive correlation, which

simplifies the analysis significantly as demonstrated in Section 3.3.2, but vary over

time in an intricate way under negative correlation.

To be concrete, consider the case of three players in which only one of them is

good. Let t∗ be the point at which the players’ conditional beliefs become equal to p∗
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in the absence of social learning (i.e., t∗ is the value such that p∗ = e−λt
∗
/(2 + e−λt

∗
)).

Then, no player exits until time t∗. After time t∗ until one player exits, they exit at

a positive rate. Denote by φ(t) the symmetric exit rate of the players. Then, their

conditional beliefs evolve according to

p(t) =
1

3 + 2
∫ t

0
e
∫ t
x(λ+φ(y))dyλdx

.

Suppose one player exits at time t. This reveals that the player has not succeeded

yet. Then, the remaining players update their conditional beliefs to

p(t) =
1

3 +
∫ t

0
e
∫ t
x(λ+φ(y))dyλdx

.

Once a player exits, the game turns to a two-player game. Importantly, this subgame

involves imperfect negative correlation, because there is a positive probability that the

player who exited is actually good. As explained above, this problem is technically

a lot more challenging than our baseline model, which also points to the difficulty of

further characterizing the three-player case.

Nevertheless, it is possible to infer the limiting equilibrium outcome as the

number of players tends to infinity. Suppose there are N players and it is common

knowledge that M(< N) players are good. Now let both M and N tend to infinity,

while keeping its ratio M/N constant. In the limit, the problem becomes trivial,

because, by the law of large numbers, correlation among players’ types disappears,

and thus there is no social learning. In other words, each player’s problem reduces to

the single-player problem in Section 3.3.1. The problem becomes non-trivial if there

is aggregate uncertainty about the ratio M/N , as in Murto and Välimäki (2011).
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However, again by the law of large numbers, the problem becomes identical to that

of Murto and Välimäki (2011) in the limit as N tends to infinity.

3.6.3 Re-entry

Negative correlation gives rise to an incentive for the player who exits first to

re-enter the game later. To be specific, consider the symmetric case in Section 3.4 and

suppose player j exited first. As shown in Section 3.4, there is a positive probability

that player i exits later. At that point, player j’s belief is equal to 1−p∗, which is even

above 1/2: although it is common knowledge that both players have not succeeded,

player i has experimented longer than player j, and thus player j is more likely to be

good than player i. Therefore, player j is willing to re-enter the game as long as the

re-entry cost does not exceed V (1−p∗). Full characterization is fairly involved, mainly

because the exiting player’s expected payoff is now strictly positive (i.e., Lemma 1

in Murto and Välimäki (2011) no loner applies). However, the following result is

straightforward to establish. Suppose the players can repeatedly re-enter the game

if they pay a fixed cost e > 0 each time. If e ≥ V (1 − p∗), then the equilibrium

without re-entry in Proposition 3.3 remains as an equilibrium. If e < V (1− p∗), then

the players alternately re-enter the game until one player eventually succeeds and,

therefore, stays forever.
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APPENDIX A
APPENDIX TO CHAPTER 1

Proof of Lemma 1.1. Sufficiency: wi− pi > u0 implies that the consumer never takes

an outside option u0, because she is willing to visit at least one seller (vi+z
∗
i −pi > u0)

and make a purchase (vi + zi − pi > u0). Given this, it suffices to show that if

wi − pi > wj − pj, then the consumer never purchases product j.

• Suppose z∗j ≤ zj, which implies that wj = vj + z∗j . The consumer visits seller j

only after seller i because vi+z
∗
i−pi ≥ wi−pi > vj+z

∗
j−pj. Once she visits seller

i, however, she has no incentive to visit seller j because vi+zi−pi > vj+z∗j −pj.

• Suppose z∗j > zj, which implies that wj = vj + zj. In this case, even if she

visits seller j, she either recalls a previous product (vi + zi − pi > vj + zj − pj)

or continues to search (vi + z∗i − pi > vj + zj − pj) and finds a better product

(vi + zi − pi > vj + zj − pj).

Necessity: if wi− pi < u0, then the consumer does not visit seller i (vi + z∗i − pi < u0)

or does not purchase product i even if she visits seller i (vi + zi − pi < u0). If

wi − pi < wj − pj for some j 6= i, then, for the same logic as above, the consumer

never purchases product i.

Proof of Proposition 1.2. Since

(logHσ
i (wσi ))′′ =

(hσi )′(wσi )Hσ
i (wσi )− hσi (wσi )2

Hσ
i (wσi )2

,

it suffices to show that (hσi )′(wσi )Hσ
i (wσi )− hσi (wσi )2 ≤ 0 for all w, provided that σ is
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sufficiently large. Integrate equation (1.2) by parts, we have

Hσ
i (wσi ) =

∫ ∞
wσi −z∗i

Gi(w
σ
i − vσi )dF σ

i (vσi ) + F σ
i (wσi − z∗i ).

By straightforward calculus,

hσi (wσi )

Hσ
i (wσi )

=

∫∞
wσi −z∗i

gi(w
σ
i − vσi )dF σ

i (vσi ) + (1−Gi(z
∗
i ))f

σ
i (wσi − z∗i )∫∞

wσi −z∗i
Gi(wσi − vσi )dF σ

i (vσi ) + F σ
i (wσi − z∗i )

(A.1)

and

(hσi )′(wσi )

hσi (wσi )
=

∫∞
wσi −z∗i

g′i(w
σ
i − vσi )dF σ

i (vσi ) + (1−Gi(z
∗
i ))(f

σ
i )′(wσi − z∗i )− gi(z∗i )fσi (wσi − z∗i )∫∞

wσi −z∗i
gi(wσi − vσi )dF σ

i (vσi ) + (1−Gi(z∗i ))f
σ
i (wσi − z∗i )

(A.2)

Changing the variables with a = F σ
i (vσi ) and r = F σ

i (wσi −z∗i ), equation (A.1) becomes

hσi ((F σ
i )−1(r) + z∗i )

Hσ
i ((F σ

i )−1(r) + z∗i )
=

∫ 1

r
gi((F

σ
i )−1(r)− (F σ

i )−1(a) + z∗i )da+ (1−Gi(z
∗
i ))f

σ
i ((F σ

i )−1(r))∫ 1

r
Gi((F σ

i )−1(r)− (F σ
i )−1(a) + z∗i )da+ r

.

Since V σ
i ≡ σVi, we have F σ

i (vσi ) = Fi(v
σ
i /σ), (F σ

i )−1(r) = σF−1
i (r), fσ((F σ

i )−1(r)) =

fi(F
−1
i (r))/σ, and (fσi )′ (F−1

i (r)) = fi(F
−1
i (r))/σ2. Using these facts and arranging

the terms in the right-hand side above yield

σhσi ((F σ
i )−1(r) + z∗i )

Hσ
i ((F σ

i )−1(r) + z∗i )
=

∫ 1

r
σgi(σ(F−1

i (r)− F−1
i (a)) + z∗i )da+ (1−Gi(z

∗
i ))fi(F

−1
i (r))∫ 1

r
Gi(σ(F−1

i (r)− F−1
i (a)) + z∗i )da+ r

.

Since F−1
i (r)−F−1

i (a) ≤ 0, the denominator converges to r as σ explodes. Integrating∫ 1

r
σgi(σ(F−1

i (r)− F−1
i (a)) + z∗i )da in the numerator by parts yields

Gi(z
∗
i )fi(F

−1(r)) +

∫ 1

r

Gi(σ(F−1
i (r)− F−1

i (a)) + z∗i )df(F−1
i (a)).

Again, since F−1
i (r) − F−1

i (a) ≤ 0, the second term vanishes as σ tends to infinity,

and thus the numerator converges to Gi(z
∗
i )fi(F

−1
i (r)). Therefore,

lim
σ→∞

σhσi ((F σ
i )−1(r) + z∗i )

Hσ
i ((F σ

i )−1(r) + z∗i )
=
fi(F

−1
i (r))

r
.
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Similarly, changing the variables with a = F σ
i (vσi ) and r = F σ

i (wσi − z∗) in equation

(A.2) and following a similar procedure, we have

lim
σ→∞

σ(hσi )′(F−1
i (r) + z∗i )

hi(F
−1
i (r) + z∗i )

=
(1−Gi(z

∗
i ))f

′
i(F

−1
i (r))

fi(F
−1
i (r))

.

Altogether,

lim
σ→∞

σ

[
(hσi )′((F σ

i )−1(r) + z∗i )

hσi ((F σ
i )−1(r) + z∗i )

− hσi ((F σ
i )−1(r) + z∗i )

Hσ
i ((F σ

i )−1(r) + z∗i )

]
=

(1−Gi(z
∗
i ))f

′
i(F

−1
i (r))

fi(F
−1
i (r))

− fi(F
−1
i (r))

r

= (1−Gi(z
∗
i ))

[
f ′i(F

−1
i (r))

fi(F
−1
i (r))

− fi(F
−1
i (r))

r

]
− Gi(z

∗
i )fi(F

−1
i (r))

r
< 0. (A.3)

For any si ∈ (0,∞), Gi(z
∗
i ) ∈ (0, 1) by equation (1.1). The square bracket term

is weakly negative because F is log-concave, thus the entire expression is weakly

negative. Now we show the strict inequality (A.3) holds for all r ∈ [0, 1]. For

r ∈ (0, 1), the strict inequality (A.3) is true because fi(F
−1
i (r))/r > 0 by the

full support assumption. Since fi(F
−1
i (r))/r falls in r by the log-concavity of Fi,

fi(F
−1
i (r))/r > 0 at r = 0, and thus the strict inequality (A.3) also holds for r = 0.

For r = 1, since fi has full support, fi(F
−1
i (r)) falls in r when r is large. Therefore

f ′i(F
−1
i (r))/fi(F

−1
i (r)) < 0 for some r ∈ (0, 1). Since f ′i(F

−1
i (r))/fi(F

−1
i (r)) falls in r

by the log-concavity of fi, f
′
i(F

−1
i (r))/fi(F

−1
i (r)) < 0 when r = 1 and thus the strict

inequality (A.3) holds when r = 1. Altogether, for each r ∈ [0, 1] there is a σ̄r such

that if σ > σ̄r, then (hσi )′(w)/hσi (w) − hσi (w)/Hσ
i (w) < 0 where w = F−1(r). Since

[0, 1] is a compact convex set, there exists σ̄ = maxr∈[0,1] σr ≤ ∞ such that if σ > σ̄,

then (hσi )′/hσi − hσi /Hσ
i < 0 for all r ∈ [0, 1], or equivalently Hσ

i (w) is log-concave for

all w.
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The following Lemma is useful for proving Proposition 1.3.

Lemma A.1. For any a ∈ (0, 1], there exists sa <∞ such that hi(F
−1
i (a))/Hi(F

−1
i (a))

falls in si whenever si ≥ sa.

Proof. Suppose a ∈ (0, 1), and let wi = F−1
i (a). We show that hi(wi)/Hi(wi) falls

in si if and only if si is large. By equation (1.1), ∂z∗i /∂si = −[1 − Gi(z
∗
i )]. Then by

equation (1.3), ∂Hi(wi)/∂si = fi(wi − z∗i ). Therefore,

∂

∂si
log

[
hi(wi)

Hi(wi)

]
=
fi(wi − z∗i )
hi(wi)

[
f ′i(wi − z∗i )
fi(wi − z∗i )

− hi(wi)

Hi(wi)

]
. (A.4)

Suppose the square bracket term in the right-hand side is equal to 0 at some si = sa.

As si rises from sa, f
′
i(wi − z∗i )/fi(wi − z∗i ) falls, because z∗i falls in si and fi is log-

concave. The derivative of the second term in the square bracket with respect to si

is equal to 0 at si = sa. Thus ∂[hi(wi)/Hi(wi)]/∂si ≤ 0 for all si ≥ sa. Equivalently,

∂ (hi(wi)/Hi(wi)) /∂si is reverse single-crossing in si.

To show sa < ∞, it suffices to show ∂(hi(wi)/Hi(wi))/∂si < 0 as si → ∞. If

si →∞, then z∗i → −∞ and the sign of ∂(hi(wi)/Hi(wi))/∂si is the same as

lim
z∗i→−∞

[
f ′i(wi − z∗i )
fi(wi − z∗i )

− hi(wi)

Hi(wi)

]
= lim

z∗i→−∞

[
f ′i(wi − z∗i )
fi(wi − z∗i )

−
∫
fi(wi −min{zi, z∗i })gi(zi)dzi∫
Fi(wi −min{zi, z∗i })gi(zi)dzi

]
= lim

z∗i→−∞

[
f ′i(wi − z∗i )
fi(wi − z∗i )

− fi(wi − z∗i )
Fi(wi − z∗i )

]
< 0.

The last inequality is true as limz∗i→−∞ fi(wi−z∗i )/Fi(wi−z∗i ) = 0 and limz∗i→−∞ f
′
i(wi−

z∗i )/fi(wi − z∗i ) < 0 by the log-concavity of fi. Since ∂(hi(wi)/Hi(wi))/∂si is reverse

single-crossing in si and is strictly negative as si explodes, there exists sa < ∞ such

that hi(wi)/Hi(wi) falls in si for all si > sa.
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Finally, assume a = 1 and let wi = F−1
i (a) = ∞. In this case the right-hand

side of equation (A.4) is strictly negative because limwi→∞ f
′
i(wi−z∗i )/fi(wi−z∗i ) < 0

by the log-concavity of f and limwi→∞ hi(wi)/Hi(wi) = 0. Therefore, hi(wi)/Hi(wi)

falls in si when a = 1.

Proof of Proposition 1.3 . Proof of (i): To show that Hi(wi) is log-concave when si

is large, it suffices to show the reverse hazard rate hi(wi)/Hi(wi) falls in wi when

si is large. Recall that ∂z∗i /∂si = −1/[1 − Gi(z
∗
i )] by equation (1.1) and Hi(wi) =∫∞

wi−z∗i
Gi(wi − vi)dFi(vi) + Fi(wi − z∗i ) by equation (1.2). Thus ∂log(Hi(wi))/∂si =

fi(wi − z∗i )/Hi(wi). Therefore hi(wi)/Hi(wi) can be written as

hi(wi)

Hi(wi)
= [1−Gi(z

∗
i )]
∂log(Hi(wi))

∂si
+

∫∞
wi−z∗i

gi(wi − vi)dFi(vi)∫∞
wi−z∗i

Gi(wi − vi)dFi(vi) + Fi(wi − z∗i )
.

We argue that the right-hand side falls in wi when si is sufficiently large. To see this,

note that an immediate corollary of Lemma A.1 is that ∂log(Hi(wi))/∂wi falls in si

for all wi ≥ u0 > −∞ when si is sufficiently large. Equivalently, ∂log(Hi(wi))/∂si

falls in wi for all wi ≥ u0 when si is sufficiently large. Therefore, the first term in the

displayed equation falls in wi when si is large. It remains to show that the second

term falls in wi. To this end, consider the inverse of the second term[ ∫∞
wi−z∗i

gi(wi − vi)dFi(vi)∫∞
wi−z∗i

Gi(wi − vi)dFi(vi) + Fi(wi − z∗i )

]−1

=

∫∞
wi−z∗i

Gi(wi − vi)dFi(vi)∫∞
wi−z∗i

gi(wi − vi)dFi(vi)
+

Fi(wi − z∗i )∫∞
wi−z∗i

gi(wi − vi)dFi(vi)

=

∫ z∗i
−∞Gi(zi)fi(wi − zi)dzi∫ z∗i
−∞ gi(zi)fi(wi − zi)dzi

+
Fi(wi − z∗i )
fi(wi − z∗i )

fi(wi − z∗i )∫ z∗i
−∞ gi(zi)fi(wi − zi)dzi

.
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The second line applies a change of variable zi = wi − vi. The first term rises in wi

by the log-concavity of fi and Gi. The second term rises in wi by the log-concavity

of Fi and fi. Altogether, the entire expression rises in wi. Since all elements in the

expression are positive, its inverse falls in wi.

Proof of (ii): Since we assume the density function fi(vi) is log-concave, it is

single-peaked in vi. Since fi has full support and is a probability density function,

it cannot be monotone and thus must rises and then falls as vi rises. Thus there

exists ū0 such that f ′i(wi − z∗i ) ≤ 0 for all wi > ū0. It follows that for all wi > ū0,

hi(wi) =
∫
fi(wi −min{zi, z∗i })gi(zi)dzi falls in wi. Thus hi(wi)/Hi(wi) falls in wi for

wi ≥ ū0.

Proof of Proposition 1.4. We prove the last claim in the proof of Proposition 1.4 in the

main text. Index Di(p, u0) by the outside option u0 and let p∗ = (p∗, . . . , p∗). Then,

the right-hand side of equation (1.4) can be rewritten as −∂Log[Di(p, u0)]/∂pi|p=p∗ .

Due to the additive utility specification, Di(p, u0) = Di(p + u0, 0), that is, demand

for each seller stays constant if all prices and −u0 increase by the same amount. This

implies

∂

∂p∗

[−∂Log[Di(p, u0)]

∂pi
|p=p∗

]
=

∂

∂p∗

[−∂Log[Di(p + u0, 0)]

∂pi
|p=p∗

]
=

∂

∂u0

[−∂Log[Di(p + u0, 0)]

∂pi
|p=p∗

]
=
−∂2Log[Di(p, u0)]

∂pi∂u0

|p=p∗ .

Since Di(p, u0) is log-submodular in (pi, u0) by the proof of Theorem 1 in Quint

(2014), the right-hand is positive and thus −∂Log[Di(p, u0)]/∂pi|p=p∗ rises in p∗.



110

For the next proof, recall from Section 5.3 that V ∼ N (0, α2) and Z ∼ N (0, 1−

α2) in the accuracy model.

Proof of Lemma 1.3. It suffices to show there exists a′ ∈ (0, 1) such that ∂h(H−1(a))/∂α <

0 if and only if a > a′. Let Φ denote the standard normal distribution function and φ

denote its density function. Since V ∼ N (0, α2) and Z ∼ N (0, 1−α2), F (v) = Φ(v/α)

and G(z) = Φ(z/
√

1− α2). Inserting these into equation (1.2) and differentiating

H(w) with respect to α yield

Hα(w) ≡ ∂H(w)

∂α
= −

[
1− Φ

(
z∗√

1− α2

)](
w − z∗
α2

)
φ

(
w − z∗
α

)
,

where ∂z∗/∂α can be obtained from equation (1.1) by applying the implicit function

theorem. Differentiating again with respect to w gives

hα(w) ≡ ∂h(w)

∂α
= −

[
1− Φ

(
z∗√

1− α2

)][
1−

(
w − z∗
α

)2
]

1

α2
φ

(
w − z∗
α

)
.

Now observe that

∂h(H−1(a))

∂α
= hα(H−1(a))−Hα(H−1(a))

h′(H−1(a))

h(H−1(a))
.

Let w = H−1(a) and apply Hα(w) and hα(w) to the equation. Then,

∂h(H−1(a))

∂α
=
−1

α2

[
1− Φ

(
z∗√

1− α2

)]
φ

(
w − z∗
α

)[
1− (w − z∗)2

α2
− (w − z∗) h

′(w)

h(w)

]
.

Since V ∼ N (0, α2) and Z ∼ N (0, 1− α2), the density of W = V + min{Z, z∗} is

h(w) =
1√

1− α2

∫ ∞
−∞

φ

(
w −min{z, z∗}

α

)
φ

(
z√

1− α2

)
dz

=
1√

1− α2

∫ ∞
−∞

φ

(
w − z∗
α

+ max{r, 0}
)
φ

(
z∗ − αr√

1− α2

)
dr
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where the second line changes variable r = (z∗ − z)/α. Since ∂φ(x)/∂x = −xφ(x),

h′(w)

h(w)
= −w − z

∗

α2
−
∫∞
−∞max{r, 0}φ

(
w−z∗
α

+ max{r, 0}
)
φ
(
z∗−αr√

1−α2

)
dr

α
∫∞
−∞ φ

(
w−z∗
α

+ max{r, 0}
)
φ
(
z∗−αr√

1−α2

)
dr

.

Applying this to the above equation leads to

∂h(H−1(a))

∂α
∝ −1 +

(
w − z∗
α

)2

+ (w − z∗) h
′(w)

h(w)

= −1 +
(z∗ − w)

α

∫∞
−∞ 1{r≥0}rφ

(
w−z∗
α

+ max{r, 0}
)
φ
(
z∗−αr√

1−α2

)
dr∫∞

−∞ φ
(
w−z∗
α

+ max{r, 0}
)
φ
(
z∗−αr√

1−α2

)
dr

.

The last expression is clearly negative if w > z∗. In addition, it converges to ∞ as

w tends to −∞. For w ≤ z∗, it decreases in w because (z∗ − w) falls in w and the

density φ((w−z∗)/α+max{r, 0}) is log-submodular in (w, r). Therefore, there exists

w′ less than z∗ such that the expression is positive if and only if w < w′. The desired

result follows from the fact that w = H−1(a) is strictly increasing in a.

Proof of Proposition 1.7. Given that there is no outside option, the condition for the

equilibrium price p∗ is given by

1

p∗ − c = n

∫
h(w)dH(w)n−1 = n

∫ 1

0

h(H−1(a))dan−1.

By the implicit function theorem,

∂p∗

∂α
= −(p∗ − c)2n

∫ 1

0

∂h(H−1(a))

∂α
dan−1.

The desired result follows by combining Lemma 1.3 above with the fact that for any

real value function γ : R → R, if
∫ 1

0
γ(a)dan ≤ 0 and there exists a′ such that

γ(a) < 0 if and only if a > a′, then∫ 1

0

γ(a)dan+1 =
n+ 1

n

∫ 1

0

γ(a)adan ≤ 0.
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The last inequality is due to the fact that a is positive and strictly increasing and,

therefore, assigns more weight to the negative portion of γ(a) in the integral (Karlin

and Rubin (1955)). The result follows by letting γ(a) = ∂h(H−1(a))/∂α.

Proof of Proposition 1.8. Let p̄i = pi − ci be product i’s markup. We prove the

claim by contradiction — Assume p̄i < p̄j and show that seller i would deviate

and choose p̄i ≥ p̄j. Let Xi = −max` 6=i{W` − c` − p̄`, u0}. Seller i’s demand is

Di(p) = P (Wi − ci − p̄i > −Xi) = P (Wi − ci + Xi > p̄i). Let Ri be the distribution

function of the random variable Wi − ci + Xi and ri be its density function. Then

Di(p) = 1−Ri(p̄i) and thus seller i’s FOC is

1

p̄i
=
−∂Di(p)/∂p̄i

Di(p)
=

ri(p̄i)

1−Ri(p̄i)
.

To derive a contradiction, it suffices to show ri(p̄i)/[1−Ri(p̄i)] ≤ rj(p̄j)/[1−Rj(p̄j)]

whenever p̄i < p̄j. Recall that Di(p) is log-concave in p̄i and log-supermodular in

(p̄i, p̄j) by Theorem 1.1, thus ri(p̄i)/[1 − Ri(p̄i)] rises in p̄i and falls in p̄j. Similarly,

rj(p̄j)/[1−Rj(p̄j)] rises in p̄j and falls in p̄i. Therefore, it suffice to show ri/[1−Ri] ≤

rj/[1 − Rj] whenever p̄i = p̄j. Fixing p̄i = p̄j and all other markups, if Wi − ci and

Wj − cj have the same distribution, then clearly ri/[1 − Ri] = rj/[1 − Rj]. To show

ri/[1 − Ri] ≤ rj/[1 − Rj] when Wi − ci dominates Wj − cj in the hazard rate and

reverse hazard rate order, it suffices to show (a) ri/[1 − Ri] falls as Wi − ci rises in

the hazard rate order and (b) rj/[1− Rj] rises as Wi − ci rises in the reverse hazard

rate order.
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Proof of (a): First, note that ri/[1−Ri] falls if Wi− ci+Xi rises in the hazard

rate order. By Lemma 1.B.3. in SS,1 if the survivor function of Xi is log-concave,

then Wi− ci +Xi rises in the hazard rate order when Wi− ci rises in the hazard rate

order. To see why the survivor of Xi is log-concave, observe that

P (Xi > x) = P (max
j 6=i
{Wj − cj − p̄j, u0} < −x) =

∏
j 6=i

Hj(cj + p̄j − x)1{u0<−x}

log(P (Xi > x)) =
∑
j 6=i

log(Hj(cj + p̄j − x)) + log(1{u0<−x}) (A.5)

where 1{u0<−x} is an indicator function of the event {u0 < −x}. The left-hand side of

the second line is concave in x because each element in the right-hand side is. This

proves (a).

Proof of (b): Similar to (a), Wj − cj +Xj falls in the hazard rate order as Xj

falls in the hazard rate order by Lemma 1.B.3. in SS because we have assumed the

survivor of Wj is log-concave. It remains to show that Xj falls in the hazard rate

order when Wi − ci rises in the reverse hazard rate order. As Wi − ci rises in the

reverse hazard rate order, the ratio hi(ci + p̄i − x)/Hi(ci + p̄i − x) rises for all x and

thus the slope of log(Hi(ci + p̄i − x)) with respect to x falls at all x. Hence the slope

of log(P (Xj > x)) with respect to x falls for all x by equation (A.5), which implies

Xj falls in the hazard rate order. Altogether, Wj − cj + Xj falls in the hazard rate

order as Wi − ci rises in the reverse hazard rate order.

1Lemma 1.B.3. in SS: Assume the random variables X and Y are such that X dominates
Y in the hazard rate order. If W is a random variable independent of X and Y and has
log-concave survivor function, then X + Z dominates Y + Z in the hazard rate order.
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Proof of Corollary 1.2. We show Wj dominates Wi in the hazard rate order and the

reverse hazard rate order and then use Proposition 1.8 to prove the claim. Since the

likelihood ratio order implies both the hazard rate order and the reverse hazard rate

order by Theorem 1.C.1. in SS, it suffices to show Wj dominates Wi in the likelihood

ratio order. Since Fi = Fj = F and z∗i = z∗j = z∗, the likelihood ratio is

hj(w)

hi(w)
=

∫
f(w −min{z, z∗})gj(z)dz∫
f(w −min{z, z∗})gi(z)dz

=

∫
gj(z)

gi(z)

f(w −min{z, z∗})gi(z)∫
f(w −min{z, z∗})gi(z)dz

dz

The right-hand side can be interpreted as E[gj(X)/gi(X)] where the random vari-

able X has density f(w − min{x, z∗})gi(x). The random variable X rises in the

first-order stochastic dominance sense in w because f is log-concave. The function

gj(X)/gi(X) rises in X because Zj dominates Zi in the likelihood ratio order. There-

fore, hj(w)/hi(w) rises in w, or equivalently Wj dominates Wi in the likelihood ratio

order.

Lemma A.2 below shows that Hi falls in the likelihood ratio order as si rises

under the premises of Corollary 1.3. Therefore, the conclusion of Corollary 1.3 follows

from its premises by (i) Lemma A.2, (ii) the fact that the likelihood ratio order implies

both the hazard and reverse hazard rate order, and (iii) Proposition 1.8.

Lemma A.2. If −f ′i(v) is positive and log-concave for all v > u−z∗i , then hi(w2)/hi(w1)

falls in si for all w2 > w1 ≥ u0.

Proof. Differentiating equation (1.3) yields

hi(w) =

∫ z∗i

−∞
−f ′i(w − z)[1−Gi(z)]dz.
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To prove hi(w2)/hi(w1) falls in si for all w2 > w1 ≥ u0, it suffices to show (∂hi(w)/∂si)/hi(w)

falls in w. Recall that ∂z∗i /∂si = −1/[1−Gi(z
∗
i )]. Thus

∂hi(w)/∂si
hi(w)

= − f ′i(w − z∗i )∫ z∗i
−∞ f

′
i(w − z)[1−Gi(z)]dz

.

Since we assume −f ′i(v) is positive and log-concave for all v > u0 − z∗, −f ′i(w − z)

is log-supermodular in (w, z) for all z ≤ z∗i and w ≥ u0. Therefore, the ratio f ′i(w −

z∗i )/f
′
i(w − z) > 0 rises in w for all z ≤ z∗i and w ≥ u0, and thus [∂hi(w)/∂si]/hi(w)

falls in w for w ≥ u0. Equivalently, hi(w2)/hi(w1) falls in s for all w2 > w1 ≥ u0.

The following lemma is useful for proving Proposition 1.9.

Lemma A.3. Assume F1 = F2 = F , G1 = G2 = G and s1 = s2 = s. The difference

W2 −W1 grows less dispersive as the search cost s rises.

Proof. Consider W2−W1 = V2− V1 + min{Z2, z
∗}−min{Z1, z

∗}. By Theorem 3.B.7

in SS, W2 −W1 grows more dispersive if (a) V2 − V1 has log-concave density and (b)

the difference min{Z2, z
∗}−min{Z1, z

∗} grows more dispersive. Since we have assume

V2 and V1 have log-concave density, so does V2 − V1. Thus (a) is satisfied. To see

(b), let T be the distribution function of the absolute difference Y = |min{Z2, z
∗} −

min{Z1, z
∗}|:

T (y) = P (y ≥ |min{Z2, z
∗} −min{Z1, z

∗}|) = 1− 2

∫
G(min{z, z∗} − y)dG(z).

By the definition of dispersive order, Y grows less dispersive in s if and only if its

quantile function T−1 grows flatter as s rises, namely ∂T−1(a)/∂a falls in s for all
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a ∈ (0, 1). Equivalently, ∂T−1(a)/∂s = −[∂T (y)/∂s]/t(y) falls in y = T−1(a). Differ-

entiating T with respect to y and s yields

∂T−1(a)

∂s
= −∂T (y)/∂s

t(y)
=

−g(z∗ − y)∫
g(min{z, z∗} − y)dG(z)

.

The right-hand side falls in y by the log-concavity of g.

Therefore, Y grows less dispersive as s rises. Since Z1 and Z2 have the same

distribution, the distribution of the random variable min{Z2, z
∗}−min{Z1, z

∗} is sym-

metric around 0, and its quantile function grows steeper as Y grows more dispersive.2

Therefore, min{Z2, z
∗} −min{Z1, z

∗} also grows less dispersive as s rises.

Now we prove p1 ≤ p2 and Proposition 1.9.

Proof of Proposition 1.9. When n = 2 and u0 = −∞, the demand function isDi(p) =∫
1−Hi(w − pj + pi)dHj(w) for i = 1, 2. The first-order condition for seller 1 and 2

are

p1−c1 =

∫
(1−H1(w − p2 + p1))dH2(w)∫

h1(w − p2 + p1)dH2(w)
and p2−c2 =

∫
(1−H2(w − p1 + p2))dH1(w)∫

h2(w − p1 + p2)dH1(w)
.

Define the price difference ∆ ≡ p2 − p1. Seller 1 and 2’s first-order conditions imply

c2 − c1 −∆ =

∫
(1−H1(w −∆))dH2(w)∫

h1(w −∆)dH2(w)
−
∫

(1−H2(w + ∆))dH1(w)∫
h2(w + ∆)dH1(w)

. (A.6)

2To see this, let T̃ be the distribution function of min{Z2, z
∗} −min{Z1, z

∗}. Since the
distribution of min{Z2, z

∗} −min{Z1, z
∗} is symmetric around 0, T̃ (y) = [1− T (−y)]/2 for

y < 0 and T̃ (y) = [1 + T (y)]/2 for y ≥ 0. Thus T̃−1(a) = −T−1(1 − 2a) for a < 1/2 and
T̃−1(a) = T−1(2a − 1) for a ≥ 1/2. Recall that a random variable grows more dispersed
if and only if its quantile function grows steeper at all quantile. Clearly, ∂T̃−1(a)/∂a rises
∀a ∈ (0, 1) if ∂T−1(a)/∂a rises ∀a ∈ (0, 1).
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Easily, the left-hand side falls in ∆. The right-hand side rises in ∆ by the log-concavity

of the demand functions. Therefore, equation (A.6) has a unique solution for ∆.

Now we show p2 − p1 ≥ 0 in equilibrium. Since W1 and W2 have the same

distribution, H1 = H2 = H. Hence
∫
h1(w − ∆)dH2(w) =

∫
h2(w + ∆)dH1(w).

Therefore, the right-hand side of (A.6) is [D1(p)−D2(p)]/
∫
h1(w−∆)dH2(w). Since

c2− c1−∆ ≥ 0 in equilibrium by Corollary 1.1, D1(p) ≥ D2(p) in equilibrium. Since

the distribution of W1 and W2 are the same, D1(p) ≥ D2(p) implies p1 ≤ p2.

Next, we show D1(p) falls and D2(p) rises as H grows more dispersive. Let Q

and q be the distribution function and the density function of the absolute difference

|W2−W1|. Since H1 = H2 = H, the probability P (|W2−W1| ≥ ∆) = 2
∫

[1−H(w+

∆)]dH(w). Hence

Q(∆) = 1− 2

∫
(1−H(w+ ∆))dH(w) and q(∆) = 2

∫
h(w+ ∆)dH(w). (A.7)

Since D1(p) = 1 − D2(p) and Q(∆) = 1 − 2D2(p), Q(p2 − p1) = D1(p) − D2(p).

Therefore, ∂D1/∂p1 = ∂D2/∂p2 = −q(p2−p1)/2. Thus, equation (A.6) can be written

as

c2 − c1 −∆ =
2Q(∆)

q(∆)
⇐⇒ c2 − c1 −Q−1(a) =

2a

q(Q−1(a))
(A.8)

where the second equation applies a change of variable a = Q(∆).

Since Q(∆)/q(∆) rises in ∆ by the log-concavity of the demand functions, the

fraction a/q(Q−1(a)) in equation (A.8) rises in a. As H grows more dispersive, the

absolute difference |W2 −W1| rises in the first-order stochastic dominance sense by



118

Theorem 3.B.31 in SS and |W2 −W1| grows more dispersive by Lemma A.3.3 Thus,

Q−1(a) rises and q(Q−1(a)) falls for all a ∈ [0, 1]. Since the left-hand side falls and

the right-hand side rises in a, the solution of a falls as H grows more dispersive. Since

a ≡ Q(p2− p1) = D1(p)−D2(p) and D1(p) +D2(p) = 1, D2(p) rises and D1(p) falls

as H grows more dispersive.

Proof of Proposition 1.10 . Recall that ∂D1(p)/∂p1 = ∂D2(p)/∂p2 byD1(p)+D2(p) =

1. Since pi − ci = Di(p)/[∂Di(p)/∂pi], we have (p2 − c2)/(p1 − c1) = D2(p)/D1(p).

Therefore, (p2 − c2)/(p1 − c1) decreases in s by Proposition 1.9.

Next, recall from equation (A.8) that the price difference ∆ = p2 − p1 solves

c2 − c1 −∆ =
2Q(∆)

q(∆)

and Q(∆)/2q(∆) rises in ∆ by the log-concavity of the demand functions. Thus,

there is a unique solution for ∆, call it ∆∗. Clearly ∆∗ rises in c2 − c1 by the

displayed equation. We have seen in the last part of the proof of Proposition 1.9

that Q(∆) rises in s for all ∆ ≥ 0. Therefore, if ∂q(∆)/∂s ≤ 0 at ∆ = ∆∗, then

∂∆∗/∂s ≤ 0. Therefore, to prove ∂∆∗/∂s ≤ 0 when c2 − c1 is large, it suffices to

show ∂q(∆)/∂s|∆=∆∗ ≤ 0 when c2 − c1 is large. Since c2 − c1 affects ∂q(∆)/∂s|∆=∆∗

only through ∆∗, and ∆∗ rises in c2 − c1, it suffices to prove ∂q(∆)/∂s ≤ 0 when ∆

is large.

3Let Ω and Ω̃ be the distribution function of W2 −W1 and |W2 −W1| respectively. It is
easy to show Ω̃−1(a) = Ω−1((a+ 1)/2) for all a ∈ (0, 1). Hence Ω̃−1 becomes steeper when
Ω−1 becomes steeper. Therefore Lemma A.3 implies |W2 −W1| grows more dispersive.



119

To this end, let f̃(∆) ≡
∫
f(v)f(∆ + v)dv. Then by equation (A.7)

q(∆)/2 =

∫ ∫
f̃(min{z, z∗} −min{z̃, z∗} −∆)g(z)g(z̃)dz̃dz.

Differentiate with respect to s and uses ∂z∗/∂s = −1/[1−G(z∗)], then

∂q(∆)

∂s
=2

∫ z∗

−∞
[f̃ ′(z − z∗ −∆)− f̃ ′(z∗ − z −∆)]g(z)dz

=2

∫ ∞
0

[f̃ ′(−r −∆)− f̃ ′(r −∆)]g(−r + z∗)dr

This expression is negative when ∆ is large because

lim
∆→∞

[f̃ ′(−r −∆)− f̃ ′(r −∆)] = lim
∆→∞

[f̃ ′(∆− r)− f̃ ′(∆ + r)]

= lim
∆→∞

∫
f(v)[f ′(∆− r + v)− f ′(∆ + r + v)]dv

=

∫
f(v) lim

∆→∞
[f ′(∆− r + v)− f ′(∆ + r + v)]dv ≤ 0.

The first equation is true because f̃ ′(v) = −f̃ ′(−v) by the definition of f̃ . The second

equation uses f̃(∆) ≡
∫
f(v)f(∆ + v)dv. The third equation is by the Dominated

Convergence Theorem, as the absolute value of the integrand is bounded. The in-

equality is true as f ′(∆− r + v)− f ′(∆ + r + v) ≤ 0 when ∆ is large, because:

lim
∆→∞

[
1− f ′(∆ + r + v)

f ′(∆− r + v)

]
f ′(∆−r+v) = lim

∆→∞

[
1− f(∆ + r + v)

f(∆− r + v)

]
f ′(∆−r+v) ≤ 0.

The equation is by L’Hospital’s rule. Since f(v) falls in v when v is big, the fraction

f(∆ + r + v)/f(∆ − r + v) ≤ 1 when ∆ is big. Moreover f ′(∆ − r + v) ≤ 0 if ∆ is

big. Altogether the inequality is true.
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APPENDIX B
APPENDIX TO CHAPTER 2: EX-ANTE HETEROGENOUS

CONSUMERS

B.1 Environment

In this chapter, I analyze the environment with ex-ante heterogenous con-

sumers. All the proofs are contained in Appendix C. Following section 3.2, let x

and y denote the realization of a consumer’s value profile for the product. I assume

that, for each consumer, X is independently and identically drawn according to the

distribution function F and Y is independently and identically drawn according to

the distribution function G. In addition, X and Y are independent of one another.

Finally, both F and G have full support over the real line and have continuously

differentiable density f and g, respectively.

I maintain the following regularity assumption about the distribution functions

F and G through the rest of paper.

Assumption B.1. Both density functions f and g are log-concave.

A consumer’s ex post utility depends on her value for the purchased product

v = x+ y, its actual price p′, and the search cost s if she decides to visit. Specifically,

if a consumer visits the seller and eventually purchases from him, then her ex post

utility is equal to

U(x, y, p′) = x+ y − p′ − s.

The model with ex-ante heterogenous consumers encompasses the situation where the
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seller has uncertainty over consumers’ outside option u, which can be incorporated

into the dispersion of the known component X.

The market proceeds as follows. First, the seller announces price p. Then,

each consumer decides whether to visit based on available information (x, p). If a

consumer decides to visit, she observes (y, p′) and makes her final purchase decision.

B.2 Consumer Behavior

Each consumer makes two decisions: whether to visit and whether to purchase.

The decision to visit depends on the belief of the final price upon observing the posted

price. The belief is pinned down in equilibrium. The decision to purchase relies on

the final price if the consumer visits the seller. Let Hp(p
′) denotes the belief of the

final price p′ when a consumer sees posted price p.

Given the seller’s posted price p and final price p′, consumers’ visiting and

purchasing decisions are summarized by the following inequalities:

(i) Visit strategy: The consumer visits the seller if and only if x ≥ x∗, where x∗ is

the value such that

u = −s+

∫ ∞
−∞

∫ ∞
−∞

max{u, x∗ + y − p′}dG(y)dHp(p
′). (B.1)

(ii) Purchase strategy: The consumer purchases from the seller if and only if x +

y − p′ ≥ u.

When a consumer makes her visiting decision, she compares the reservation

value for the seller and the outside option. As the hidden component, belief of the

final price and the search cost are the same across all consumers, these consumers
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with higher known component x are more likely to visit the seller. Therefore, there

is a cutoff of the known component x∗. A consumer with known component x∗ is

indifferent between taking the outside option directly (the left-hand side of equation

(B.1)) and visiting the seller to have the option of purchasing the product (the right-

hand side of equation (B.1)). Equation (B.1) also shows that consumers tend to

visit the seller less frequently as the unit search cost s increases: as s increases, x∗

increases.

If belief of the final price is degenerate at price pb, the cutoff of the known

component can be written explicitly as x∗ = −y∗ + pb due to the additive-utility

specification, where y∗ is defined by s =
∫∞
y∗

[1−G(y)]dy. Consumers visit the seller

if x+ y∗ − pb ≥ u. It follows that as s increases, y∗ decreases.

B.3 Equilibrium with Complete Information

This section analyzes the two benchmark cases when there is no uncertainty

regarding the seller’s type and makes a comparison between the two cases in terms

of equilibrium price and welfare. The results in this section will be useful for later

analysis for comparison purpose. This section also discusses the underlying issues

caused by lack of commitment power and the role of full commitment power.

B.3.1 Non-commitment Type: µ = 0

When the seller is the non-commitment type for sure, posted price serves

as a cheap-talk message, since consumers rationally foresee the seller’s incentive to

deviate from the posted price. The untrustworthy price posting reduces the model to
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the traditional consumer search model with unobservable price.

Here I abuse notation by denoting the expected price by p, since posted price

is merely babbling. Given the expected price p and the final price p′, the seller’s

demand is given by

DN(p, p′) = P ( x+ y∗ − u ≥ p & x+ y − u ≥ p′)

=

∫ ∞
p+u−y∗

[1−G(p′ + u− x)]dF (x)

and profit is given by πN(p, p′) = (p′ − c)DN(p, p′). Then p′∗(p) = arg maxp′ πN(p, p′)

is the optimal price charged by the seller given consumers’ expected price p. The

equilibrium price pN is obtained by applying the consistency requirement p′∗(pN) = pN

since consumers are fully rational.

Proposition B.1. If the seller is the non-commitment type for sure (i.e., µ = 0),

then there exists a unique equilibrium, in which the seller charges price pN , where pN

is defined by

1

pN − c
=

∫∞
pN+u−y∗ g(pN + u− x)dF (x)∫∞

pN+u−y∗ [1−G(pN + u− x)]dF (x)
. (B.2)

This equation can be interpreted as a monopoly pricing formula with an endogenous

cutoff which takes into account consumers’ rational expectation of the price. Since

pN is derived by a fixed-point argument, pN is the optimal final price to charge if

consumers believe that it is the final price.

Lack of commitment power leads to a hold-up problem. As the seller is unable

to utilize posted price to direct consumers’ visit, he exploits the visiting consumers
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by charging a relatively high price pN . Consider the limit case where consumers know

their match values before visiting (i.e., G is degenerate). If the price is p, the seller

knows exactly the consumers who are going to visit him: those whose values are above

p + s. The seller will charge the consumers at least p + s and consumers rationally

anticipate this price increase. This process drives the price to increase unboundedly.

The hold-up problem is severe and there is no trade in equilibrium.

In the current setup, pN does not grow unboundedly due to the presence of

the hidden component. When the hidden component is dispersed, those consumers

with high known components may end up with low match values while those who

barely decide to visit may find their match values to be high. Consumers’ private

information of the hidden component prevents the seller from increasing the price

unboundedly. Nevertheless, the hold-up effect is still present. In the next section, it

is shown that commitment is one way to mitigate this hold-up problem.

B.3.2 Commitment Type: µ = 1

When the seller is the commitment type for sure, consumers know exactly

what price they are going to be charged before they search and thus they visit the

seller only to learn their private match values. The credible price posting shrinks the

model to the consumer search literature with observable price.

Consumers use the same price when they make decisions to visit and to pur-

chase as the posted price equals the final price. They visit when x + y∗ − p ≥ u

and purchase when x + y − p ≥ u. The seller’s demand is given by DC(p) =
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P (x+ min{y, y∗} − u ≥ p) and profit is given by πC(p) = (p− c)DC(p).

Lemma B.1. If the seller is the commitment type for sure (i.e., µ = 1), then the

unique profit maximization price is denoted by pC. The market price is lower in the

commitment type case than in the non-commitment type case (i.e., pC ≤ pN). pC is

defined by

1

pC − c
=

[1−G(y∗)]f(pC + u− y∗) +
∫∞
pC+u−y∗ g(pC + u− x)dF (x)∫∞

pC+u−y∗ [1−G(pC + u− x)]dF (x)
. (B.3)

pC is defined by the monopoly pricing formula where the seller has uncer-

tainty about consumers’ value, which is distributed according to the random variable

x + min{y, y∗}. The equation that defines pC differs from the equation that defines

pN by the term [1−G(y∗)]f(pC +u−y∗) in the numerator, which reflects the commit-

ment type seller’s capability of manipulating the price to dictate consumers’ visiting

decision.

To understand how the prices are ranked, compare the price elasticity of de-

mand for each case. The commitment type seller’s pricing decision influences both

consumers’ visiting and purchasing decision, while the non-commitment type’s pric-

ing decision only enters consumers’ purchasing decision, thus the commitment type

seller faces more elastic demand than the non-commitment type seller. From another

perspective, as discussed in the previous section, the non-commitment type seller’s

high price is driven by the hold-up effect, while full commitment power prevents price

from being driven up by eliminating this problem.

As the commitment type seller can always choose to post and charge price

pN , he gains higher profit than the seller with no commitment power. If we compare
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the two scenarios further, the market with full commitment power Pareto dominates

the market with no commitment power. Commitment power generates a lower price,

larger volume of trade and higher profit for the seller.

B.4 Equilibrium with Incomplete Information

In this section, I analyze the market equilibrium when the seller’s type is

uncertain. Depending on whether the posted price is informative, the pure strategy

equilibrium naturally falls into two categories: separating and pooling equilibrium. I

examine each in turn, along with a brief discussion on equilibrium refinement, and

then investigate the effect of search cost. I assume that once the seller deviates from

the candidate equilibrium, he is considered as a non-commitment type. This belief

supports the largest equilibrium set.

B.4.1 Separating Equilibrium

In any separating equilibrium, because consumers can distinguish the commit-

ment type and the non-commitment type from the posted price, the non-commitment

type faces the same problem as in section B.3.1 and charges pN . The commitment

type seller will post and charge pN . If the commitment type seller posts a price lower

than pN , the non-commitment type can attract more consumers and obtain higher

profit by mimicing this price. In the meantime, the commitment type seller is unwill-

ing to separate himself by posting a price higher than pN since pC ≤ pN : a higher

price is further away from his ideal price. The following proposition summarizes these

insights.
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Proposition B.2. There is a continuum of separating equilibria. In any separating

equilibrium, the commitment type seller posts pN and the non-commitment type seller

posts p 6= pN . No matter what price the non-commitment type posts, he charges pN .

Despite the fact that there is a continuum of equilibria, all the equilibria are

equivalent to the one when the seller is non-commitment type for sure (i.e., µ = 0).

The only difference among these equilibria is non-commitment type’s posted price,

which is merely a cheap-talk message. As in a typical separating equilibrium, the

non-commitment type does not benefit from the uncertainty over seller’s type, while

the commitment type is hurt by the presence of the non-commitment type. Both

forces result in an inefficient outcome.

Proposition B.2 argues that when the seller is commitment type for sure,

introducing a small degree of uncertainty renders the market inefficient. It creates a

discontinuity in the sense that market price jumps from pC to pN as µ = 1 changes

to µ = 1− ε. The market with minimally limited commitment works as if there is no

commitment power at all: consumers pay a higher price and seller’s profit decreases.

This conclusion depends on the restriction of separating equilibria. As shown in the

next section, unlike the inefficiency result from the separating equilibrium, the pooling

equilibrium exhibits a different welfare implication.

B.4.2 Pooling Equilibrium

In a pooling equilibrium, upon observing posted price p, consumers know that

there is µ chance that the seller is the commitment type and p is the final price,
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while there is 1− µ chance that the seller is the non-commitment type and charges a

different final price, denoted by φµ(p). Since the posted price is no longer a cheap talk

message and carries partial commitment power to the non-commitment type seller, the

price that the non-commitment type seller charges is closely connected to the posted

price. As the posted price increases, only consumers with higher known components

visit, therefore the non-commitment type seller charges them an even higher price.

Conversely, price difference φµ(p) − p decreases in posted price p, because the non-

commitment type seller is unwilling to deter too many consumers with high known

components from purchasing. The following result summarizes the above discussion.

Proposition B.3. There is a continuum of pooling equilibria. For each µ, there

exists p(µ) such that, ∀p ∈ [p(µ), pN ], there exists an equilibrium in which both types

of seller post p and the non-commitment type seller charges φµ(p) ≥ p. In addition,

the actual price charged by the non-commitment type seller φµ(p) increases in p, while

price difference φµ(p)− p decreases in p.1

The pooling equilibrium price set is determined by comparing equilibrium

profit and deviation profit for both types of seller. When deviation occurs, the seller is

perceived as the non-commitment type, and thus the best deviation profit is obtained

by charging pN . The upper bound of the pooling price set, pN , is pinned down

by both types of seller’s incentive to deviate. Any price above pN is undesirable

to both types of seller as pN generates little demand. Even in the case where the

1The equilibrium posted price set may not be convex. As the main analysis in the
following sections focus on the lower bound of the posted price set, the discussion on the
possibility of non-convexity is relegated to the appendix.
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seller is non-commitment type for sure, the seller does not have incentives to charge

a price higher than pN . Since the commitment type seller always earn less profit

than the non-commitment type for the same posted price, any price above pN is

undesirable to him as well. The lower bound, p(µ), comes solely from the commitment

type’s incentive constraint. Consider the case where the pooling equilibrium posted

price is close to c. The presence of the non-commitment seller raises consumers’

expected price and deters their visit. A low posted price does not generate large

demand for the commitment type seller, and he obtains a profit close to 0. Under

these circumstances, he prefers to deviate even though he will be regarded as a non-

commitment type. In contrast, the non-commitment type seller’s equilibrium profit

is a decreasing function of the posted price: the non-commitment type can charge

visiting consumers arbitrarily, and thus he can replicate at least the same profit from

more visiting consumers.

The following proposition completes the characterization of the pooling equi-

librium.

Proposition B.4. The lower bound of the pooling equilibrium price set, p(µ), de-

creases as the prior probability of being a commitment type seller, µ, increases. The

upper bound, pN , remains unchanged.

In order to understand why the lower bound of the price set decreases, consider

the effect of increasing the level of commitment on the commitment type seller’s

equilibrium and deviation profit. Intuitively, higher level of commitment increases

consumers’ chance of visiting for a given posted price, since the advertised price is
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more credible and they are less likely to be charged additional amount. Additionally,

higher level of commitment mitigates the non-commitment seller’s hold-up problem;

for a given posted price, the non-commitment type seller charges a lower price, which

further lowers consumers’ expected price. Therefore, a higher chance of visiting turns

into a higher equilibrium profit for the commitment type seller. Since deviation profit

is invariant with respect to the level of commitment, as level of commitment rises, a

lower posted price is sustainable in equilibrium.

Figure B.1: Pooling Equilibrium varies with Level of
Commitment under Ex-ante Heterogenous Consumers

The set of pooling equilibrium posted prices given level
of commitment, µ, with F ∼ N(0, 1), G ∼ N(0, 1)
(standard normal distribution), u = 0 and c = 0.
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As illustrated in Figure B.1, as µ → 0, p converges to pN and the pooling

equilibrium set shrinks to a singleton. As µ → 1, p converges to a price which is

lower than pC . Therefore, the pooling equilibrium set is lower hemicontinuous at

µ = 1 but not upper hemicontinuous. This implies that small degree of uncertainty

regrading the seller’s type being the commitment type (i.e., µ = 1 − ε) may benefit

the consumers, since a price lower than pC can be supported in equilibrium, and thus

consumer surplus can be greater than in a market with full commitment power.

The non-commitment type seller benefits from pooling with the commitment

type as partial commitment power mitigates the seller’s hold-up problem. In contrast,

the commitment type suffers from the presence of the non-commitment type. What-

ever price the commitment type posts, consumers expect to be charged some higher

price, and thus visit less frequently. This indicates that the non-commitment type

seller may prefer pooling with the commitment type over obtaining full commitment

power, especially when the level of commitment is high and the posted price is low.

B.5 Equilibrium Refinement

As in other signaling games, this game suffers from equilibrium multiplicity.

In order to see whether one equilibrium is more prominent than others, several re-

finement criteria are applied.

I find that applying the Intuitive Criterion by Cho and Kreps (1987) eliminates

at least the lower part of the pooling equilibrium set. Suppose that the equilibrium

posted price is the lower bound of the posted price set, p(µ), then when consumers
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observe off-path posted price pN−ε, they believe it is posted by the commitment type.

On the one hand, for the non-commitment type seller, the benefit from pooling with

the commitment type at a lower price overweights the benefit from direct commitment

power at a higher price. On the other hand, the commitment type seller receives

deviation profit at p(µ). Deviating to pN − ε while being perceived as a commitment

type is more profitable than staying in equilibrium. Therefore, the Intuitive Criterion

rules out the lower bound. As posted price rises, the unsent message set that is not

preferable to the non-commitment type shrinks while the unsent message set that

is preferable to the commitment type first shrinks then expands. The curvatures of

distribution functions determine how the intersection of two sets changes.

Conversely, applying the Undefeated equilibrium by Mailath et al. (1993) re-

moves the upper part of the pooling equilibrium set. The Undefeated equilibrium is

equivalent to the notion of Pareto efficiency in this model. Since the lower bound,

p(µ), is the most preferable posted price by the non-commitment type seller while the

commitment type seller prefers a posted price, p̂(µ), in between the lower and upper

bound, Undefeated equilibrium rules out the posted price set [p̂(µ), pN ].

As there is no refinement criteria that selects the unique equilibrium and differ-

ent criteria eliminate different subsets of the equilibrium set, I focus on characterizing

the whole equilibrium set in the following analysis. I pay special attention to the lower

bound of the posted price set, as it is the price that generates highest volume of trade.

It is also the price that is most preferred by consumers and the non-commitment type

seller. Separating equilibria are rule out by the Undefeated equilibrium but not by



133

the Intuitive Criterion and thus are still discussed briefly in the analysis.

B.6 The Effect of Search Cost

In this section, I study the impact of increasing search cost on equilibrium

prices. The following lemma summarizes the results when there is complete informa-

tion of seller’s type.

Lemma B.2. If the seller is non-commitment type for sure (i.e., µ = 0), then the

unique equilibrium price, pN , increases as search cost, s, increases; if the seller is com-

mitment type for sure (i.e., µ = 1), then the unique equilibrium price, pC, decreases

as search cost, s, increases. In both cases, profits decrease as s increases.

It turns out that commitment power plays a crucial role in the direction of

this comparative statics exercise. As search cost rises, consumers are less likely to

visit unless they have high known components. The non-commitment type seller

exploits the visiting consumers as much as possible, since he is unable to use price to

dictate consumer’s decision to visit. I call this the “hold-up effect”. In contrast, the

commitment type seller is able to reduce price to direct consumers’ visiting decisions,

mitigating the impact of rising search cost. For this reason, I call this the “directed

search effect”.

As the search cost rises, seller’s profits decrease in both cases, but in different

ways. The non-commitment type suffers from a more severe hold-up problem, while

the commitment type compensates consumers by lowering his price. When the seller

is the non-commitment type, consumers are made worse off with the rise of both
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search cost and price. When the seller is the commitment type, however, there are

cases when an increase in search cost is beneficial to consumers as it is possible for

the seller’s price promotion to dominate the rising search cost.

The two opposite comparative statics results raise an interesting question re-

garding how search cost effects the equilibrium price set with incomplete information

of seller’s type. As the separating equilibrium is equivalent to the case where the

seller is non-commitment type for sure, the effective price increases in search cost.

Similarly, since the upper bound of the pooling equilibrium price is captured by pN

due to both types of seller’s incentive constraints, it increases in search cost. This

implies as search cost rises, higher posted price can be supported in equilibrium.

At the lower bound, however, the effect of increasing search cost is in general

non-monotone, and depends on the level of commitment and the magnitude of the

search cost. Since the lower bound is determined by the commitment type seller’s

incentive constraint, comparing how his deviation and equilibrium profit changes with

search cost is crucial to this exercise. Deviation profit is obtained by being perceived

as a non-commitment type seller and charging pN :

(pN − c)
∫ ∞
pN+u−y∗

[1−G(pN + u− x)]dF (x). (B.4)

As the search cost rises, deviation becomes less profitable for two reasons: the direct

effect of rising search cost and the indirect effect of the hold-up problem. Equilibrium

profit at the lower bound is given by

(p− c)
∫ ∞
x∗(p)

[1−G(p+ u− x)]dF (x). (B.5)
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Fixing the lower bound p, equilibrium profit also decreases due to the direct effect of

rising search cost and the indirect effect of its impact on the non-commitment type

seller’s actual price; φµ(p) increases in search cost s due to the hold-up effect as well.

As both profits move in the same direction, the speed of each profit function’s de-

creasing rate determines how the lower bound moves with search cost.2 If equilibrium

profit decreases faster, then the lower bound increases. Conversely, if deviation profit

decreases faster, then the lower bound decreases. In general, which profit decreases

faster is ambiguous. There is an example in the appendix in which the lower bound

changes direction several times. Nevertheless, examining the limiting cases provide

clean results, as some of the effects vanish.

Proposition B.5. (i) As µ → 0, the lower bound of the pooling equilibrium p in-

creases with search cost s; (ii) As µ → 1, the lower bound of the pooling equilibrium

p decreases with search cost s.

When probability of the seller being the commitment type is small, consumers’

visiting decisions are mainly dictated by the non-commitment type seller’s price: as

µ→ 0, x∗ → pN − y∗ + u. Hence, the direct effect of the search cost and the indirect

effect of the hold-up problem are similar for both deviation and equilibrium profits of

the commitment type seller. The difference between deviation and equilibrium profit

originates from the fact that pN is the optimal price to charge if pN is consumers’

2The speed of how profit decreases is related to the curvature of the profit function,
which can be traced back to the curvature of the primary distribution functions F and G.
Whether pN or φµ(p) increases faster is unclear, because pN = φµ(pN ) and the curvature
of φµ can be concave or convex.
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expected price. Therefore, equilibrium profit decreases faster than the deviation profit

and the lower bound of equilibrium price set increases.

When probability of the seller being the commitment type is large, x∗ →

p− y∗+u, the hold-up effect vanishes on the equilibrium path and equilibrium profit

is only effected by the direct effect of search cost. Consequently, deviation profit

decreases faster than equilibrium profit and a lower price can be sustained in the

pooling equilibrium.

Proposition B.6. (i) As s→ 0, p stays constant as search cost s increases; (ii) As

s→∞, p decreases as search cost s increases.

When search cost is negligible, the difference in commitment power and the

difference between deviation and equilibrium profit vanishes. Thus the lower bound

is invariant with respect to search cost as both the direct effect of search cost and

indirect effect of the hold-up problem disappear. When search cost is sufficiently

large, the lower bound of the equilibrium price set eventually decreases as search cost

increases. Deviation profit decreases fast when search cost is large, as the hold-up

problem is severe. On the equilibrium path, however, commitment power mitigates

the hold-up problem and equilibrium profit does not decrease as fast as deviation

profit. Therefore, a lower pooling price can be sustained in equilibrium.

In summary, when there is uncertainty over seller’s type, the directed-search

effect, as observed in the case of µ = 1, disappears since the commitment type seller

loses his ability to manipulate consumers’ visiting decisions. The hold-up effect, as

observed in the case of µ = 0, remains and drives the results presented in this section.
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The commitment type seller faces a tradeoff between the hold-up problem both when

pooling with the non-commitment type and when deviating and being perceived as a

non-commitment type seller. Which hold-up problem is more severe depends on the

level of commitment and the magnitude of the search cost.
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APPENDIX C
APPENDIX TO CHAPTER 2: OMITTED PROOFS

Proof of Proposition 2.1. The proof follows directly from the discussion above the

proposition.

Proof of Proposition 2.2. Assumption 2.1 ensures that the profit function is single-

peaked at pN . It follows that for any price between c and pN , conditional on con-

sumers’ visits, the seller earns positive profit. µ̂ and p̄(µ) are defined such that for

each price within the set [c, p̄(µ)], both types of seller obtain positive profit, which

is higher than the deviation profit, 0. In addition, as p̄(µ) < pN and Emax{u, y −

p̄(µ)} > Emax{u, y − pN} from equation (2.3) we know that when µ rises, we need

Emax{u, y − p̄(µ)} to be smaller to keep the equality. Therefore, p̄(µ) increases in

µ.

Proof of Lemma 2.1. The first part follows from the definition of pN . Since pC =

y∗ − u and y∗ decreases in search cost, pC also decreases in search cost.

Proof of Proposition 2.3. From equation (2.3) we know that when s rises, we need

Emax{u, y − p̄(µ)} to be larger to keep the equality. Therefore p̄(µ) decreases in s.

From equation (2.2) we know that as c < pN , Emax{u, y − c} > Emax{u, y − pN}.

When s rises, we need Emax{u, y − c} to increase to keep the equality. Therefore µ̂

increases in s.

Proof of Lemma 2.2. The maximum expected price that let consumers to visit the

seller is y∗. The non-commitment type seller want to charge as much as possible given
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consumers visit him. His profit for different posted prices p is (p+ ∆)[1−G(p+ ∆)]

if p+ ∆ ≤ y∗ and 0 if p+ ∆ > y∗. Given pN > y∗, it follows that the optimal posted

price is p = y∗ −∆.

Proof of Lemma 2.3. The proof of the first part follows the discussion below the

Lemma. For the second part, the non-commitment type posts p such that p+∆ = y∗

and charges y∗ as he does in the case of µ = 0. The commitment type cannot post

any price within the set of [y∗ − ∆, y∗] because the non-commitment type can post

that price as well and obtain higher profit. The commitment type is unwilling to post

any price lower or equal than y∗−∆ because it delivers negative profit to him. There-

fore, the commitment type posts any price higher than y∗ and obtains zero profit in

equilibrium.

Proof of Proposition 2.4. Recall that there exists µ̂ ∈ (0, 1) such that 0 = −s +

µ̂Emax{0, y} + (1 − µ̂)Emax{0, y − pN}. Without regulation, pooling equilibrium

exists for µ > µ̂. The equilibrium pooling posted price set is [0, p̄(µ)]. The exact

bounds for pooling equilibrium under regulation differ across parameters, which can

be divided into the following cases.

(i): µ < µ̂, pooling equilibrium exists when ∆ ≤ ∆∗ where ∆∗ is defined by 0 =

−s+ µEmax{0, y}+ (1− µ)Emax{0, y −∆∗}. It follows that ∆∗ ∈ [y∗, pN ].

If ∆ ∈ [y∗,∆∗], since deviation profit for the commitment type is 0, the lower bound

of the pooling posted price is 0 while the upper bound of the pooling posted price

is p̄∆, which satisfies 0 = −s + µEmax{0, y − p̄∆} + (1 − µ)Emax{0, y − p̄∆ − ∆}.

The corresponding set for actual price charged by the non-commitment type seller
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is [∆, p̄∆ + ∆]. From the equation that defines p̄∆ we know that as ∆ increases, p̄∆

decreases while p̄∆ + ∆ increases. In this region, consumers surplus stays at zero at

the upper bound while consumer surplus decreases with ∆ at the lower bound. Social

surplus decreases with ∆ at the lower bound as well. The commitment type seller

gets worse off as ∆ increases while the non-commitment type seller gets better off as

∆ increases.

If ∆ ∈ [0, y∗], since deviation profit is by charging y∗ − ∆ to the commitment type

seller, the lower bound of the pooling posted price is y∗ −∆ while the upper bound

of the pooling posted price is p̄∆. The corresponding set for actual price charged by

the non-commitment type seller is [y∗, p̄∆ + ∆]. In this region, consumers surplus

stays at zero at the upper bound while consumer surplus increases with rate ∆ at the

lower bound. Social surplus increases with rate ∆ at the lower bound as well. The

commitment type seller gets worse off as ∆ increases while the non-commitment type

seller gets better off as ∆ increases.

(ii): µ > µ̂, pooling equilibrium always exists.

When ∆ is large, the upper bound of the pooling posted price is p̄(µ), which is defined

by 0 = −s + µEmax{0, y − p̄(µ)} + (1 − µ)Emax{0, y − pN}. p̄∆ stays constant at

p̄(µ) as ∆ decreases until ∆ = ∆̃, which is defined by 0 = −s + µEmax{0, y − pN +

∆̃}+(1−µ)Emax{0, y−pN}. If ∆ > ∆̃, the upper bound of the actual price charged

by the non-commitment type seller stays at pN .

If ∆ < ∆̃, p̄∆ satisfies 0 = −s + µEmax{0, y − p̄∆} + (1− µ)Emax{0, y − p̄∆ −∆}.

The upper bound of the actual price charged by the non-commitment type seller is
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p̄∆ + ∆. As ∆ increases, p̄∆ decreases and p̄∆ + ∆ increases.

If ∆ ∈ [y∗, pN ], the lower bound of the pooling posted price is 0 while the lower bound

for the actual price charged by the non-commitment type seller is ∆.

If ∆ ∈ [0, y∗], the lower bound of the pooling posted price is y∗ −∆ while the lower

bound for actual price charged by the non-commitment type seller is y∗.

The welfare results are the same as in Case (i) for different regions.

When µ1 = µ2 = 0, suppose p∗ is the equilibrium price and seller 1 deviates to

p∗
′
> p∗. As consumers believe that both sellers will charge p∗, they visit each seller

with half probability. With probability 1
2
, seller 1 gets visited first and the demand is

1− (y∗ − p∗ + p∗
′
) +

∫ y∗−p∗+p∗′

p∗′
y − p∗′ + p∗dy.

With probability 1
2
, seller 2 gets visited first and the demand for seller 1 is

y∗[1− (y∗ − p∗ + p∗
′
)] +

∫ y∗−p∗+p∗′

p∗′
y − p∗′ + p∗dy.

The aggregate demand for seller 1 is

1

2
(1 + y∗)[1− (y∗ − p∗ + p∗

′
)] +

1

2
y∗2 − 1

2
p∗2.

First order condition with p∗ = p∗
′

gives p∗ =
−2(1+y∗)+

√
(1+y∗)2+4

2
. It can be checked

that large deviation is not profitable.

Proof of Proposition 2.5. In equilibrium, it will never be the case such that p1 = p2.

Since if it is the case, and consumers visit each seller with equal probability, then the

commitment type seller can always deviate to p1− ε and induce all consumers to visit

him first.



142

Suppose in equilibrium p1 < p2 and let ∆ , p2 − p1. Seller 1’s demand is

1− (y∗ − p2 + p1) +

∫ y∗−p2+p1

0

y − p1 + p2 dy,

provided y∗ − p2 + p1 ∈ [0, 1]. Later will check this is indeed satisfied and larger

deviation is not profitable. Seller 2’s demand given his actual price being p′2 is

y∗ − p2 + p1 if p′2 < −y∗ + p2

(y∗ − p2 + p1)[1− (y∗ − p2 + p′2)] +

∫ y∗−p2+p′2

0

y − p′2 + p1 dy if − y∗ + p2 < p′2 < p1

(y∗ − p2 + p1)[1− (y∗ − p2 + p′2)] +

∫ y∗−p2+p′2

p′2−p1
y − p′2 + p1 dy if p1 < p′2 < 1− y∗ + p2∫ 1

p′2−p1
y − p′2 + p1 dy if 1− y∗ + p2 < p′2 < 1 + p1

0 if 1 + p1 < p′2

It can be checked that the maximum occurs at the interval p1 < p′2 < 1− y∗ + p2.

Seller 1’s first order condition gives

p2 =
1− y∗ + y∗2

2
+ 2∆− 3

2
∆2

1−∆

or

p2 = 2p1 −
√
p1

2 + y∗2 − 2y∗ + 3 + 1.

Seller 2’s first order condition gives

p2 = 1− 1

2
y∗ − 1

2
∆

or

p2 =
p1 − y∗ + 2

3
.
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Combine the two first order conditions deliver the equilibrium prices:

∆ =
7− y∗ −

√
17y∗2 − 30y∗ + 49

8

p1 =
−5− 5y∗ + 3

√
17y∗2 − 30y∗ + 49

16

p2 =
9− 7y∗ +

√
17y∗2 − 30y∗ + 49

16

Seller 1’s second order condition is

−3p1 + 2p2 − 2

Seller 2’s second order condition is

−2p1 + 2p2 − 2y∗.

It can be shown that ∆ ≥ 0 and y∗− p2 + p1 ∈ [0, 1]. ∆ first increases then decreases

in y∗. Does seller 1 has incentive to deviate to some price y∗ + p2 > p′1 > p2? The

demand for seller 1 becomes

(y∗ − p′1 + p2)(1− y∗) +

∫ y∗

p′1−p2
y − p′1 + p2 dy,

Seller 1’s profit decreases over this interval. Thus seller 1 has no incentive to deviate.

Both p1 and p2 are higher than p∗. Both p1 and p2 decrease in y∗. Seller 1’s profit is

higher than the profit in the case where both sellers are the non-commitment type.

Seller 2’s profit is lower than the profit in the case where both sellers are the non-

commitment type.

Suppose in equilibrium p1 > p2 and let ∆ , p1 − p2. Seller 1’s demand is

(1− y∗)(y∗ − p1 + p2) +

∫ y∗

p1−p2
y − p1 + p2 dy,
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provided y∗ − p1 + p2 ∈ [0, 1]. Seller 2’s demand given his actual price being p′2 is

1 if p′2 < −y∗ + p1

[1− (y∗ − p1 + p′2)] +

∫ y∗−p1+p′2

0

y − p′2 + p1 dy if − y∗ + p1 < p′2 < p1

[1− (y∗ − p1 + p′2)] +

∫ y∗−p1+p′2

p′2−p1
y − p′2 + p1 dy if p1 < p′2 < 1− y∗ + p1∫ 1

p′2−p1
y − p′2 + p1 dy if 1− y∗ + p1 < p′2 < 1 + p1

0 if 1 + p1 < p′2

We are looking for maximum to occur at the second range. Seller 1’s first order

condition gives

p1 =
y∗ − y∗2

2
−∆ + 1

2
∆2

1−∆

Seller 2’s first order condition gives

p1 =
1− y∗ + y∗2

2
+ 2∆− 3

2
∆2

1−∆

Combine the two first order conditions deliver the tentative equilibrium prices:

∆ =
2 +

√
8y∗2 − 16y∗ + 17

4
> 0

gives negative prices. There cannot exist any equilibrium where p1 > p2.

Proof of the second part comes from Armstrong et al. (2009).

Proof of Proposition 2.6. Proof of part (i).

A). Separating Equilibrium:

Let p1 be posted price for the commitment type seller 1, p′1 be posted price for the
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non-commitment type seller 1, p′′1 be final price for the non-commitment type seller

1, p2 be seller 2’s price.

1). There exists separating equilibrium in which p1 = p′′1 > p2.

The equilibrium in the case of µ1 = 0 and µ2 = 1 remains to be an equilibrium here.

The commitment type seller 1 posts p1. The non-commitment type seller 1 posts any

other price than p1. Consumers believe the non-commitment type seller 1 to charge

p1. Given consumers’ belief, both types of seller 1 has no incentive to deviate from

this equilibrium. So does seller 2.

2). There does not exist any separating equilibrium in which p1 > p′′1 > p2 or

p′′1 > p1 > p2.

In the first case the commitment type will deviate to the non-commitment type’s price

while in the second case the non-commitment type will deviate to the commitment

type’s price.

3). There does not exist any separating equilibrium in which p1 = p2 or p′′1 = p2.

If such equilibrium exists, then seller 2 can always undercut to price p2 − ε and get

all consumers to visit him at first place.

4). There does not exist separating equilibrium in which p1 & p′′1 < p2.

If this is the case, then both types of seller 1 charge the same price. Since seller 1

is visited first, his profit is independent of consumers’ belief. When seller 1 deviates

from his posted price, consumers will still visit him first. Both types of seller 1 face

same problem. Then the situation is identical to the one when µ1 = 0 and µ2 = 1.

There does not exist such equilibrium from previous discussion.
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5). There does not exist separating equilibrium such that p′′1 < p2 < p1 or p1 < p2 <

p′′1.

In the first case the commitment type will deviate to the non-commitment type’s price

while in the second case the non-commitment type will deviate to the commitment

type’s price.

Therefore, the only separating equilibrium exists is equivalent to the equilibrium in

the case of µ1 = 0 and µ2 = 1.

B). Pooling Equilibrium:

Let p1 be the pooling posted price for seller 1, p′1 be the final price that is charged by

the non-commitment type seller 1, p2 be seller 2’s price.

1). There exists pooling equilibrium in which µp1 + (1− µ)p′1 > p2.

The equilibrium in the case of µ1 = 0 and µ2 = 1 remains to be an equilibrium here.

Given consumers’ belief, both types of seller 1 has no incentive to deviate from this

equilibrium. So does seller 2.

2). There does not exist any pooling equilibrium in which µp1 + (1− µ)p′1 = p2.

If such equilibrium exists, then seller 2 can always undercut to price p2 − ε and get

all consumers to visit him at first place.

3). There does not exist any pooling equilibrium in which µp1 + (1− µ)p′1 < p2.

If such equilibrium exists, there are several cases.

1’. p1 & p′1 < p2

If this is the case, then both types of seller 1 charge the same price. Since seller 1

is visited first, his profit is independent of consumers’ belief. When seller 1 deviates



147

from his posted price, consumers still visit him first. Both types of seller 1 face same

problem. Then the situation is identical to the one when µ1 = 0 and µ2 = 1. There

does not exist such equilibrium from previous discussion.

2’. p′1 < p2 and p1 > p2

As seller 1 is visited first, the non-commitment type seller 1 charges the optimal price.

Since p′1 < p2, when the commitment type seller deviates and is considered as the

non-commitment type seller, he still gets visited first. Then the commitment type

seller 1 strictly prefers to deviate to price p′1. Thus this can not be an equilibrium.

3’. p1 < p2 and p′1 > p2

Consider the non-commitment type seller 1. His demand is 1 − (y∗ − p2 + p′1) +∫ y∗−p2+p′1
p′1

y1 − p′1 + p2 dy1. First order condition gives

p′1 =
1− y∗ + y∗2

2
+ p2 − p22

2

2
.

Consider seller 2, with probability µ, his opponent is the commitment type while with

probability 1− µ, his opponent is the non-commitment type. His demand is

µ[(y∗ − p2 + p1)(1− y∗) +

∫ y∗

p2

y2 − p2 + p1 dy2]

+(1− µ)[(y∗ − p2 + p′1)(1− y∗) +

∫ y∗

p2

y2 − p2 + p′1 dy2]

= [y∗ − p2 + µp1 + (1− µ)p′1](1− y∗) +

∫ y∗

p2

y2 − p2 + µp1 + (1− µ)p′1 dy2

First order condition gives

µp1 + (1− µ)p′1 =
y∗ − y∗2

2
− 2p2 + 3p22

2

2p2 − 1
.
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In equilibrium,

µp1 =
y∗ − y∗2

2
− 2p2 + 3p22

2

2p2 − 1
− (1− µ)

1− y∗ + y∗2

2
+ p2 − p22

2

2
.

Check p1 < p2, p′1 > p2 and µp1 + (1 − µ)p′1 < p2. It is shown in the following that

the intersection of these three inequalities is empty. Thus there does not exist such

an equilibrium.

p′1 > p2 ⇔ −1−
√
y∗2 − 2y∗ + 3 < p2 < −1 +

√
y∗2 − 2y∗ + 3

µp1 + (1− µ)p′1 < p2 ⇔ p2 > −1 +
√
−y∗2 + 2y∗ + 1

Combine these two inequalities gives−1+
√
−y∗2 + 2y∗ + 1 < p2 < −1+

√
y∗2 − 2y∗ + 3.

Notice that −1 +
√
y∗2 − 2y∗ + 3 ≤ 1

2
given y∗ ∈ [1

2
, 1].

p1 < p2 ⇔ 2(1− µ)p3
2 − (3µ− 1)p2

2 + 2[µ(y∗2 − 2y∗ + 3)− y∗2 + 2y∗ − 5]p2 − µ(y∗2 −

2y∗ + 2)− y∗2 − 2y∗ + 2 > 0, the left hand side of the inequality first increases then

decreases then increases with respect to p2.

Maximum occurs at p2 =

√
12µ2y∗2−24µ2y∗+45µ2−24µy∗2+48µy∗−102µ+12y∗2−24y∗+61−3µ+1)

6(µ−1)
<

0, minimum occurs at p2 =
−
√

12µ2y∗2−24µ2y∗+45µ2−24µy∗2+48µy∗−102µ+12y∗2−24y∗+61−3µ+1)

6(µ−1)
≥

−1+
√
y∗2 − 2y∗ + 3. Thus the left hand side of the inequality decreases on the range

−1 +
√
−y∗2 + 2y∗ + 1 < p2 < −1 +

√
y∗2 − 2y∗ + 3. It can be shown that the sign

is negative for p2 = −1 +
√
−y∗2 + 2y∗ + 1 when y∗ ∈ [1

2
, 1].

Therefore, there only exists pooling equilibrium where seller 2 is visited first.

Proof of part (ii).

1). Suppose seller 1 is believed to charge p1 and seller 2 is believed to charge p2. Both

types of sellers do not have incentive to deviate because once they deviate, they are

believed to be the non-commitment type seller while p1 and p2 are the equilibrium
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prices when both types of seller are the non-commitment type. Therefore, the optimal

prices given these beliefs coincide with p1 and p2.

2). Suppose both seller 1 and seller 2 are believed to charge p∗ and visited with equal

chance, then both types of seller 1 and 2 has no incentive to deviate as they are

believed to charge p∗. p∗ is the optimal price to charge when p∗ is the expected price

and when both sellers are visited with equal chance.

Proof of Proposition B.1. The first order condition is characterized by equation (B.2).

The right-hand side of (B.2) can be rewritten as∫∞
u−y∗

g(u−k)
1−G(u−k)

[1−G(u− k)]f(k + pN)dk∫∞
u−y∗ [1−G(u− k)]f(k + pN)dk

by change of variable: k = x−pN . g(u−k)/(1−G(u−k)) falls in k by the log-concavity

of G. Therefore the right-hand side rises in pN as the random variable induced by

the probability density [1−G(u−k)]f(k+pN) falls in pN in the first order stochastic

dominance sense. This is because of [1−G(u−k2)]f(k2+pN)/[[1−G(u−k1)]f(k1+pN)]

falls in pN for all k2 > k1, or equivalently, f(k2 + pN)/f(k1 + pN) falls in pN , which is

implied by the log-concavity of f .

Proof of Lemma B.1. Demand function
∫∞
p+u−y∗ [1−G(p+u−x)]dF (x) can be rewrit-

ten as
∫∞
u−y∗ [1−G(u−k)]f(k+p)dk, which is log-concave in p due to the log-concavity

of f and g. Thus the profit function is single-peaked and maximizer is uniquely de-

fined.

Comparing two first order conditions (B.3) and (B.2), notice that both the left-hand

side of (B.3) and (B.2) are decreasing while both the right-hand side of (B.3) and
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(B.2) are increasing. The right-hand side of (B.3) is always higher than that of (B.2)

for the same price. Thus we have pN ≥ pC .

Proof of Proposition B.2. It only need to be shown that the non-commitment type

seller’s profit function is a decreasing function of the expected price. Then it follows

that the non-commitment type would always mimic the commitment type’s posted

price if the posted price is lower than pN . The non-commitment seller’s profit function

is given by (p′− c)
∫∞
p+u−y∗ [1−G(p′+u−x)]dF (x), where p is the expected price and

p′ is the actual price. Take derivative with respect to p gives (p′ − c)(−1)[1−G(p′ +

y∗ − p)]f(p+ u− y∗) < 0.

Proof of Proposition B.3. In a pooling equilibrium, the actual price charged by the

non-commitment type seller is denoted by φµ(p) given posted price p. As consumers

cannot distinguish seller’s type, upon observing the posted price, they assign prior

belief to the final price. Then the cutoff of the known component x∗ can be expressed

as:

u = −s+ µ

∫ ∞
−∞

max{u, x∗ + y − p}dG(y) + (1− µ)

∫ ∞
−∞

max{u, x∗ + y − φµ(p)}dG(y),

which is equivalent to

s = µ

∫ ∞
p+u−x∗

1−G(y)dy + (1− µ)

∫ ∞
φµ(p)+u−x∗

1−G(y)dy.

First, φµ(p) is uniquely defined. The non-commitment type seller’s profit in a pooling

equilibrium is πPN(p) = φµ(p)
∫∞
x∗

[1−G(u + φµ(p)− x)]dF (x). φµ(p) is obtained by

applying consistency to the first order condition:∫ ∞
x∗

[1−G(u+ φµ(p)− x)− (φµ(p)− c)g(u+ φµ(p)− x)]dF (x) = 0.
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It can be rewritten as

1

φµ(p)− c =

∫∞
x∗−φµ(p)

g(u−k)
1−G(u−k)

[1−G(u− k)]f(k + φµ(p))dk∫∞
x∗−φµ(p)

[1−G(u− k)]f(k + φµ(p))dk
, (C.1)

which is obtained by rearranging the terms and change of variable: k = x − φµ(p).

The left-hand side of equation (C.1) is decreasing in φµ(p). The right-hand side

of equation (C.1) is increasing in φµ(p), which guarantees the uniqueness. To see

this, notice that g(u−k)
1−G(u−k)

is falling in k. The induced random variable with density

[1−G(u−k)]f(k+φµ(p)) with support [x∗−φµ(p),∞) falls in φµ(p) in the first-order

stochastic dominance sense. This is because (i) [1−G(u−k2)]f(k2+φµ(p))

[1−G(u−k1)]f(k1+φµ(p))
decreases as φµ(p)

increases for ∀k2 > k1, by log-concavity of f . (ii) x∗ − φµ(p) falls in φµ(p), as

∂x∗

∂φµ(p)
=

(1− µ)[1−G(φµ(p)− x∗ + u)]

(1− µ)[1−G(φµ(p)− x∗ + u)] + µ[1−G(p− x∗ + u)]
≤ 1.

Second, φµ(p) increases in p. As the induced random variable with density [1−G(u−

k)]f(k + φµ(p)) with support [x∗ − φµ(p),∞) rises in p in the first-order stochastic

dominance sense, the right-hand side of equation (C.1) falls in p and results in a

higher φµ(p). By doing change of variable ψµ(p) = φµ(p)− p and repeating the same

argument we can show that ψµ(p) decreases in p. Combining the fact that φµ(p)

increases in p and ψµ(p) = φµ(p) − p decreases in p, notice that φµ(p) only cross p

once, at pN . φµ(p) > p if p < pN while φµ(p) < p if p > pN .

Third, the non-commitment type seller’s equilibrium profit is decreasing in the posted
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price p.

∂πPN(p)

∂p
=

∂φµ(p)

∂p

∫ ∞
x∗

[1−G(u+ φµ(p)− x)]dF (x)

+ (φµ(p)− c)[−∂x
∗

∂p
][1−G(−x∗ + u+ φµ(p))]f(x∗)

+ (φµ(p)− c)∂φµ(p)

∂p

∫ ∞
x∗
−g(u+ φµ(p)− x)]dF (x) < 0

since the summation of first term and the third term is 0 by first order condition and

the second term is negative. As p rises, if fixing φµ(p), then x∗ decreases. Since φµ(p)

rises as p increases, x∗ further decreases. Thus the non-commitment type’s pooling

equilibrium profit is a decreasing function of posted price. As deviation profit is

given by πPN(pN), the admissible posted price set to the non-commitment type seller

is [c, pN ].

Last, the lower bound of the pooling price set, p(µ), is determined by the commitment

type seller’s incentive constraint. The commitment type seller’s equilibrium profit is

defined by

πPC(p) = (p− c)
∫ ∞
x∗

[1−G(u+ p− x)]dF (x).

= (p− c)
∫ ∞
−∞

[1−G(u+ p− x)]1{x ≥ x∗}dF (x)

Both (p − c) and [1 − G(u + p − x)] are log-concave in p. 1{x ≥ x∗} is log-concave

in x∗ and decreases in x∗. Thus if x∗ is convex in p, then log-concavity is preserved

by multiplication and integration. It can be shown in various numerical examples

including common distribution as Gaussian, Laplace and Gamma distributions that

x∗ is convex in p. However, for the case of uniform distribution, it is violated. Molli-

fication of the uniform distribution to the entire real line can preserve this example.
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Simulation results show that the profit function of the commitment type seller is

single-peaked within the log-concave family (including uniform distribution). Even

though the admissible posted price set to the commitment type seller may not be

convex, existence of this set can still be shown. First notice that ∂πPC(p)
∂p
|p≥pN ≤ 0

by using the first order condition of pN . Along with the fact that φµ(pN) = pN , we

know that the commitment type’s equilibrium profit intersects with deviation profit

at pN . Second, notice that ∂πPC(p)
∂p
|p=c ≥ 0 and equilibrium profit at p = c is 0. Thus

there must exists p(µ) such that the πPC(p(µ)) = πN(pN , pN) and ∂πPC(p)
∂p
|p=p(µ) ≥ 0

by continuity. Thus the largest admissible posted price set to the commitment type

seller is [p(µ), pN ]. The intersection of both type seller’s admissible posted price set

gives [p(µ), pN ]. Simulation results are available upon request.

Proof of Proposition B.4. As the lower bound of the pooling posted price set is where

the commitment type seller is indifferent between deviation or not, let K(p) =

πPC(p) − πN(pN , pN), then p is the solution to K(p) = 0. By implicit function

theorem,

∂p

∂µ
= −∂K

∂µ
/
∂K

∂p
|p=p.

Notice that

∂K

∂µ
|p=p = −(p− c)∂x

∗

∂µ
|p=p[1−G(p− x∗ + u)]f(x∗),

∂K

∂p
|p=p =

∂πPC
∂p
|p=p ≥ 0.

The last inequality follows by the fact that the derivative of πPC with respect to p

is positive at the lower bound. Thus the sign of
∂p

∂µ
only depends on the sign of the
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term ∂x∗

∂µ
|p=p. First, if φµ(p) is fixed, then as µ rises, x∗ decreases.

∂x∗

∂µ
|p=p =

∫∞
φµ(p)−x∗ 1−G(y)dy −

∫∞
p−x∗ 1−G(y)dy

µ[1−G(p− x∗)] + (1− µ)[1−G(φµ(p)− x∗)] ≤ 0

since p < pN and p ≤ φµ(p).

Second, as µ rises, φµ(p) decreases. This can be seen from equation (C.1), which

defines φµ(p). As the random variable with density [1−G(u− k)]f(k + φµ(p)) with

support [x∗−φµ(p),∞) falls in the first-order stochastic dominance sense. The right-

hand side of equation (C.1) rises as µ rises. Thus φµ(p) decreases.

Third, as already shown that φµ(p) rises, x∗ increases. The conclusion is obtained by

combining all three facts.

Proof of Lemma B.2. Equation (B.2) defines pN . Following proof of proposition B.1,

as s rises, y∗ decreases, the random variable induced by the probability density

[1−G(u−k)]f(k+pN) with support [u−y∗,∞) rises in y∗ in the first order stochastic

dominance sense. Thus the right-hand side of (B.2) decreases in s and pN increases

with s. The sigh of the derivative of profit function for the non-commitment type

seller is same as −(∂pN/∂y
∗− 1) ≥ 0, as it can be shown that ∂pN/∂y

∗ ≤ 1 by doing

a change of variable.

Proof of the second statement follows from proposition 5 in Choi et al. (2016). They

show that the random variable X + min{Y, y∗} falls in the first-order stochastic dom-

inance and becomes less dispersive as s increases, which results in pC to fall with

s.

Proof of Proposition B.5. Proof of part (i):
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The difference between equilibrium profit and deviation profit is defined by K(p) =

πPC(p)− πN(pN , pN) and lower bound p is such that K(p) = 0. By implicit function

theorem,

∂p

∂s
= −∂K

∂s
/
∂K

∂p
|p=p.

Notice that limµ→0 φµ(p) = pN , ∀p and limµ→0 x
∗(p, φµ(p)) = pN − y∗,∀p. It fol-

lows that limµ→0
∂K
∂p
|p=p = 0 and limµ→0

∂K
∂s
|p=p = 0 because limµ→0 φ

′
µ(p) = 0 and

limµ→0 ∂x
∗(p, φµ(p))/∂s = ∂pN/∂s − ∂y∗/∂s. Thus we use L’Hospital rule to deter-

mine the sign of limµ→0
∂p

∂s
. In the proof we use the fact that limµ→0

∂φµ(p)

∂µ
|p=p = 0

and limµ→0
∂p

∂µ
= 0 from the proof of proposition B.4. First,

∂{∂K
∂p
|p=p}

∂µ
|µ=0 = −pN [1−G(y∗)]f(pN − y∗)[

∂{∂x∗(p,φµ(p))

∂p
|p=p}

∂µ
|µ=0].

∂{∂x∗(p,φµ(p))

∂p
|p=p}

∂µ
|µ=0 = 1

Therefore,

∂{∂K
∂p
|p=p}

∂µ
|µ=0 < 0.

Second,

∂{∂K
∂s
|p=p}

∂µ
|µ=0 = −pN [1−G(y∗)]f(pN − y∗)[

∂{∂x∗(p,φµ(p))

∂s
|p=p}

∂µ
|µ=0].

∂{∂x∗(p,φµ(p))

∂s
|p=p}

∂µ
|µ=0 = { A

A+B
}2 × [− 1

1−G(y∗)
] < 0

where A = [1−G(y∗)− pNg(y∗)]f(pN − y∗) and B =
∫∞
pN−y∗

2g(pN − x) + pNg
′(pN −

x)dF (x).

Therefore,

∂{∂K
∂s
|p=p}

∂µ
|µ=0 > 0.
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Thus limµ→0
∂p

∂s
> 0.

Proof of part (ii):

(0) By implicit function theorem,

∂p

∂s
= −∂K

∂s
/
∂K

∂p
|p=p.

Since

∂K

∂p
|p=p =

∂πPC
∂p
|p=p ≥ 0,

by the definition of p. The sign is determined by

∂K

∂s
|p=p =

∂πPC(p)

∂s
− ∂πN(pN)

∂s

= −p
∂x∗(p, φµ(p))

∂s
[1−G(p− x∗(p, φµ(p)))]f(x∗(p, φµ(p)))

+pN [
∂pN
∂s
− ∂y∗

∂s
][1−G(y∗)]f(pN − y∗).

(1) Let πC(p) denotes the profit function for the case µ = 1. As πC(p) is log-concave,

it is single-peaked at p = pC . Since πC(pC) ≥ πC(pN) and πC(c) = 0, there exists

pL ≤ pC such that πC(pL) = πC(pN) and ∂πC(p)
∂p
|p=pL ≥ 0.

(2) As µ→ 1, the profit function for the commitment type seller πPC(p)→ πC(p),∀p.

Since p is the point that delivers same profit as pN does and generates positive deriva-

tive for πPC with respect to p, p→ pL as µ→ 1.

(3) As µ→ 1,

∂K

∂y∗
|p=p → −pL[−1][1−G(y∗)]f(pL − y∗)

+pN [
∂pN
∂y∗
− 1][1−G(y∗)]f(pN − y∗).
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Since πC(pL) = πC(pN), taking derivative with respect to y∗ to both sides leads to

−pL[−1][1−G(y∗)]f(pL − y∗) + pN [
∂pN
∂y∗
− 1][1−G(y∗)]f(pN − y∗)

= −∂pL
∂y∗

[

∫ ∞
pL−y∗

[1−G(pL − x)− pLg(pL − x)]dF (x)− pL[1−G(y∗)]f(pL − y∗)],

with the second component of the product being positive since ∂πC(p)
∂p
|p=pL ≥ 0.

(4) We first argue here that πC(p) is log-supermodular in (p, y∗).

∂ log πC(p)

∂y∗
=

[1−G(y∗)]f(p− y∗)∫∞
p−y∗ [1−G(p− x)]dF (x)

=
1∫∞

0
1−G(y∗−k)

1−G(y∗)
f(p−y∗+k)
f(p−y∗) dk

The right-hand side increases as p increases.

(5) Then we show that ∂pL
∂y∗
≥ 0. If search cost decreases and y1 increases to y2, and

at y1 we have relevant prices pL and pN . Log-supermodularity guarantees that 0 =

log πC(pN , y1) − log πC(pL, y1) ≤ log πC(pN , y2) − log πC(pL, y2). Thus πC(pN , y2) ≥

πC(pL, y2). Suppose pN decreases to p′N as y∗ increases and ∂πC(p,y2)
∂p

|p=p′N ≤ 0,

πC(pN , y2) ≤ πC(p′N , y2). Therefore πC(p′N , y2) ≥ πC(pL, y2). Since ∂πC(p,y1)
∂p

|p=pL ≥ 0

and ∂ log πC(p)
∂p

increases in y∗, ∂πC(p,y2)
∂p

|p=pL ≥ 0. To keep πC(p′N , y2) = πC(p′L, y2),

p′L ≥ pL.

(6) Thus limµ→1
∂K
∂y∗
|p=p < 0 and limµ→1

∂K
∂s
|p=p > 0,

∂p

∂s
< 0.

Proof of Proposition B.6. Proof of part (i):

As s→ 0, y∗ →∞ and x∗ → −∞. All prices converge to the same price: pN , pC , p→

p∗ where p∗, the optimal price to charge without search friction, is defined by
∫∞
−∞[1−

G(p∗ − x)− p∗g(p∗ − x)]dF (x) = 0.
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As lims→0
∂K
∂p
|p=p = −p∗ ∂x∗

∂p
[1−G(y∗)]f(p∗ − y∗),

lim
s→0

∂p

∂s
= lim

s→0
(−∂x

∗

∂s
+
∂pN
∂s
− ∂y∗

∂s
)/
∂x∗

∂p
= 0

as the denominator goes to µ and the numerator goes to 0.

Proof of part (ii):

lim
s→∞

∂p

∂s
= lim

s→∞

−p∂x
∗(p)

∂s
[1−G(p− x∗(p))]f(x∗(p)) + pN [∂pN

∂s
− ∂y∗

∂s
][1−G(y∗)]f(pN − y∗)∫∞

x∗(p)
1−G(p− x)− pg(p− x)dF (x)− p∂x

∗(p)

∂p
[1−G(p− x∗(p))]f(x∗(p))

As lims→∞
[1−G(y∗)]f(pN−y∗)

[1−G(p−x∗(p))]f(x∗(p))
= 1 and lims→∞

∫∞
x∗(p) 1−G(p−x)−pg(p−x)dF (x)

[1−G(p−x∗(p))]f(x∗(p))
= lims→∞−∂x∗(p)

∂s
[1−

p
g(p−x∗(p))

1−G(p−x∗(p)) ] = lims→∞−∂x∗(p)

∂s
, it follows that

lim
s→∞

∂p

∂s
= lim

s→∞

−p∂x
∗(p)

∂s
+ pN [∂pN

∂s
− ∂y∗

∂s
]

−∂x∗(p)

∂s
− p∂x

∗(p)

∂p

.

As (i) lims→∞
∂x∗(p)

∂s
= lims→∞

∂pN
∂s
− ∂y∗

∂s
, (ii)

∂x∗(p)

∂s
≥ 0 and ∂pN

∂s
− ∂y∗

∂s
≥ 0, (iii)

p < pN , (iv) lims→∞
∂x∗(p)

∂p
= µ, when s is sufficiently large, lims→∞

∂p

∂s
≤ 0.

The following proposition shows that regulation can benefit consumers. Nu-

merical results where regulation can hurt consumers are available upon request.

Proposition C.1. If ∆ ≥ ∆̃ , max{pC ,∆3,∆8}, there is a continuum of pooling

equilibria. There exists β such that ∀p ∈ [p, β] can be supported as a equilibrium

pooling price. β increases as ∆ increases and β ≤ pN .

Proof can be found on online appendix.

Several remarks are in order. There is competition of two kinds of commitment

power. On the one hand, the non-commitment type benefits from the commitment
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power by pooling with the commitment type; on the other hand, the fact that reg-

ulation is effective off-equilibrium path enables the non-commitment type to obtain

partial commitment power. These two forces compete with each other in a non-trivial

way to guarantee that each type has no incentive to deviate from the pooling price

equilibrium.

To understand this result better, let us take ∆ = pN − ε. With ∆ = pN − ε,

the most profitable deviation for the non-commitment type seller is to post p = 0 and

charge pN − ε. Equilibrium profit is much less impacted by this change of regulation

and his incentive to deviate is stronger. Thus pN can no longer be in the pooling

equilibrium price set and the upper bound of the price set is smaller. At the same time,

there is negligible change in commitment type’s incentive. Therefore the consumers

benefit from the introduction of regulation policy. Both types of seller also benefit

from regulation since their obtain higher profit with lower prices.
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APPENDIX D
APPENDIX TO CHAPTER 3

Proof of Proposition 3.2. Given player j’s strategy φj(t), player i’s belief, conditional

on no success and no exit by player j, evolves according to

pi(t) =
pie
−λt ∫∞

0
e−

∫min{x,t}
0 φj(y)dyd(1− e−λx)

pie−λt
∫∞

0
e−

∫min{x,t}
0 φj(y)dyd(1− e−λx) + (1− pi)e−

∫ t
0 φj(y)dy

=

∫ t
0
e
∫ t
x(λ+φj(y))dyλdx+ 1∫ t

0
e
∫ t
x(λ+φj(y))dyλdx+ 1 + 1−pi

pi
e2λt

.

Differentiating with respect to t and arranging the terms,

ṗi(t) = −pi(t)(1− pi(t))λ+ φj(t)(1− pi(t))
((1− pi)e2λt + pi)pi(t)− pi

(1− pi)e2λt
.

Applying Lemma 3 in Murto and Välimäki (2011), pi(t) should stay constant once it

reaches p∗. Therefore, it follows that

φ1(t) = φ2(t) =
λp∗(1− pi)e2λt

((1− pi)e2λt + pi)p∗ − pi
.

The result that if player j exits, then player i immediately follows comes from

the fact that player i’s belief, conditional on no success, jumps down to

pi(t) =
pie
−2λt

pie−2λt + 1− pi
≤ pie

−2λt∗

pie−2λt∗ + 1− pi
<

pie
−λt∗

pie−λt
∗ + 1− pi

= p∗.

Proof of Propositions 3.3 and 3.4. (i) No player exits until time t∗ ≡ min{t∗1, t∗2}.

Define t̃i ≡ inf{t : p(t) ≤ p∗}, and t̃ ≡ min{t̃1, t̃2}. Since no player exits until

t̃, pi(t) = pie
−λt/(pie

−λt + 1− pi) for any t < t̃. It is then immediate that t̃ = t∗.
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(ii) If t > t∗, then pi(t) ≤ p∗ for both i = 1, 2.

Suppose pi(t) > p∗ for some t > t∗. Since pi(t) is always decreasing over time

and player i never exits when pi(t) > p∗ (Lemma 1 in Murto and Välimäki (2011)),

this means that player j does not learn from player i’s behavior over the interval

[t∗, t]. Given this, player j, conditional on no success, prefers exiting immediately at

time t∗: formally, pj(t
′) < p∗ whenever t′ ∈ (t∗, t), and thus c = p∗λ(v + V (1)) >

pj(t)λ(v+V (1)) (see equation (3.4)). But this implies that pi(t
∗+ dt) = 0 (note that

pi(t) is player i’s belief conditional on no success and no exit by player j), which is a

contradiction.

(iii) The two distribution functions F1 and F2 have a common support of the

form [t∗, t] for some t(> t∗) and are continuous. Finally, F1(t∗)F2(t∗) = 0.

Let ti and ti denote the lower bound and the upper bound of the support of

Fi. Applying the same reasoning as in (ii), t1 = t2 = t∗. Now suppose ti > tj. In

this case, player i does not learn from player j’s behavior after tj. Since pi(t) ≤ p∗,

conditional on no success, he exits immediately, which is a contradiction.

Now we show that the common support of F1 and F2 is the interval [t∗, t].

Suppose Fi(t) is constant on [t1, t2) ⊂ [t∗, t). In this case, by the same reasoning

as in (ii), player j, conditional on no success, exits immediately at t1, which is a

contradiction. Now suppose Fi(t) has an atom at t ∈ (t∗, t). In this case, player j has

no incentive to exit close to t, that is, there exits ε > 0 such that Fj(t) is constant on

[t− ε, t), which is a contradiction.

The no-atom result above does not apply to t∗. However, if Fi(t
∗) > 0, then
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player j clearly strictly prefers waiting an instant more than exiting immediately, and

thus Fj(t
∗) = 0.

(iv) All the results here imply that an equilibrium necessarily takes the struc-

ture employed in the main text. The equilibrium uniqueness then follows follow from

an explicit equilibrium construction in the main text.

(v) Denote by V1(t) player 1’s expected payoff at time t. Whenever p1 > p2

(equivalently, whenever F2(t∗) > 0), player 1’s expected payoff V1(0) exceeds V (p1).

After time t∗, since exit is always an optimal strategy, player 1’s expected

payoff remains equal to 0. Therefore,

V1(t∗) =
(
p−1 (t∗) + (1− p−1 (t∗))e−λt

∗)
F2(t∗)V (p1).

Since the value function V (·) is convex, V1(t∗) > V (p−1 (t∗)). The desired result then

follows from the fact that both V1(t) and V (t) decrease according to the same law of

motion over the interval t ∈ [0, t∗) (rV1(t) = −c+λp1(t)(v+V (1)−V1(t))+ V̇1(t) and

rV (t) = −c + λp1(t)(v + V (1) − V (t)) + V̇ (t) with p(t) = p1e
−λt/(p1e

−λt + 1 − p1))

and, therefore, cannot cross each other.
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Haan, Marco, José L. Moraga-González, and Vaiva Petrikaite, “Price and
match-value advertising with directed consumer search,” mimeo, 2015.

, , and , “A model of directed consumer search,” mimeo, 2017.

Hörner, Johannes and Nicholas Vieille, “Public vs. private offers in the market
for lemons,” Econometrica, 2009a, 77 (1), 29–69.



167

Hurkens, Sjaak and Navin Kartik, “Would I lie to you? On social preferences
and lying aversion,” American Economic Review, 2009, 12 (2), 180–192.

Janssen, Maarten C.W. and Marielle C. Non, “Advertising and consumer
search in a duopoly model,” International Journal of Industrial Organization, 2008,
26 (1), 354–371.

Karlin, S. and H. Rubin, “The theory of decision procedures for distributions with
monotone likelihood ratio,” Applied Mathematics and Statistics Laboratory, 1955.

Karlin, Samuel and Yosef Rinott, “Classes of orderings of measures and related
correlation inequalities II. multivariate reverse rule distributions,” Journal of Mul-
tivariate Analysis, 1980, 10 (4), 499–516.

Keller, Godfrey and Sven Rady, “Strategic experimentation with Poisson ban-
dits,” Theoretical Economics, 2010, 5 (2), 275–311.

, , and Martin Cripps, “Strategic experimentation with exponential bandits,”
Econometrica, 2005, 73 (1), 39–68.

Kim, Jun B., Paulo Albuquerque, and Bart J. Bronnenberg, “Online demand
under limited consumer search,” Marketing Science, 2010, 29 (6), 1001–1023.

, , and , “Mapping online consumer search,” Journal of Marketing Research,
2011, 48 (1), 13–27.

Klein, Nicolas and Sven Rady, “Negatively correlated bandits,” Review of Eco-
nomic Studies, 2011, 78 (2), 693–732.

Kleinberg, Robert, Bo Waggoner, and E. Glen Weyl, “Descending Price Co-
ordinates Approximately Efficient Search,” mimeo, 2016.

Kohn, Meir G. and Steven Shavell, “The theory of search,” Journal of Economic
Theory, 1974, 9, 93–123.

Konishi, Hideo and Michael T Sandfort, “Expanding demand through price
advertisement,” International Journal of Industrial Organization, 2002.

Krähmer, Daniel and Roland Strausz, “Optimal procurement contracts with
pre-project planning,” Review of Economic Studies, 2011, p. rdq033.

Ljungqvist, Lars and Thomas J. Sargent, Recursive macroeconomic theory, MIT
press, 2004.
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