
Masthead Logo
University of Iowa

Iowa Research Online

Theses and Dissertations

Summer 2017

Optimization under uncertainty: conic
programming representations, relaxations, and
approximations
Guanglin Xu
University of Iowa

Copyright © 2017 Guanglin Xu

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/5881

Follow this and additional works at: https://ir.uiowa.edu/etd

Part of the Business Administration, Management, and Operations Commons

Recommended Citation
Xu, Guanglin. "Optimization under uncertainty: conic programming representations, relaxations, and approximations." PhD (Doctor
of Philosophy) thesis, University of Iowa, 2017.
https://doi.org/10.17077/etd.6m2pvuum

https://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F5881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F5881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.6m2pvuum
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F5881&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=ir.uiowa.edu%2Fetd%2F5881&utm_medium=PDF&utm_campaign=PDFCoverPages


OPTIMIZATION UNDER UNCERTAINTY:

CONIC PROGRAMMING REPRESENTATIONS, RELAXATIONS,

AND APPROXIMATIONS

by

Guanglin Xu

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Business Administration (Management Sciences)
in the Graduate College of

The University of Iowa

August 2017

Thesis Supervisor: Professor Samuel A. Burer



Copyright by
GUANGLIN XU

2017
All Rights Reserved



Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Guanglin Xu

has been approved by the Examining Committee for the
thesis requirement for the Doctor of Philosophy degree in
Business Administration (Management Sciences) at the
August 2017 graduation.

Thesis Committee:

Samuel A. Burer, Thesis Supervisor

Kurt M. Anstreicher

Qihang Lin

Tianbao Yang

Luis F. Zuluaga



To my family

ii



ACKNOWLEDGEMENTS

I give my deepest gratitude to my advisor and mentor, Professor Samuel A.

Burer. I cannot imagine that I could complete this thesis without his insightful

discussions, continued encouragement, and unconditional support. I am extremely

thankful for his incredible patience and extraordinary enthusiasm, which are conta-

gious and motivational for me, even during the toughest times. He taught me how

to think critically, write precisely, and present clearly. He encouraged me to explore

research topics that I am interested in. He also showed me how to be a rigorous

and effective teacher. “More importantly”, he set up an excellent example as a cool

professor, which is demanding in the research community. Thank you, Sam, for all

your invaluable guidance. It has been a great honor and a wonderful journey to be

your Ph.D. student. I owe you a debt of gratefulness that is beyond any word in any

language.

I was also extremely fortunate to have Professor Kurt Anstreicher, Professor

Qihang Lin, Professor Tianbao Yang, and Professor Luis Zuluaga as my committee

members, who not only provide me with invaluable research suggestions but also

serve as a continuous source of advice. In particular, I would like to thank Prof.

Anstreicher for his inspirational suggestions to my research. I also appreciate his warm

encouragement to my presentation. I would like to thank Prof. Lin for discussing and

conducting research with me. Thank you for your kindness to answer all my questions.

I would like to thank Prof. Yang for introducing me to big data techniques. I would

iii



like to thank Prof. Zuluaga for inviting me to present my research at COR@L Seminar

and providing insightful thoughts on my thesis.

My research and study at Tippie were facilitated with the help of many pro-

fessors, administrative staff, and my colleagues. I would like to thank Professor

Johannes Ledolter for being in my preliminary committee and providing me with

insightful suggestions. I was also lucky to have excellent teachers including Profes-

sors Ann Campbell, Young Chen, Pavlo Krokhmal, Renato de Matta, Jeff Ohlmann,

and Nick Street. Your teaching has significantly strengthened my research. I sin-

cerely appreciate all the help from the departmental administrative staff including

Renea Jay, Scott Hansen, and Barbara Carr. Your excellent assistance makes my

work and life at Tippie much easier. I am thankful for my colleagues for creating an

incredibly friendly office atmosphere. Thank you, Huan Jin, Amin Khezerlou, Xiexin

Liu, Yuanyang Liu, Runchao Ma, Maryam Rahmani, Michael Redmond, John Rios,

Venous Roshidibenam, Stacy Voccia, Wenjun Wang, Nicholas Woyak, Qiong Zhang,

and Shu Zhang.

Wine confidant thousands of cups less. Life in Iowa City would have been less

joyful if I had not met my closest friends at the University of Iowa. I will never forget

all the wonderful moments I spent together with you all. Thank you, Maciej Rysz,

Xiupeng Wei, Yaohui Zeng, Xiafei He, Anoop Verma, Bhupesh Shetty, Zhongyi Yuan,

Xi Chen, and Bo Sun.

Last but not the least, I would like to thank my parents, my parents-in-law,

my wife Shuai, and my two lovely sons Charlie and Mark. I sincerely thank them for

iv



staying with me throughout the happiest and toughest times. To them I attribute

this thesis.

v



ABSTRACT

In practice, the presence of uncertain parameters in optimization problems

introduces new challenges in modeling and solvability to operations research. There

are three main paradigms proposed for optimization problems under uncertainty.

These include stochastic programming, robust optimization, and sensitivity analysis.

In this thesis, we examine, improve, and combine the latter two paradigms in several

relevant models and applications.

In the second chapter, we study a two-stage adjustable robust linear optimiza-

tion problem in which the right-hand sides are uncertain and belong to a compact,

convex, and tractable uncertainty set. Under standard and simple assumptions, we

reformulate the two-stage problem as a copositive optimization program, which in

turns leads to a class of tractable semidefinite-based approximations that are at least

as strong as the affine policy, which is a well studied tractable approximation in the

literature. We examine our approach over several examples from the literature and

the results demonstrate that our tractable approximations significantly improve the

affine policy. In particular, our approach recovers the optimal values of a class of

instances of increasing size for which the affine policy admits an arbitrary large gap.

In the third chapter, we leverage the concept of robust optimization to conduct

sensitivity analysis of the optimal value of linear programming (LP). In particular,

we propose a framework for sensitivity analysis of LP problems, allowing for simul-

taneous perturbations in the objective coefficients and right-hand sides, where the

vi



perturbations are modeled in a compact, convex, and tractable uncertainty set. This

framework unifies and extends multiple approaches for LP sensitivity analysis in the

literature and has close ties to worst-case LP and two-stage adjustable linear program-

ming. We define the best-case and worst-case LP optimal values over the uncertainty

set. As the concept aligns well with the general spirit of robust optimization, we

denote our approach as robust sensitivity analysis. While the best-case and worst-

case optimal values are difficult to compute in general, we prove that they equal the

optimal values of two separate, but related, copositive programs. We then develop

tight, tractable conic relaxations to provide bounds on the best-case and worst case

optimal values, respectively. We also develop techniques to assess the quality of the

bounds, and we validate our approach computationally on several examples fromand

inspired bythe literature. We find that the bounds are very strong in practice and, in

particular, are at least as strong as known results for specific cases from the literature.

In the fourth chapter of this thesis, we study the expected optimal value of a

mixed 0-1 programming problem with uncertain objective coefficients following a joint

distribution. We assume that the true distribution is not known exactly, but a set of

independent samples can be observed. Using the Wasserstein metric, we construct an

ambiguity set centered at the empirical distribution from the observed samples and

containing all distributions that could have generated the observed samples with a

high confidence. The problem of interest is to investigate the bound on the expected

optimal value over the Wasserstein ambiguity set. Under standard assumptions, we

reformulate the problem into a copositive programming problem, which naturally

vii



leads to a tractable semidefinite-based approximation. We compare our approach with

a moment-based approach from the literature for two applications. The numerical

results illustrate the effectiveness of our approach.

Finally, we conclude the thesis with remarks on some interesting open ques-

tions in the field of optimization under uncertainty. In particular, we point out that

some interesting topics that can be potentially studied by copositive programming

techniques.
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PUBLIC ABSTRACT

Decision-makers involved in business, economic, or industrial activities often

encounter different uncertainties in the process of making decisions. For instance, an

operations manager needs to decide how much items to purchase at the beginning

of each planning period under a situation where customer demands are not known

exactly; a portfolio manager needs to choose a set of assets to buy in before knowing

the actual returns; or a wind farm operator needs to make a schedule for the next day

without knowing the exact wind distributions and electricity demands. Therefore, it is

necessary to develop effective tools to mitigate the negative impact of the uncertainties

on these decision-making processes.

In this thesis, we apply techniques including mathematical programming, data

analytics, statistics, and algorithmic computations to conduct two research topics in

decision making under uncertainty. In the first topic, we study a two-stage adjustable

robust optimization problem in which decision makers need to make the first-stage

decision before the realizations of uncertainties and then determine the second-stage

decision after observing the realizations. We propose an approach to solve the two-

stage problem and show that our approach provides a decision that performs at least

as well as the one provided by a state-of-the-art approach in the literature. In the

second topic, we study the effect of the uncertain parameters on the objectives of

the decision making problems. We propose two approaches to investigate the effect:

a distribution-free approach and a data-driven distributionally robust approach. We
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demonstrate the effectiveness of our approaches in this thesis.
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CHAPTER 1
INTRODUCTION

Linear programming (LP) has become a very powerful decision-making tool

in operations research; see for example [47]. However, the presence of parameter

uncertainties introduces challenges for LP problems [46]. For example, even small

data perturbations can significantly affect the feasibility or optimality of the nominal

optimal solution [12]. Optimization problems under uncertainty also require efficient

methods to solve the underlying large-scale optimization problems [14]. An uncertain

LP problem is defined formally as a family of regular LP problems:

{
min
x

{
cTx : Ax ≥ b

}}
(A,b,c)∈U

(1.1)

where x denotes the decision variable, (A, b, c) are uncertain problem parameters,

and U is the uncertainty set that contains all realizations of (A, b, c). In general, the

uncertain LP problem can contain infinitely many regular linear programs.

Depending on the treatment of the uncertainties, there are several main ap-

proaches for optimization problems under uncertainty. One approach is stochastic pro-

gramming, in which: the probability distributions of uncertain parameters are known;

the objective and constraints are defined by averaging over possible outcomes; or the

constraints are satisfied with a probabilistic guarantee; see [30, 88, 123]. Despite of its

powerful modeling merits, stochastic programming suffers from the so-called curse of

dimensionality, even for problems with only linear objective functions and constraints

[124, 58]. Moreover, in many cases, there is not sufficient historical data to calibrate
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or estimate the underlying probability distribution, especially for joint multivariate

cases. In contrast, robust optimization (RO) can often lead to tractable optimization

problems, which we introduce in the next section.

1.1 Robust Optimization

Robust optimization (RO) [64, 128] specifies a so-called uncertainty set which

contains all realizations of the uncertain parameters. This might include bounds

on the quantities or linear relations linking multiple unknowns. In this case, we do

not make any distribution assumptions on the uncertain parameters. The goal is

to optimize the objective value in the worst-case scenario, and the corresponding

solution should be feasible for all realizations in the uncertainty set. In general, an

optimal solution can be computed in polynomial time even for large classes of RO

problems; see [12, 19]. Therefore, RO has become a powerful approach; see Ben-Tal

and Nemirovski [15, 16, 17, 18], Bertsimas and Sim [28, 29], Ghaoui and Lebret [72],

and Goldfarb and Iyengar [75].

At the early stage of RO research, the approach only considered “here-and-

now” decision variables. That is, the decision variables are determined before the

uncertainty is revealed. Therefore, the RO approach can be too conservative in

this single-stage setting. As an extension, Ben-Tal et. al. [14] introduced two-stage

adjustable robust optimization (ARO), which considers both first-stage (“here-and-

now”) and second-stage (“wait-and-see”) variables. In this two-stage setting, the

second-stage decision variables could be specified after the uncertainty is revealed.
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Thus, ARO can be significantly less conservative than the regular RO. Furthermore,

this two-stage setting can be more adequate to model many real-world applications,

in which the decision-making processes have a two-stage nature.

We next tailor an example from [49] to illustrate two situations in which ARO

is more adequate for modeling an operations management problem than the regular

RO.

Example 1.1. Consider a lot-sizing problem on a network with two stores, in which

a supplier needs to allocate stock at two stores and ship certain amounts of stock

between the two stores in order to meet the demand from customers, while incurring

the lowest cost, which is the sum of the ordering and shipping costs. In a deterministic

setting, this could be done by solving the following linear program:

min
x1,x2,y12,y21

c1x1 + c2x2 + t12y12 + t21y21

s. t. x1 + y21 − y12 ≥ d1

x2 + y12 − y21 ≥ d2

0 ≤ x1 ≤ V1

0 ≤ x2 ≤ V2

y12 ≥ 0, y21 ≥ 0,

where xi denotes the stock allocation at store i, yijdenotes the shipping amounts from

store i to store j, ci denotes the per-unit allocation cost at store i, tij denotes the

per-unit shipping costs from store i to store j, di is the demand at store i, Vi is the

capacity of store i, and i, j = 1, 2. Figure 1.1 illustrates the structure of the network

and the associated decision variables and problem parameters.
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Figure 1.1: Illustration of the structure of a lot-sizing network

with two stores and the associated decision variables and prob-

lem parameters.

Now consider a situation where the demand is uncertain. More precisely, let

us assume that the demand (d1, d2) varies in an uncertainty set U , which is convex,

compact, and tractable. Then, the regular RO problem is formulated as the following:

min
x1,x2,y12,y21

c1x1 + c2x2 + t12y12 + t21y21

s. t. x1 + y21 − y12 ≥ d1 ∀ (d1, d2) ∈ U

x2 + y12 − y21 ≥ d2 ∀ (d1, d2) ∈ U

0 ≤ x1 ≤ V1

0 ≤ x2 ≤ V2

y12 ≥ 0, y21 ≥ 0.

The above setting assumes that the allocation and shipping decisions have to

be made before the uncertainty is revealed. In general, however, it might be more

adequate to make the shipping decisions after the uncertain demand is revealed, which
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leads to the following ARO problem:

min
x1,x2,y12,y21

c1x1 + c2x2 + t12y12(d1, d2) + t21y21(d1, d2)

s. t. x1 + y21(d1, d2)− y12(d1, d2) ≥ d1 ∀ (d1, d2) ∈ U

x2 + y12(d1, d2)− y21(d1, d2) ≥ d2 ∀ (d1, d2) ∈ U

0 ≤ x1 ≤ V1, 0 ≤ x2 ≤ V2

y12(d1, d2) ≥ 0, y21(d1, d2) ≥ 0,

where y12(d1, d2) and y21(d1, d2) depend on the uncertainty parameters d1 and d2.

Under the adjustable robust setting, the optimal worst-case objective value is

less than or equal to the one under the regular robust setting. This is due to the fact

that y12(d1, d2) and y21(d1, d2) depend on the uncertainty parameters and thus can be

adjusted after observing the realization of (d1, d2) ∈ U . Furthermore, the adjustable

robust setting in this application is more reasonable in practice.

Because of the immense modeling potential, real-world applications of ARO

abound: unit commitment in renewable energy [24, 134, 145], facility location prob-

lems [6, 8, 68], emergency supply chain planning [11], and inventory management

[9, 127]; see also [13, 66, 113]. We refer the reader to the excellent, recent tutorial

[49] for background on ARO.

However, ARO is computationally intractable (NP-hard) in general; see [14,

49]. Therefore, different tractable approaches have been proposed to approximate the

ARO. In some situations, an optimal solution of the regular RO problem can be used

as an approximate solution, one that is in fact optimal in certain settings [16, 22]. On

the other hand, the solution from the regular RO performs poorly in general [22]. The
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affine policy [14], which forces the second-stage variables to be an affine function of

the uncertainty parameters, is another common approximation for the ARO problem,

but it is generally suboptimal. For example, Bertsimas and Goyal [21] show that the

best affine policy can be Ω(m1/2−δ) times the optimal cost for any δ > 0, where m is

the number of linear constraints.

With the above issues in mind, the first task we complete in the present thesis

is improving the affine policy in a setting of two-stage adjustable robust linear opti-

mization problem. Particularly, in Chapter 2, we study a two-stage ARO problem in

which the right-hand sides are uncertain and belong to a convex, compact uncertainty

set. This problem is NP-hard, and the affine policy is a popular, tractable approx-

imation. We prove that under standard and simple conditions, the two-stage ARO

can be reformulated as a copositive program [36, 37], which in turn leads to a class of

tractable, semidefinite-based approximations that are at least as strong as the affine

policy. We investigate several examples from the literature demonstrating that our

tractable approximations significantly improve the affine policy. In particular, our

approach solves exactly in polynomial time a class of instances of increasing size for

which the affine policy admits an arbitrarily large gap.

1.2 Sensitivity Analysis

Along with stochastic programming and robust optimization, another paradigm

for optimization under uncertainty is sensitivity analysis (SA), which examines how

perturbations in the parameters affect the optimal value and solution. In particular,
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let us consider the standard-form linear program:

min ĉTx

s. t. Âx = b̂

x ≥ 0

(1.2)

where x ∈ Rn is the variable and (Â, b̂, ĉ) ∈ Rm×n × Rm × Rn are the problem

parameters. In practice, (Â, b̂, ĉ) may not be known exactly or may be predicted to

change within a certain region. Ordinary SA considers the change of a single element

in (Â, b̂, ĉ) and examines the corresponding effects on the optimal basis and tableau;

see [47]. SA also extends to the addition of a new variable or constraint, although we

do not consider such changes in the present thesis.

Beyond ordinary SA, more sophisticated approaches that allow simultaneous

changes in the coefficients ĉ or right-hand sides b̂ have been proposed by numerous

researchers. Bradley et al. [34] discuss the 100-percent rule that requires specification

of directions of increase or decrease from each ĉj and then guarantees that the same

basis remains optimal as long as the sum of fractions, corresponding to the percent of

maximum change in each direction derived from ordinary SA, is less than or equal to

1. Wendell [136, 137, 138] develops the tolerance approach to find the so-called max-

imum tolerance percentage by which the objective coefficients can be simultaneously

and independently perturbed within a priori bounds. The tolerance approach also

handles perturbations in one row or column of the matrix coefficients [117] or even

more general perturbations in all elements of the matrix coefficients under certain
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assumptions [116]. Freund [67] investigates the sensitivity of an LP to simultaneous

changes in matrix coefficients. In particular, he considers a linear program whose co-

efficient matrix depends linearly on a scalar parameter θ and studies the effect of small

perturbations on the the optimal objective value and solution; see also [89, 91, 108].

Readers are referred to [136] for a survey of approaches for SA of problem (1.2).

To the best of our knowledge, in the context of LP, no authors have considered

simultaneous LP parameter changes in a general way, i.e., perturbations in the objec-

tive coefficients ĉ, right-hand sides b̂, and constraint coefficients Â within a general

region (not just intervals). The obstacle for doing so is clear: general perturbations

lead to nonconvex quadratic programs (QPs), which are NP-hard to solve. The fol-

lowing example illustrates an operations management problem that requires more

sophisticated sensitivity analysis.

Example 1.2. Let us consider a transportation network flow problem. Suppose there

are m facilities including m1 suppliers (origins) and m2 customers (destinations). The

transportation network of these facilities is built on n arcs connecting the m1 suppliers

and the m2 customers. The estimated supply and demand units for each supplier and

customer are given as bi (i = 1, . . . ,m); bi < 0 if the facility i is a supplier and bi ≥ 0

if the facility i is a customer.

The estimated unit transportation costs associated with the arcs of the network

are given as cj (j = 1, . . . , n) . However, suppose at the early stage of planning, the

supply and demand units and the unit transportation costs are uncertain. Thus, the

operations manager would like to quantify the resulting uncertainty in the optimal
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transportation cost.

For example, let b̂ ∈ Rm denote the “best-guess“ supply or demand units of the

suppliers or customers; and let ĉ ∈ Rn
+ denote the “best-guess” unit transportation

costs associated with the arcs of the network. However, due to uncertainty, the

supply and demand could vary. Denote by (b, c) the perturbations with respect to

(b̂, ĉ). Thus, the true data could be (b̂ + b, ĉ + c). In particular, the supply and

demand can vary within a certain range, e.g., ‖b‖2 ≤ 0.01‖b̂‖2 where b denotes the

perturbation in b̂. Similarly, the unit transportation cost could actually vary due to

the traffic or road conditions of the network, e.g., ‖c‖2 ≤ 0.01‖ĉ‖2 where c denotes

the perturbation in ĉ. With this uncertainty, the operations manager would like to

know the worst- and best-case for the optimal transportation costs on the following

uncertain set

U :=

(b, c) ∈ Rm × Rn :
‖b‖2 ≤ 0.01‖b̂‖2

‖c‖2 ≤ 0.01‖ĉ‖2

 .

Here, we assume that, before the final decision must be made, the uncertainties

will be resolved. At this moment, the operations manager is monitoring what may or

may not happen in the future. For example, what are the best-case and worst-case

optimal values over all the possible parameter realizations?

In Chapter 3, motivated by Example 1.2, we will leverage the concept of robust

optimization to develop a framework for sensitivity analysis of linear programs (LPs),

which allows for simultaneous perturbations in the objective coefficients and right-

hand sides, where the perturbations are modeled in a compact, convex, tractable
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uncertainty set. In particular, we will investigate the best-case and worst-case LP

optimal values over the parameter perturbations. We will also show that this frame-

work can unify and extend multiple approaches for LP sensitivity analysis in the

literature and has close ties to worst-case linear optimization and two-stage adaptive

optimization. Note that here we do not make any distributional assumptions about

the uncertainty of the parameters, nor about their independence or dependence. In

this sense, our search for the worst- and best-case optimal LP values aligns well with

typical approaches in the field of robust optimization. Thus, we denote our approach

as robust sensitivity analysis.

1.3 Distributionally Robust Optimization

Although stochastic programming is criticized by the fact that it is compu-

tationally demanding in general, distributionally robust optimization (DRO) opens a

new paradigm for optimization under uncertainty; see [41, 50, 74]. DRO stems from

Scarf’s research work in 1958 studying the ambiguity-averse newsvendor problem

[119]. DRO problems assume that some limited information about the distribution

can be obtained and that the decision maker can construct an ambiguity set that con-

tains all distributions consistent with the available information. It is shown that DRO

can provide high-quality decisions at a moderate computational cost [50, 74, 140].

A key ingredient in DRO problems is the ambiguity set containing all possi-

ble distributions. According to [63], a good ambiguity set should be rich enough to

contain the true underlying distribution with high confidence while still being small
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enough to avoid making overly conservative decisions. A simple yet popular way to

characterize the ambiguity set is to use the moment information of the distributions

[50, 74, 140]. Another interesting way is to build an ambiguity set that contains

all unimodal distributions that satisfy some given support constraints [93, 122]. An

alternative is to define the ambiguity set as a ball in the space of probability dis-

tributions by using a probability distance function such as Prohorov metric [62],

Kullback-Leibler divergence [86, 87], or Wasserstein metric [63, 81].

We now point out an interesting connection between DRO and regular RO.

Denoting the support of the uncertain parameters as U , if one chooses the ambiguity

set to be one that contains distributions that put all their weights at a single point

anywhere in U , then the DRO problem reduces to the regular RO problem. Many

other ways of formulating ambiguity sets can be found in [56].

Leveraging the concept of DRO, a stream of research investigates the best-

case (maximal) expectations of the maxima of mixed zero-one linear programs with

objective uncertainty. Natarajan et. al. [107] studied mixed zero-one maximization

linear programs with uncertain objective coefficients, in which the mean vector and

the second-moment matrix of the nonnegative objective coefficients are assumed to

be known, but the exact form of the distribution is unknown. The authors showed

that computing the best-case (maximal) expectation of the optimal value (maxima)

is equal to computing the optimal value of a copositive program. In some situations,

computing the best-case expectation can be reduced to computing a semidefinite

program [105]. We refer the reader to a recent excellent survey in [98].
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In Chapter 4, motivated by the work in [107], we will investigate the best-case

expected optimal value of mixed zero-one linear programs with objective coefficient

uncertainty, in which the exact distribution of the cost coefficients is unknown. We

construct the ambiguity set of possible distributions by using Wasserstein balls [81].

We will show that the problem can be reformulated as a copositive program. We then

provide a tractable semidefinite programming relaxation to approximate the best-case

expected optimal value.

1.4 Copositive Programming

Let K ⊆ Rn be a closed convex cone. A linear conic programming (LCP)

problem is defined as

p∗ := inf
x

{
cTx : Ax = b, x ∈ K

}
(1.3)

and its conic dual problem is

d∗ := sup
y,s

{
bTy : ATy + s = c, s ∈ K∗

}
(1.4)

where K∗ is the dual cone of K. Immediately, we have d∗ ≤ p∗ by weak duality

theory. Constraint qualifications can guarantee strong duality to hold, i.e., p∗ = d∗.

A common constraint qualification is the so-called Slater’s condition, which we state

in Lemma 1.1.

Lemma 1.1 (Theorem 2.1.2 in [97]). Consider the pair of primal and dual problems

(1.3) and (1.4).

(i) Assume that the primal problem (1.3) is bounded from below, i.e., p∗ > −∞ and
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that it is strictly feasible. Then the dual problem (1.4) attains its supremum d∗

and there is no duality gap, i.e., p∗ = d∗.

(ii) Assume that the dual problem (1.4) is bounded from above, i.e., d∗ < +∞ and

that it is strictly feasible. Then the primal problem (1.3) attains its infimum p∗

and there is no duality gap, i.e., p∗ = d∗.

If K = Rn
+, then LCP is regular linear programming. If K is the second-order

cone, then LCP is so-called second-order cone programming; see [2]. If K is the cone of

positive semidefinite matrices, then LCP is the well studied semidefinite programming

problem; see [132]. One of the important properties shared by the three cones is that

they are self-dual cones, i.e., K∗ = K.

We next introduce a LCP problem that is closely related to this thesis. For a

closed convex cone K ⊆ Rn, we define the copositive cone as

COP(K) := {M ∈ Sn : xTMx ≥ 0 ∀ x ∈ K},

and its dual cone, the completely positive cone, is

CPP(K) := {X ∈ Sn : X =
∑

ix
i(xi)T , xi ∈ K},

where the summation over i is finite but its cardinality is unspecified. Then, the

copositive program is given as

p∗ := inf
X∈COP(K)

{C •X : Ai •X = bi ∀ i = 1, . . . ,m}

and its dual is

d∗ := sup
y∈Rm

{
bTy : C −

m∑
i=1

yiAi ∈ CPP(K)

}
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The term copositive programming refers to linear programming over COP(K) or, via

duality, linear programming over CPP(K). In fact, these problems are sometimes

called generalized copositive programming or set-semidefinite optimization [40, 59] in

contrast with the standard case K = Rn
+. In this thesis, we work with generalized

copositive programming, although we use the shorter phrase for convenience.

In fact, many standard NP-hard optimization problems can be represented as

copositive programs. These include the standard quadratic program [32], maximum

stable set problem [48], min-cut tri-partitioning problem [114], and quadratic assign-

ment problem [115]. More generally, Burer [36] showed that any nonconvex quadratic

conic program

min
{
xTQx+ 2cTx : Ax = b, x ∈ K

}
(1.5)

can be modeled as an explicit copositive program over CPP(R+ ×K). Burer’s result

in [36] also holds for two specific types of quadratic constraints: binary condition

constraints x2
i = xi and complementarity constraints xixj = 0 with xi, xj bounded.

In general, copositive programming is computationally intractable as the sep-

aration of a copositive matrix with an arbitrary dimension is NP-hard. Naturally,

different inner or outer approximations are studied. A series of inner approximation

hierarchies of COP(K) for the case of K = Rn
+ have been proposed in [31, 48, 109, 110].

Lasserre [96] proposed an outer approximation hierarchy of COP(K) for the case of

K = Rn
+, which complements previous inner approximation hierarchies. In practice,

tractable semidefinite programming (SDP) relaxations are generally used to approxi-

mate copositive programs over the cone of completely positive matrices. These SDP
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relaxations can be further tightened by adding the so-called reformulation lineariza-

tion technique (RLT) constraints. We refer the reader to [4, 125] and Chapter 3 for

the definition and concept of RLT constraints.

1.5 Thesis Structure

The rest of the thesis is structured as follows. Chapter 2 proposes a copsotive

approach for a two-stage adjustable robust linear optimization problem in which the

right-hand sides are uncertainty and belong to a convex, compact, and tractable

set. Chapter 3 presents robust sensitivity analysis which is a framework to extend

and unify the literature sensitivity analysis by leveraging modern tools for nonconvex

quadratic programs. Chapter 4 proposes a distributionally robust approach to analyze

the expectation of the optimal value of a mixed zero-one linear optimization problem

and the ambiguity set is defined as a Wasserstein ball. Chapter 5 concludes the thesis

and discusses several potential future directions of optimization under uncertainty.
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CHAPTER 2
TWO-STAGE ADJUSTABLE ROBUST LINEAR OPTIMIZATION

2.1 Introduction

As mentioned in Chapter 1, ARO is intractable in general. Therefore, mul-

tiple tractable approximations have been proposed for it. In certain situations, a

static, robust-optimization-based solution can be used to approximate ARO, and

sometimes this static solution is optimal [16, 22]. The affine policy [14], which forces

the second-stage variables to be an affine function of the uncertainty parameters, is

another common approximation for ARO, but it is generally suboptimal. Several

nonlinear policies have also been used to approximate ARO. Chen and Zhang [44]

proposed the extended affine policy in which the primitive uncertainty set is repa-

rameterized by introducing auxiliary variables after which the regular affine policy

is applied. Bertsimas et. al. [23] introduced a more accurate, yet more complicated,

approximation which forces the second-stage variables to depend polynomially (with

a user-specified, fixed degree) on the uncertain parameters. Their approach yields a

hierarchy of Lasserre-type semidefinite approximations and can be extended to multi-

stage robust optimization.

The approaches just described provide upper bounds when ARO is stated as

a minimization. On the other hand, a single lower bound can be calculated, for

example, by fixing a specific value in the uncertainty set and solving the resulting

LP (linear program), and Monte Carlo simulation over the uncertainty set can then
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be used to compute a best lower bound. Finally, global approaches for solving ARO

exactly include column and constraint generation [144] and Benders decomposition

[24, 53].

In this research, we consider the following two-stage adjustable robust linear

minimization problem with uncertain right-hand side:

v∗RLP := min
x,y(·)

cTx+ max
u∈U

dTy(u)

s. t. Ax+By(u) ≥ Fu ∀ u ∈ U

x ∈ X ,

(RLP )

where A ∈ Rm×n1 , B ∈ Rm×n2 , c ∈ Rn1 , d ∈ Rn2 , F ∈ Rm×k and X ⊆ Rn1 is a

closed convex set containing the first-stage decision x. The uncertainty set U ⊆ Rk is

compact, convex, and nonempty, and in particular we model it as a slice of a closed,

convex, full-dimensional cone K ⊆ R+ × Rk−1:

U := {u ∈ K : eT1 u = u1 = 1}, (2.1)

where e1 is the first canonical basic vector in Rk. In other words, K is the homog-

enization of U . We choose this homogenized version for notational convenience and

note that it allows the modeling of affine effects of the uncertain parameters. The

second-stage variable is y(·), which is formally defined as a mapping y : U → Rn2 . It

is clear that (RLP) is equivalent to

v∗RLP = min
x∈X

cTx+ max
u∈U

min
y(u)∈Rn2

{dTy(u) : By(u) ≥ Fu− Ax}, (2.2)

where y(u) is a vector variable specifying the value of y(·) at u.

Regarding (RLP), we make three standard assumptions.
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Assumption 2.1. The closed, convex set X and the closed, convex cone K are both

full-dimensional and computationally tractable.

For example, X and K could be represented using a polynomial number of linear,

second-order-cone, and semidefinite inequalities, each of which possesses a polynomial-

time separation oracle [77].

Assumption 2.2. Problem (RLP) is feasible, i.e., there exists a choice x ∈ X and y(·)

such that Ax+By(u) ≥ Fu for all u ∈ U .

The existence of an affine policy, which can be checked in polynomial time, is sufficient

to establish that Assumption 2.2 holds.

Assumption 2.3. Problem (RLP) is bounded, i.e., v∗RLP is finite.

Note that the negative directions of recession {τ : dT τ < 0, Bτ ≥ 0} for the innermost

LP in (2.2) do not depend on x and u. Hence, in light of Assumptions 2.2 and 2.3,

there must exist no negative directions of recession; otherwise, v∗RLP would clearly

equal −∞. So every innermost LP in (2.2) is either feasible with bounded value or

infeasible. In particular, Assumption 2.2 implies that at least one such LP is feasible

with bounded value. It follows that the specific associated dual LP max{(Fu −

Ax)Tw : BTw = d, w ≥ 0} is also feasible with bounded value. In particular, the

fixed set

W := {w ≥ 0 : BTw = d}

is nonempty. For this study, we also make one additional assumption:

Assumption 2.4. Problem (RLP) possesses relatively complete recourse, i.e., for all
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x ∈ X and u ∈ U , the innermost LP in (2.2) is feasible.

By the above discussion, Assumption 2.4 guarantees that the innermost LP is feasible

with bounded value, and hence every dual max{(Fu − Ax)Tw : BTw = d, w ≥ 0}

attains its optimal value at an extreme point of W .

In Section 4.3, under Assumptions 2.1–2.4, we reformulate (RLP) as an equiv-

alent copositive program, which first and foremost enables a new perspective on two-

stage robust optimization. Compared to many existing copositive approaches for dif-

ficult problems, ours exploits copositive duality; indeed, Assumption 2.4 is sufficient

for establishing strong duality between the copositive primal and dual. In Section

2.3, we then apply a similar approach to derive a new formulation of the affine policy,

which is then, in Section 2.4, directly related to the copositive version of (RLP). This

establishes two extremes: on the one side is the copositive representation of (RLP),

while on the other is the affine policy. Section 2.4 also proposes semidefinite-based

approximations of (RLP) that interpolate between the full copositive program and

the affine policy. Finally, in Section 2.5, we investigate several examples from the lit-

erature that demonstrate our bounds can significantly improve the affine-policy value.

In particular, we prove that our semidefinite approach solves a class of instances of

increasing size for which the affine policy admits arbitrarily large gaps. We end the

chapter with a short discussion of future directions in Section 2.6.

It is important to note that, even if Assumption 2.4 does not hold, our copos-

itive program still yields a valid upper bound on v∗RLP that is at least as strong as the

affine policy. More comments are provided at the end of Section 4.3; see also Section
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2.3.

During the completion of this thesis, we became aware of a recent technical

report by Ardestani-Jaafari and Delage [7], which introduces an approach for (RLP)

that is very similar in spirit to ours in Section 4.3. Whereas we use copositive duality

to reformulate (RLP) exactly and then approximate it using semidefinite program-

ming, [7] uses semidefinite duality to approximate (RLP) in one step. We prefer

our two-step approach because it clearly separates the use of conic duality from the

choice of approximation. We also feel that our derivation is more compact. In addi-

tion, [7] focuses mainly on the case when U is polyhedral, whereas our approach builds

semidefinite-based approximations for any U that can be represented, say, by linear,

second-order-cone, and semidefinite inequalities. In Section 2.5.2, we also provide an

example in which our semidefinite bound outperforms the semidefinite bound of [7].

2.1.1 Notation, terminology, and background

Let Rn denote n-dimensional Euclidean space represented as column vectors,

and let Rn
+ denote the nonnegative orthant in Rn. For a scalar p ≥ 1, the p-norm

of v ∈ Rn is defined ‖v‖p := (
∑n

i=1 |vi|p)1/p, e.g., ‖v‖1 =
∑n

i=1 |vi|. We will drop the

subscript for the 2-norm, i.e., ‖v‖ := ‖v‖2. For v, w ∈ Rn, the inner product of v and

w is vTw :=
∑n

i=1 viwi. The symbol 1n denotes the all-ones vector in Rn.

The space Rm×n denotes the set of real m × n matrices, and the trace inner

product of two matrices A,B ∈ Rm×n is A •B := trace(ATB). Sn denotes the space

of n × n symmetric matrices, and for X ∈ Sn, X � 0 means that X is positive
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semidefinite. In addition, diag(X) denotes the vector containing the diagonal entries

of X, and Diag(v) is the diagonal matrix with vector v along its diagonal. We denote

the null space of a matrix A as Null(A), i.e., Null(A) := {x : Ax = 0}. For K ⊆ Rn

a closed, convex cone, K∗ denotes its dual cone. For a matrix A with n columns, the

inclusion Rows(A) ∈ K indicates that the rows of A—considered as column vectors—

are members of K.

We next introduce some basics of copositive programming with respect to the

cone K ⊆ Rn. The copositive cone is defined as

COP(K) := {M ∈ Sn : xTMx ≥ 0 ∀ x ∈ K},

and its dual cone, the completely positive cone, is

CPP(K) := {X ∈ Sn : X =
∑

ix
i(xi)T , xi ∈ K},

where the summation over i is finite but its cardinality is unspecified. The term

copositive programming refers to linear optimization over COP(K) or, via duality,

linear optimization over CPP(K). In fact, these problems are sometimes called gen-

eralized copositive programming or set-semidefinite optimization [40, 59] in contrast

with the standard case K = Rn
+. In this study, we work with generalized copositive

programming, although we use the shorter phrase for convenience.

Finally, for the specific dimensions k and m of problem (RLP), we let ei denote

the i-th standard basis vector in Rk, and similarly, fj denotes the j-th standard basis

vector in Rm. We will also use g1 :=
(
e1
0

)
∈ Rk+m.
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2.2 A Copositive Reformulation

In this section, we construct a copositive representation of (RLP) under As-

sumptions 2.1–2.4 by first reformulating the inner maximization of (2.2) as a coposi-

tive problem and then employing copositive duality.

Within (2.2), define

π(x) := max
u∈U

min
y(u)∈Rn2

{dTy(u) : By(u) ≥ Fu− Ax}.

The dual of the inner minimization is maxw∈W(Fu − Ax)Tw, which is feasible as

discussed in Assumption 2.2. Hence, strong duality for LP implies

π(x) = max
u∈U

max
w
{(Fu− Ax)Tw : w ∈ W} = max

(u,w)∈U×W
(Fu− Ax)Tw, (2.3)

In other words, π(x) equals the optimal value of a bilinear program over convex

constraints, which is NP-hard in general [92].

It holds also that π(x) equals the optimal value of an associated copositive

program (see [35, 36] for example), which we now describe. Define

z :=

(
u

w

)
∈ Rk+m, E :=

(
−deT1 BT

)
∈ Rn2×(k+m), (2.4)

where e1 ∈ Rk is the first coordinate vector, and homogenize via the relationship (2.1)

and the definition of W :

π(x) = max (F − AxeT1 ) • wuT

s. t. Ez = 0

z ∈ K × Rm
+ , gT1 z = 1,
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where g1 is the first coordinate vector in Rk+m. The copositive representation is thus

π(x) = max (F − AxeT1 ) • Z21 (2.5)

s. t. diag(EZET ) = 0

Z ∈ CPP(K × Rm
+ ), g1g

T
1 • Z = 1,

where Z has the block structure

Z =

Z11 ZT
21

Z21 Z21

 ∈ Sk+m.

Note that under positive semidefiniteness, which is implied by the completely positive

constraint, the constraint diag(EZET ) = 0 is equivalent to ZET = 0; see Proposi-

tion 1 of [36], for example. For the majority of this chapter, we will focus on this

second version:

π(x) = max (F − AxeT1 ) • Z21 (2.6)

s. t. ZET = 0

Z ∈ CPP(K × Rm
+ ), g1g

T
1 • Z = 1.

By standard theory [120, corollary 3.2d], the extreme points ofW are contained

in a ball wTw ≤ rw, where rw > 0 is a radius that is polynomially computable

and representable in the encoding length of the entries of B and d (assuming those

entries are rational). Hence, Assumption 2.4 guarantees that the optimal value of

max{(Fu− Ax)Tw : BTw = d, w ≥ 0} does not change when wTw ≤ rw is enforced.

In addition, because U is bounded by Assumption 2.1, there exists a sufficiently large
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scalar rz > 0 such that the constraint zT z ≤ rz is redundant. It follows from these

observations that, in the preceding argument, we can enforce zT z = uTu + wTw ≤

r := rz + rw without cutting off all optimal solutions of (2.3). Thus, the lifted and

linearized constraint I • Z ≤ r can be added to (2.6) without changing its optimal

value, although some feasible directions of recession may be cut off. We arrive at

π(x) = max (F − AxeT1 ) • Z21 (2.7)

s. t. ZET = 0, I • Z ≤ r

Z ∈ CPP(K × Rm
+ ), g1g

T
1 • Z = 1.

Letting Λ ∈ R(k+m)×n2 , λ ∈ R, and ρ ∈ R be the respective dual multipliers

of ZET = 0, g1g
T
1 • Z = 1, and I • Z ≤ r, standard conic duality theory implies the

dual of (2.7) is

min
λ,Λ,ρ

λ+ rρ

s. t. λg1g
T
1 − 1

2
G(x) + 1

2
(ETΛT + ΛE) + ρI ∈ COP(K × Rm

+ )

ρ ≥ 0

(2.8)

where

G(x) :=

 0 (F − AxeT1 )T

F − AxeT1 0

 ∈ Sk+m

is affine in x. Holding all other dual variables fixed, for ρ > 0 large, the left-hand-side

matrix in (2.8) is strictly copositive—in fact, positive definite—which establishes that

Slater’s condition is satisfied, thus ensuring strong duality:

Proposition 2.1. Under Assumption 2.4, suppose r > 0 is a constant such that zT z ≤ r
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is satisfied by all u ∈ U and all extreme points w ∈ W , where z = (u,w). Then the

optimal value of (2.8) equals π(x).

Now, with π(x) expressed as a minimization that depends affinely on x, we

can collapse (2.2) into a single minimization that is equivalent to (RLP):

min
x,λ,Λ,ρ

cTx+ λ+ rρ

s. t. x ∈ X , λg1g
T
1 − 1

2
G(x) + 1

2
(ETΛT + ΛE) + ρI ∈ COP(K × Rm

+ )

ρ ≥ 0.

(RLP )

Theorem 2.1. The optimal value of (RLP ) equals v∗RLP.

An equivalent version of (RLP ) can be derived based on the representation of

π(x) in (2.5):

min
x,λ,v,ρ

cTx+ λ+ rρ

s. t. x ∈ X , λg1g
T
1 − 1

2
G(x) + ET Diag(v)E + ρI ∈ COP(K × Rm

+ )

ρ ≥ 0.

(2.9)

Our example in Section 2.5.1 will be based on this version.

We remark that, even if Assumption 2.4 fails and strong duality between (2.7)

and (2.8) cannot be established, it still holds that the optimal value of (RLP ) is an

upper bound on v∗RLP. Note that, in this case, (2.7) should be modified to exclude

I • Z ≤ r, and ρ should be set to 0 in (2.8).

2.3 The Affine Policy

Under the affine policy, the second-stage decision variable y(·) in (RLP) is

modeled as a linear function of u via a free variable Y ∈ Rn2×k:
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v∗Aff := min
x,y(·),Y

cTx+ max
u∈U

dTy(u)

s. t. Ax+By(u) ≥ Fu ∀ u ∈ U

y(u) = Y u ∀ u ∈ U

x ∈ X .

(Aff )

Here, Y acts as a “dummy” first-stage decision, and so (Aff) can be recast as a

regular robust optimization problem over U . Specifically, using standard techniques

[14], (Aff) is equivalent to

min
x,Y,λ

cTx+ λ

s. t. λe1 − Y Td ∈ K∗

Rows(AxeT1 − F +BY ) ∈ K∗

x ∈ X .

(2.10)

Problem (2.10) is tractable, but in general, the affine policy is only an approximation

of (RLP), i.e., v∗RLP < v∗Aff . In what follows, we provide a copositive representation

(Aff) of (Aff ), which is then used to develop an alternative formulation (IA) of (2.10).

Later, in Section 2.4, problem (IA) will be compared directly to (RLP).

Following the approach of Section 4.3, we may express (Aff) as min
x∈X ,Y

cTx +

Π(x, Y ) where

Π(x, Y ) := max
u∈U

min
y(u)∈Rn2

{dTy(u) : By ≥ Fu− Ax, y(u) = Y u}.

Note that we do not replace y(u) everywhere by Y u in the definition of Π(x, Y ); this

is a small but critical detail in the subsequent derivations. The inner minimization
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has dual

max
w≥0,v
{(Fu− Ax)Tw + (Y u)Tv : BTw + v = d}

= max
w≥0

(
(Fu− Ax)Tw + (Y u)T (d−BTw)

)
.

After collecting terms, homogenizing, and converting to copostive optimization, we

have

Π(x, Y ) = max 1
2
(G(x)−H(Y )) • Z

s. t. Z ∈ CPP(K × Rm
+ ), g1g

T
1 • Z = 1

(2.11)

with dual

min
λ

λ

s. t. λg1g
T
1 − 1

2
G(x) + 1

2
H(Y ) ∈ COP(K × Rm

+ ),

(2.12)

where G(x) is defined as in Section 4.3 and

H(Y ) :=

−e1d
TY − Y TdeT1 (BY )T

BY 0

 ∈ Sk+m.

Since K has interior by Assumption 2.1, it follows that (2.11) also has interior, and

so Slater’s condition holds, implying strong duality between (2.11) and (2.12). Thus,

repeating the logic of Section 4.3, (Aff) is equivalent to

min
x,λ,Y

cTx+ λ

s. t. x ∈ X , λg1g
T
1 − 1

2
G(x) + 1

2
H(Y ) ∈ COP(K × Rm

+ ).

(Aff )

Proposition 2.2. The optimal value of (Aff ) is v∗Aff .

We now show that COP(K × Rm
+ ) in (Aff) can be replaced by a particular inner

approximation without changing the optimal value. Moreover, this inner approxima-
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tion is tractable, so that the resulting optimization problem serves as an alternative

to the formulation (2.10) of (Aff).

Using the mnemonic “IA” for “inner approximation,” we define

IA(K × Rm
+ ) :=

S =

S11 ST21

S21 S22

 :
S11 = e1α

T + αeT1 , α ∈ K∗,

Rows(S21) ∈ K∗, S22 ≥ 0

 .

This set is tractable because it is defined by affine constraints in K∗ as well as non-

negativity constraints. Moreover, IA(K × Rm
+ ) is indeed a subset of COP(K × Rm

+ ):

Lemma 2.2. IA(K × Rm
+ ) ⊆ COP(K × Rm

+ ).

Proof. We first note that (2.1) implies that the first coordinate of every element of K is

nonnegative; hence, e1 ∈ K∗. Now, for arbitrary
(
p
q

)
∈ K × Rm

+ and S ∈ IA(K × Rm
+ ),

we prove t :=
(
p
q

)T
S
(
p
q

)
≥ 0. We have

t =

(
p

q

)T S11 ST21

S21 S22

(pq
)

= pTS11p+ 2 qTS21p+ qTS22q.

Analyzing each of the three summands separately, we first have

e1, α ∈ K∗ =⇒ pTS11p = pT (e1α
T + αeT1 )p = 2(pT e1)(αTp) ≥ 0.

Second, p ∈ K and Rows(S21) ∈ K∗ imply S21p ≥ 0, which in turn implies qTS21p =

qT (S21p) ≥ 0 because q ≥ 0. Finally, it is clear that qTS22q ≥ 0 as S22 ≥ 0 and q ≥ 0.

Thus, t ≥ 0 + 0 + 0 = 0, as desired.

The following tightening of (Aff) simply replaces COP(K × Rm
+ ) with its inner
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approximation IA(K × Rm
+ ):

v∗IA := min
x,λ,Y

cTx+ λ

s. t. x ∈ X , λg1g
T
1 − 1

2
G(x) + 1

2
H(Y ) ∈ IA(K × Rm

+ ).

(IA)

By construction, v∗IA ≥ v∗Aff , but in fact these values are equal.

Theorem 2.3. v∗IA = v∗Aff .

Proof. We show v∗IA ≤ v∗Aff by demonstrating that every feasible solution of (2.10)

yields a feasible solution of (IA) with the same objective value. Let (x, Y, λ) be

feasible for (2.10); we prove

S := λg1g
T
1 − 1

2
G(x) + 1

2
H(Y ) ∈ IA(K × Rm

+ ),

which suffices. Note that the block form of S is

S =

λe1e
T
1 − 1

2
(e1d

TY + Y TdeT1 ) 1
2
(AxeT1 − F +BY )T

1
2
(AxeT1 − F +BY ) 0

 .

The argument decomposes into three pieces. First, we define α := 1
2
(λe1 − Y Td),

which satisfies α ∈ K∗ due to (2.10). Then

S11 = λe1e
T
1 − 1

2
(e1d

TY + Y TdeT1 )

=
(

1
2
λe1e

T
1 − 1

2
e1d

TY
)

+
(

1
2
λe1e

T
1 − 1

2
Y TdeT1

)
= e1α

T + αeT1

as desired. Second, we have 2 Rows(S21) = Rows(AxeT1 − F + BY ) ∈ K∗ by (2.10).

Finally, S22 = 0 ≥ 0.



30

2.4 Improving the Affine Policy

A direct relationship holds between (RLP) and (IA):

Proposition 2.3. In problem (RLP), write Λ =
(

Λ1

Λ2

)
, where Λ1 ∈ Rk×n2 and Λ2 ∈

Rm×n2 . Problem (IA) is a restriction of (RLP ) in which Λ2 = 0, Y is identified with

ΛT
1 , ρ = 0, and COP(K × Rm

+ ) is tightened to IA(K × Rm
+ ).

Proof. Examining the similar structure of (RLP) and (IA), it suffices to equate the

terms ETΛT +ΛE and H(Y ) in the respective problems under the stated restrictions.

From (4.10),

ETΛT + ΛE =

−e1d
TΛT

1 − Λ1de
T
1 Λ1B

T − e1d
TΛT

2

BΛT
1 − Λ2de

T
1 BΛT

2 + Λ2B
T

 .

Setting Λ2 = 0 and identifying Y = ΛT
1 , we see

ETΛT + ΛE =

−e1d
TY − Y TdeT1 Y TBT

BY 0

 = H(Y ),

as desired.

Now let IB(K × Rm
+ ) be any closed convex cone satisfying

IA(K × Rm
+ ) ⊆ IB(K × Rm

+ ) ⊆ COP(K × Rm
+ ),

where the mnemonic “IB” stands for “in between”, and consider the following problem

gotten by replacing COP(K × Rm
+ ) in (RLP) with IB(K × Rm

+ ):

v∗IB := min
x,λ,Λ

cTx+ λ

s. t. x ∈ X , λg1g
T
1 − 1

2
G(x) + 1

2
(ETΛT + ΛE) ∈ IB(K × Rm

+ ).

(IB)
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Problem (IB) is clearly a restriction of (RLP), and by Proposition 2.3, it is simulta-

neously no tighter than (IA). Combining this with Theorems 2.1 and 2.3, we thus

have:

Theorem 2.4. v∗RLP ≤ v∗IB ≤ v∗Aff .

We end this section with a short discussion of example approximations IB(K × Rm
+ )

for typical cases of K. In fact, there are complete hierarchies of approximations of

COP(K × Rm
+ ) [146], but we present a relatively simple construction that starts from

a given inner approximation IB(K) of COP(K):

Proposition 2.4. Suppose IB(K) ⊆ COP(K), and define

IB(K × Rm
+ ) :=

S +M +R :
S ∈ IA(K × Rm

+ ), M � 0

R11 ∈ IB(K), R21 = 0, R22 = 0

 .

Then IA(K × Rm
+ ) ⊆ IB(K × Rm

+ ) ⊆ COP(K × Rm
+ ).

Proof. For the first inclusion, simply take M = 0 and R11 = 0. For the second

inclusion, let arbitrary
(
p
q

)
∈ K × Rm

+ be given. We need to show(
p

q

)T
(S +M +R)

(
p

q

)
=
(
p
q

)T
S
(
p
q

)
+
(
p
q

)T
M
(
p
q

)
+ pTR11p ≥ 0.

The first term is nonnegative because S ∈ IA(K × Rm
+ ); the second term is nonnega-

tive because M � 0; and the third is nonnegative because R11 ∈ COP(K).

When K = {u ∈ Rk : ‖(u2, . . . , uk)
T‖ ≤ u1} is the second-order cone, it is

known [130] that

COP(K) = {R11 = τJ +M11 : τ ≥ 0, M11 � 0},
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where J = Diag(1,−1, . . . ,−1). Because of this simple structure, it often makes sense

to take IB(K) = COP(K) in practice. Note also that M11 � 0 can be absorbed into

M � 0 in the definition of IB(K × Rm
+ ) above. When K = {u ∈ Rk : Pu ≥ 0} is a

polyhedral cone based on some matrix P , a typical inner approximation of COP(K)

is

IB(K) := {R11 = P TNP : N ≥ 0},

where N is a symmetric matrix variable of appropriate size. This corresponds to the

RLT approach of [4, 38, 126].

2.5 Examples

In this section, we demonstrate our approximation v∗IB satisfying v∗RLP ≤ v∗IB ≤

v∗Aff on several examples from the literature. The first example is treated analytically,

while the remaining examples are verified numerically. All computations are con-

ducted with Mosek version 8.0.0.28 beta [5] on an Intel Core i3 2.93 GHz Windows

computer with 4GB of RAM and implemented using the modeling language YALMIP

[99] in MATLAB (R2014a).

2.5.1 A temporal network example

The paper [139] studies a so-called temporal network application, which for

any integer s ≥ 2 leads to the following problem, which is based on an uncertainty

set Ξ ⊆ Rs and in which the first-stage decision x is fixed, say, at 0 and y(·) maps
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into Rs:

min
y(·)

max
ξ∈Ξ

y(ξ)s

s. t. y(ξ)1 ≥ max{ξ1, 1− ξ1} ∀ ξ ∈ Ξ

y(ξ)2 ≥ max{ξ2, 1− ξ2}+ y(ξ)1 ∀ ξ ∈ Ξ

...

y(ξ)s ≥ max{ξs, 1− ξs}+ y(ξ)s−1 ∀ ξ ∈ Ξ.

(2.13)

Note that each of the above linear constraints can be expressed as two separate linear

constraints. The authors of [139] consider a polyhedral uncertainty set (based on the

1-norm). A related paper [78] considers a conic uncertainty set (based on the 2-norm)

for s = 2; we will extend this to s ≥ 2. In particular, we consider the following two

uncertainty sets for general s:

Ξ1 := {ξ ∈ Rs : ‖ξ − 1
2
1s‖1 ≤ 1

2
},

Ξ2 := {ξ ∈ Rs : ‖ξ − 1
2
1s‖ ≤ 1

2
},

where 1s denotes the all-ones vector in Rs. For j = 1, 2, let v∗RLP,j and v∗Aff,j be the

robust and affine values associated with (2.13) for the uncertainty set Ξj. Note that

Ξ1 ⊆ Ξ2, and hence v∗RLP,1 ≤ v∗RLP,2.

The papers [78, 139] show that v∗Aff,1 = v∗Aff,2 = s, and [139] establishes v∗RLP,1 =

1
2
(s+ 1). Moreover, we can calculate v∗RLP,2 in this chapter by the following analysis.
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Any feasible y(ξ) satisfies

y(ξ)s ≥ max{ξs, 1− ξs}+ y(ξ)s−1

≥ max{ξs, 1− ξs}+ max{ξs−1, 1− ξs−1}+ y(ξ)s−2

≥ · · · ≥
s∑
i=1

max{ξi, 1− ξi}

Hence, applying this inequality at an optimal y(·), it follows that

v∗RLP,2 ≥ max
ξ∈Ξ2

s∑
i=1

max{ξi, 1− ξi}.

Under the change of variables µ := 2ξ − 1s, we have

v∗RLP,2 ≥ max
ξ∈Ξ2

s∑
i=1

max{ξi, 1− ξi} = max
‖µ‖≤1

s∑
i=1

1
2

max{1 + µi, 1− µi}

=
1

2
max
‖µ‖≤1

s∑
i=1

(1 + |µi|) =
1

2

(
s+ max

‖µ‖≤1
‖µ‖1

)
= 1

2
(
√
s+ s),

where the last equality follows from the fact that the largest 1-norm over the Eu-

clidean unit ball is
√
s. Moreover, one can check that the specific, sequentially defined

mapping

y(ξ)1 := max{ξ1, 1− ξ1}

y(ξ)2 := max{ξ2, 1− ξ2}+ y(ξ)1

...

y(ξ)s := max{ξs, 1− ξs}+ y(ξ)s−1

is feasible with objective value 1
2
(
√
s+ s). So v∗RLP,2 ≤ 1

2
(
√
s+ s), and this completes

the argument that v∗RLP,2 = 1
2
(
√
s + s). Overall, we find that each j = 1, 2 yields a
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class of problems with arbitrarily large gaps between the true robust adjustable and

affine-policy values.

Using the similar change of variables

u := (1, u2, . . . , us+1)T = (1, 2ξ1 − 1, . . . , 2ξs − 1)T ∈ Rs+1,

for each Ξj, we may cast (2.13) in the form of (RLP) by setting x = 0, defining

m = 2s, k = s+ 1, n2 = s,

and taking Ûj to be the k-dimensional cone associated with the j-norm. For conve-

nience, we continue to use s in the following discussion, but we will remind the reader

of the relationships between s, m, k, and n2 as necessary (e.g., s = m/2). We also

set

d = (0, . . . , 0, 1)T ∈ Rs,
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B =



1 0 0 · · · 0 0

1 0 0 · · · 0 0

−1 1 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

0 −1 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1 0

0 0 0 · · · 1 0

0 0 0 · · · −1 1

0 0 0 · · · −1 1



∈ R2s×s, F =
1

2



1 1 0 · · · 0

1 −1 0 · · · 0

1 0 1 · · · 0

1 0 −1 · · · 0

...
...

...
. . .

...

1 0 0 · · · 1

1 0 0 · · · −1



∈ R2s×(s+1).

Furthermore,

Û2 := {u ∈ Rs+1 : ‖(u2, . . . , us+1)T‖ ≤ u1}

is the second-order cone, and

Û1 := {u ∈ Rs+1 : Pu ≥ 0},

where each row of P ∈ R2s×(s+1) has the following form: (1,±1, . . . ,±1). That is,

each row is an (s+1)-length vector with a 1 in its first position and some combination

of +1’s and −1’s in the remaining s positions. Note that the size of P is exponential in

s. Using extra nonnegative variables, we could also represent Û1 as the projection of a

cone with size polynomial in s, and all of the subsequent discussion would still apply.

In other words, the exact representation of Û1 is not so relevant to our discussion here;

we choose the representation Pu ≥ 0 in the original space of variables for convenience.
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It is important to note that, besides K1 and K2, all other data required for

representing (2.13) in the form of (RLP), such as the matrices B and F , do not

depend on j. Assumptions 2.1–2.3 clearly hold, and the following proposition shows

that (2.13) also satisfies Assumption 2.4:

Proposition 2.5. For (2.13) and its formulation as an instance of (RLP ),W is nonempty

and bounded.

Proof. The system BTw = d is equivalent to the 2s − 1 equations w1 + w2 = 1,

w2 + w3 = 1, · · · , w2s−1 + w2s = 1. It is thus straightforward to check that W is

nonempty and bounded.

2.5.1.1 The case j = 2

Let us focus on the case j = 2; we continue to make use of the subscript

2. Recall v∗RLP,2 = 1
2
(
√
s + s), and consider problem (IB2) with IB(Û2 × R2s

+ ) built

as described for the second-order cone at the end of Section 2.4. We employ the

equivalent formulation (2.9) of (RLP), setting x = 0 and replacing COP(Û2 × R2s
+ )

by IB(Û2 × R2s
+ ):

v∗IB,2 = min λ+ rρ

s. t. λg1g
T
1 − 1

2
G(0) + ET Diag(v)E + ρI ∈ IB(Û2 × R2s

+ )

ρ ≥ 0.

(2.14)

Note that the dimension of g1 is k +m = (s+ 1) + 2s = 3s+ 1.

We know v∗RLP,2 ≤ v∗IB,2 by Theorem 2.4. Substituting the definition of IB(Û2×
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R2s
+ ) from Section 2.4, using the fact that Û∗2 = Û2, and simplifying, we have

v∗IB,2 = min λ+ rρ

s. t. ρI + λg1g
T
1 − 1

2
G(0) + ET Diag(v)E − S −R � 0

ρ ≥ 0, S11 = e1α
T + αeT1 , α ∈ Û2, S22 ≥ 0, Rows(S21) ∈ Û2

R11 = τJ, τ ≥ 0, R21 = 0, R22 = 0.

(2.15)

We will show that, for every ρ > 0, (2.15) has a feasible solution with objective value

v∗RLP,2 + rρ. Then, by letting ρ → 0, we conclude that v∗IB,2 ≤ v∗RLP,2, which in turn

establishes that v∗IB,2 = v∗RLP,2, i.e., that our relaxation is in fact exact.

For fixed ρ > 0, let us construct the claimed feasible solution. Set

λ = v∗RLP,2 = 1
2
(
√
s+ s), α = 0, τ = 1

4

√
s, S21 = 0,

and

S22 =
1

2
√
s

s∑
i=1

(
f2if

T
2i−1 + f2i−1f

T
2i

)
≥ 0,

where fj denotes the j-th coordinate vector in Rm = R2s. Note that clearly α ∈ Û2

and Rows(S21) ∈ Û2. Also forcing v = µ1k for a single scalar variable µ, where 1k

is the all-ones vector of size k = s + 1, the feasibility constraints of (2.15) simplify

further to

ρI +

1
2
(s+

√
s)e1e

T
1 − 1

4

√
sJ −1

2
F T

−1
2
F −S22

+ µETE � 0, (2.16)

where e1 ∈ Rk = Rs+1 is the first coordinate vector. For compactness, we write

V :=

1
2
(s+

√
s)e1e

T
1 − 1

4

√
sJ −1

2
F T

−1
2
F −S22

 (2.17)
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so that (2.16) reads ρI + V + µETE � 0. We next claim that, given ρ, V , and E, µ

can be chosen so that (2.16) is indeed satisfied, which we prove in the following.

First, the existence of µ requires the following lemma:

Lemma 2.5. If V is positive semidefinite on the null space of E (that is, z ∈

Null(E)⇒ zTV z ≥ 0), then there exists µ > 0 such that ρI + V + µETE � 0.

Proof. We prove the contrapositive. Suppose ρI + V + µETE is not positive definite

for all µ > 0. In particular, there exists a sequence of vectors {z`} such that

zT` (ρI + V + `ETE)z` ≤ 0, ‖z`‖ = 1.

Since {z`} is bounded, there exists a limit point z̄ such that

zT` (1
`
(ρI + V ) + ETE)z` ≤ 0 ⇒ z̄TETEz̄ = ‖Ez‖2 ≤ 0 ⇔ z̄ ∈ Null(E).

Furthermore,

zT` (ρI + V )z` ≤ −`zT` ETEz` = −`‖Ez`‖2 ≤ 0 ⇒ z̄T (ρI + V )z̄ ≤ 0

⇔ z̄TV z̄ ≤ −ρ‖z̄‖2 < 0.

Thus, V is not positive semidefinite on Null(E).

Then, with the lemma in hand, it suffices to prove that V is positive semidef-

inite on Null(E), a fact which we establish directly.

Recall that E ∈ Rn2×(k+m) = Rs×(3s+1). For notational convenience, we parti-

tion any z ∈ Rk+m into z =
(
u
w

)
with u ∈ Rk = Rs+1 and w ∈ Rm = R2s. Then, from
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the definition of E, we have

z =

(
u

w

)
∈ Null(E) ⇐⇒



w1 + w2 = w3 + w4

w3 + w4 = w5 + w6

...

w2s−3 + w2s−2 = w2s−1 + w2s

w2s−1 + w2s = u1


⇐⇒ w2i−1 = u1 − w2i ∀ i = 1, . . . , s.

So, taking into account the definition (2.17) of V ,

4 zTV z = 4
(
u
w

)T
V
(
u
w

)
= uT

(
2(s+

√
s)e1e

T
1 −
√
sJ
)
u− 4wTFu− 4wTS22w,

which breaks into the three summands, and we will simplify each one by one. First,

uT
(
2(s+

√
s)e1e

T
1 −
√
sJ
)
u = 2(s+

√
s)u2

1 −
√
su2

1 +
√
s
s+1∑
j=2

u2
j

= 2 s u2
1 +
√
s uTu.
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Second,

−4wTFu = −4
2s∑
j=1

wj[Fu]j = −4
s∑
i=1

(w2i−1[Fu]2i−1 + w2i[Fu]2i)

= −2
s∑
i=1

(w2i−1(u1 + ui+1) + w2i(u1 − ui+1))

= −2
s∑
i=1

((w2i−1 + w2i)u1 + ui+1(w2i−1 − w2i))

= −2
s∑
i=1

(
u2

1 + ui+1(w2i−1 − w2i)
)

= −2 s u2
1 − 2

s∑
i=1

ui+1(w2i−1 − w2i)

= −2 s u2
1 + 2

s∑
i=1

ui+1(w2i − w2i−1) = −2 s u2
1 + 2

s∑
i=1

ui+1(2w2i − u1).

Finally,

−4wTS22w = −4wT

(
1

2
√
s

s∑
i=1

(
f2if

T
2i−1 + f2i−1f

T
2i

))
w

= − 4√
s

s∑
i=1

w2i−1w2i = − 4√
s

s∑
i=1

(u1 − w2i)w2i.

Combining the three summands, we have as desired

4zTV z =
(
2s u2

1 +
√
s uTu

)
+

(
−2s u2

1 + 2
s∑
i=1

ui+1(2w2i − u1)

)
+

(
− 4√

s

s∑
i=1

(u1 − w2i)w2i

)

=
√
s uTu+ 2

s∑
i=1

ui+1(2w2i − u1)− 4√
s

s∑
i=1

(u1 − w2i)w2i

=
s∑
i=1

(
1√
s
u2

1 +
√
s u2

i+1 + 2ui+1(2w2i − u1)− 4√
s

(u1 − w2i)w2i

)

=
s∑
i=1

(
1√
s
u2

1 − 2u1 ui+1 −
4√
s
u1w2i +

√
s u2

i+1 + 4ui+1 w2i +
4√
s
w2

2i

)

=
s∑
i=1

(
−(s)−1/4 u1 + (s)1/4 ui+1 + 2(s)−1/4w2i

)2

≥ 0.
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By the discussion above, it follows that indeed v∗IB,2 = v∗RLP,2 for the instance

(2.13) of (RLP) based on Ξ2.

For completeness—and also to facilitate Section 2.5.1.2 next—we construct the

corresponding optimal solution of the dual of (2.14), which can be derived from (2.5)

by setting x = 0, adding the redundant constraint I •Z ≤ r, and replacing CPP(Û2×

R2s
+ ) by its relaxation IB(Û2 × R2s

+ )∗, the dual cone of IB(Û2 × R2s
+ ). Specifically, the

dual is

v∗IB,2 = max F • Z21

s. t. diag(EZET ) = 0, I • Z ≤ r

J • Z11 ≥ 0, Z11e1 ∈ Û2, Z22 ≥ 0, Rows(Z21) ∈ Û2

Z � 0, g1g
T
1 • Z = 1.

(2.18)

We construct the optimal solution of (2.18) to be

Z =
1

4

[(
2e1

1m

)(
2e1

1m

)T
+

s∑
i=1

( 2√
s
ei+1

f2i−1 − f2i

)( 2√
s
ei+1

f2i−1 − f2i

)T]
,

where each e• is a coordinate vector in Rk = Rs+1, each f• is a coordinate vector

in Rm = R2s, and 1m ∈ Rm is the all-ones vector. By construction, Z is positive

semidefinite, and one can argue in a straightforward manner that

Z11 = Diag(1, 1
s
, . . . , 1

s
), Z22 =

1

4

(
I + 1m1

T
m −

s∑
i=1

(f2if
T
2i−1 + f2i−1f

T
2i)

)
,
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and

Z21 =
1

2



1 1√
s

0 · · · 0

1 − 1√
s

0 · · · 0

1 0 1√
s
· · · 0

1 0 − 1√
s
· · · 0

...
...

...
. . .

...

1 0 0 · · · 1√
s

1 0 0 · · · − 1√
s



.

Then Z clearly satisfies g1g
T
1 • Z = 1, Z11e1 ∈ Û2, J • Z11 ≥ 0, Z22 ≥ 0, and

Rows(Z21) ∈ Û2. Furthermore, the constraint I • Z ≤ r is easily satisfied for suffi-

ciently large r. To check the constraint diag(EZET ) = 0, it suffices to verify EZ = 0,

which amounts to two equations. First,

0 = E

(
2e1

1m

)
= −2 deT1 e1 +BT

1m = −2d+ 2d = 0,

and second, for each i = 1, . . . , s,

0 = E

( 2√
s
ei+1

f2i−1 − f2i

)
= − 2√

s
deT1 ei+1 +BT (f2i−1 − f2i) = 0 +BTf2i−1 −BTf2i = 0.

So the proposed Z is feasible. Finally, it is clear that the corresponding objective

value is F • Z21 = 1
2
(
√
s+ s). So Z is indeed optimal.

2.5.1.2 The case j = 1

Recall that Ξ1 is properly contained in Ξ2. So v∗RLP,1 cannot exceed v∗RLP,2

due to its smaller uncertainty set. In fact, as discussed above, we have 1
2
(
√
s + 1) =

v∗RLP,1 < v∗RLP,2 = 1
2
(
√
s + s) and v∗Aff,1 = v∗Aff,2 = s. In this subsection, we further
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exploit the inclusion Ξ1 ⊆ Ξ2 and the results of the previous subsection (case j = 2) to

prove that, for the particular tightening IB(Û1 ×R2s
+ ) proposed at the end of Section

2.4, we have v∗RLP,1 < v∗IB,1 = 1
2
(
√
s + s) < v∗Aff,1. In other words, the case j = 1

provides an example in which our approach improves the affine value but does not

completely close the gap with the robust value.

The inclusion Ξ1 ⊆ Ξ2 implies Û1 ⊆ Û2 and CPP(Û1×R2s
+ ) ⊆ CPP(Û2×R2s

+ ).

Hence, COP(Û1×R2s
+ ) ⊇ COP(Û2×R2s

+ ). Moreover, it is not difficult to see that the

construction of IB(Û1 × R2s
+ ) introduced at the end of Section 2.4 for the polyhedral

cone Û1 satisfies IB(Û1 × R2s
+ ) ⊇ IB(Û2 × R2s

+ ). Thus, we conclude v∗IB,1 ≤ v∗IB,2 =

1
2
(
√
s+ s).

We finally show v∗IB,1 ≥ v∗IB,2. Based on the definition of Û1 using the matrix

P , similar to (2.18) the corresponding dual problem is

v∗IB,1 = max F • Z21

s. t. diag(EZET ) = 0, I • Z ≤ r

PZ11e1 ≥ 0, PZ11P
T ≥ 0, Z22 ≥ 0, PZT

21 ≥ 0

Z � 0, g1g
T
1 • Z = 1.

(2.19)

To complete the proof, we claim that the specific Z detailed in the previous subsection

is also feasible for (2.19). It remains to show that PZ11e1 ≥ 0, PZ11P
T ≥ 0, and

PZT
21 ≥ 0.

Recall that Z11 = Diag(1, 1
s
, . . . , 1

s
) and every row of P has the form (1,±1, . . . ,±1).

Clearly, we have PZ11e1 ≥ 0. Moreover, each entry of PZ11P
T can be expressed as
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(
1
α

)T
Z11

(
1
β

)
for some α, β ∈ Rs each of the form (±1, . . . ,±1). We have

(
1
α

)T
Z11

(
1
β

)
= 1 + 1

s
· αTβ ≥ 1 + 1

s
(−s) ≥ 0.

So indeed PZ11P
T ≥ 0. To check PZT

21 ≥ 0, recall also that every column of ZT
21 has

the form 1
2
(e1± 1√

s
ei+1) for i = 1, . . . , s, where e• is a coordinate vector in Rk = Rs+1.

Then each entry of 2PZT
21 can be expressed as

(
1
α

)T
e1 ± 1√

s

(
1
α

)T
ei+1 ≥ 1− 1√

s
> 0.

So PZT
21 ≥ 0, as desired.

2.5.2 Multi-item newsvendor problem

In this example, we consider the same robust multi-item newsvendor problem

discussed in [7]:

max
x≥0

min
ξ∈Ξ

∑
j∈J

[
rj min(xj, ξj)− cjxj + sj max(xj − ξj, 0)− pj max(ξj − xj, 0)

]
, (2.20)

where J represents the set of products; x is the vector of nonnegative order quantities

xj for all j ∈ J ; ξ ∈ Ξ is the vector of uncertain demands ξj for all j ∈ J ; rj, cj, sj,

and pj denote the sale price, order cost, salvage price, and shortage cost of a unit of

product j with sj ≤ min(rj, cj). Problem (2.20) is equivalent to

max
x,y(·)

min
ξ∈Ξ

∑
j∈J yj(ξ)

s. t. yj(ξ) ≤ (rj − cj)xj − (rj − sj)(xj − ξj) ∀ j ∈ J , ξ ∈ Ξ

yj(ξ) ≤ (rj − cj)xj − pj(ξj − xj) ∀ j ∈ J , ξ ∈ Ξ

x ≥ 0.

(2.21)
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We consider the same instance as in [7] with J = {1, 2, 3},

r = (80, 80, 80), c = (70, 50, 20), s = (20, 15, 10), p = (60, 60, 50),

and

Ξ :=



ξ : ∃ ζ+, ζ− s. t.

ζ+ ≥ 0, ζ− ≥ 0

ζ+
j + ζ−j ≤ 1 ∀ j ∈ J∑
j∈J (ζ+

j + ζ−j ) = 2

ξ1 = 80 + 30(ζ+
1 + ζ+

2 − ζ−1 − ζ−2 )

ξ2 = 80 + 30(ζ+
2 + ζ+

3 − ζ−2 − ζ−3 )

ξ3 = 60 + 20(ζ+
3 + ζ+

1 − ζ−3 − ζ−1 )



.

Omitting the details, we reformulate problem (2.21) as an instance of (RLP )

in minimization form. Assumption 2.1 clearly holds, and by using a method called

enumeration of robust linear constraints in [76], we have v∗RLP = −825.83 (so As-

sumption 2.3 holds). Moreover, the affine-policy value is v∗Aff = −41.83, and thus

Assumption 2.2 holds. As mentioned at the end of Section 4.3, whether or not As-

sumption 2.4 holds, in practice our approach still provides an upper bound. Indeed,

we solve (IB) with the approximating cone IB(K × Rm
+ ) defined in Section 2.4, where

K is a polyhedral cone, and obtain v∗IB = −411.08, which closes the gap significantly.

The first-stage decisions given by the affine policy and our approach, respectively, are

x∗Aff ≈ (52.083, 104.400, 80.000), x∗IB ≈ (57.118, 78.162, 78.473).
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2.5.3 Lot-sizing problem on a network

We next consider a network lot-sizing problem derived from section 5 of [20]

for which the mathematical formulation is:

min
x,y(·)

cTx+ max
ξ∈Ξ

∑N
i=1

∑N
j=1 tijy(ξ)ij

s. t. xi +
∑N

j=1 y(ξ)ji −
∑N

j=1 y(ξ)ij ≥ ξi ∀ ξ ∈ Ξ, i = 1, . . . , N

y(ξ)ij ≥ 0 ∀ ξ ∈ Ξ, i, j = 1, . . . , N

0 ≤ xi ≤ Vi ∀ i = 1, . . . , N,

where N is the number of locations in the network, x denotes the first-stage stock

allocations, y(ξ)ij denotes the second-stage shipping amounts from location i to lo-

cation j, and the uncertainty set is the ball Ξ := {ξ : ‖ξ‖ ≤ Γ} for a given radius Γ.

(The paper [20] uses a polyhedral uncertainty set, which we will also discuss below.)

The vector c consists of the first-stage costs, the tij are the second-stage transporta-

tion costs for all location pairs, and Vi represents the capacity of store location i. We

refer the reader to [20] for a full description.

Consistent with [20], we consider an instance with N = 8, Γ = 10
√
N , each

Vi = 20, and each ci = 20. We randomly generate the positions of the N locations

from [0, 10]2 in the plane. Then we set tij to be the (rounded) Euclidean distances

between all pairs of locations; see Table 3.2.

Omitting the details, we reformulate this problem as an instance of (RLP ), and

we calculate v∗LB = 1573.8 (using the Monte Carlo sampling procedure mentioned in

the Introduction) and v∗Aff = 1950.8. It is also easy to see that Assumption 2.1 holds,

and the existence of an affine policy implies that Assumption 2.2 holds. Moreover,
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Location i

Location j 1 2 3 4 5 6 7 8

1 0 4 3 2 2 2 3 5

2 4 0 6 5 4 4 2 8

3 3 6 0 1 5 2 6 2

4 2 5 1 0 4 1 4 3

5 2 4 5 4 0 4 2 7

6 2 4 2 1 4 0 4 4

7 3 2 6 4 2 4 0 7

8 5 8 2 3 7 4 7 0

Table 2.1: Unit transportation costs tij associated with pairs of

locations.

Assumption 2.3 holds because the original objective value above is clearly bounded

below by 0. Again, as mentioned at the end of Section 4.3, whether or not Assumption

2.4 holds, in practice we can still use our approach to calculate bounds. We solve

(IB) with the approximating cone IB(K × Rm
+ ) defined in Section 2.4, where K is the

second-order cone, and obtain v∗IB = 1794.0, which closes the gap significantly. The

first-stage allocations given by the affine policy and our approach, respectively, are

x∗Aff ≈ (9.097, 11.246, 9.516, 8.320, 10.384, 9.493, 10.211, 12.316),

x∗IB ≈ (0.269, 16.447, 15.328, 0.091, 18.124, 0.375, 9.951, 19.934).
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Letting other data remain the same, we also ran tests on a budget uncertainty

set Ξ := {ξ : 0 ≤ ξ ≤ ξ̂e, eT ξ ≤ Γ}, where ξ̂ = 20 and Γ = 20
√
N , which is consistent

with [20]. We found that, in this case, our method did not perform better than the

affine policy.

2.5.4 Randomly generated instances

Finally, we used the same method presented in [78] to generate random in-

stances of (RLP ) with (k,m, n1, n2) = (17, 16, 3, 5), X = Rn1 , U equal to the unit

ball, and K equal to the second-order cone. Specifically, the instances are generated

as follows: (i) the elements of A and B are independently and uniformly sampled

in [−5, 5]; (ii) the rows of F are uniformly sampled in [−5, 5] such that each row

is in −K∗ = −K guaranteeing Fu ≤ 0 for all u ∈ U ; and (iii) a random vector

µ ∈ Rm is repeatedly generated according to the uniform distribution on [0, 1]m until

c := ATµ ≥ 0 and d := BTµ ≥ 0. Note that, by definition, µ ∈ W .

Clearly Assumption 2.1 is satisfied. In addition, we can see that Assumption

2.2 is true as follows. Consider x = 0 and set y(·) to be the zero map, i.e., y(u) = 0

for all u ∈ U . Then Ax+By(u) ≥ Fu for all u if and only 0 ≥ Fu for all u, which has

been guaranteed by construction. Finally, Assumption 2.3 holds due to the following
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chain, where π(x) is defined as at the beginning of Section 4.3:

cTx+ π(x) = cTx+ max
u∈U

max
w∈W

(Fu− Ax)Tw

≥ cTx+ max
u∈U

(Fu− Ax)Tµ = cTx− (Ax)Tµ+ max
u∈U

(Fu)Tµ

= (c− ATµ)Tx+ max
u∈U

(Fu)Tµ = 0Tx+ max
u∈U

(Fu)Tµ

> −∞.

We do not know if Assumption 2.4 necessarily holds for this construction, but as

mentioned at the end of Section 4.3, our approximations still hold even if Assumption

2.4 does not hold.

For 1,000 generated instances, we computed v∗Aff , the lower bound v∗LB from

the sampling procedure of the Introduction, and our bound v∗IB using the the ap-

proximating cone IB(K × Rm
+ ) defined in Section 2.4, where K is the second-order

cone. Of all 1,000 instances, 971 have v∗LB < v∗IB = v∗Aff , while the remaining 29 have

v∗LB < v∗IB < v∗Aff . For those 29 instances with a positive gap, the average relative gap

closed is 20.2%, where

relative gap closed :=
v∗Aff − v∗IB
v∗Aff − v∗LB

× 100%.

2.6 Final Remarks

In this chapter, we have provided a new perspective on the two-stage problem

(RLP). It would be interesting to study tighter inner approximations IB(K × Rm
+ ) of

COP(K × Rm
+ ) or to pursue other classes of problems, such as the one described in

Section 2.5.1, for which our approach allows one to establish the tractability of (RLP).
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A significant open question for our approach—one which we have not been able to

resolve—is whether the copositive approach corresponds to enforcing a particular class

of policies y(·). For example, the paper [23] solves (RLP) by employing polynomial

policies, but the form of our “copositive policies” is unclear even though we have

proven they are rich enough to solve (RLP). A related question is how to extract a

specific policy y(·) from the solution of the approximation (IB).
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CHAPTER 3
ROBUST SENSITIVITY ANALYSIS

3.1 Introduction

Consider the standard-form linear program (LP):

min ĉTx

s. t. Âx = b̂

x ≥ 0

(3.1)

where x ∈ Rn is the variable and (Â, b̂, ĉ) ∈ Rm×n × Rm × Rn are the problem

parameters. In practice, (Â, b̂, ĉ) may not be known exactly or may be predicted

to change within a certain region. In such cases, sensitivity analysis (SA) examines

how perturbations in the parameters affect the optimal value and solution of (3.1).

We refer the reader to Section 1.2 for a review of classical and more sophisticated

sensitivity analysis.

An area closely related to SA is interval linear programming (ILP), which can

be viewed as multi-parametric linear programming with independent interval domains

for the parameters [70, 71, 101]. Steuer [129] presents three algorithms for solving

LPs in which the objective coefficients are specified by intervals, and Gabrel et al. [69]

study LPs in which the right-hand sides vary within intervals and discuss the maxi-

mum and minimum optimal values. Mraz [103] considers a general situation in which

the matrix coefficients and right-hand sides change within intervals and calculates

upper and lower bounds for the associated optimal values. A comprehensive survey
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of ILP has been given by Hladik [85].

To the best of our knowledge, in the context of LP, no authors have con-

sidered simultaneous LP parameter changes in a general way, i.e., perturbations in

the objective coefficients ĉ, right-hand sides b̂, and constraint coefficients Â within a

general region (not just intervals). The obstacle for doing so is clear: general pertur-

bations lead to nonconvex quadratic programs (QPs), which are NP-hard to solve (as

discussed below).

In this chapter, we extend—and in many cases unify—the SA literature by em-

ploying modern tools for nonconvex QPs. Specifically, we investigate SA for LPs in

which (b̂, ĉ) may change within a general compact, convex set U , called the uncertainty

set . Our goal is to calculate—or bound—the corresponding minimum (best-case) and

maximum (worst-case) optimal values. Since these values involve the solution of non-

convex QPs, we use standard techniques from copositive optimization to reformulate

these problems into convex copositive programs (COPs), which provide a theoretical

grounding upon which to develop tight, tractable convex relaxations. We suggest

the use of semidefinite programming (SDP) relaxations, which also incorporate valid

conic inequalities that exploit the structure of the uncertainty set. We refer the reader

to [57] for a survey on copositive optimization and its connections to semidefinite pro-

gramming. We refer the reader to Section 1.4 for the relevant definitions and concepts

of copositive programming.

Our approach is related to the recent work on worst-case linear optimization

introduced by Peng and Zhu [111] in which: (i) only b̂ is allowed to change within
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an ellipsoidal region; and (ii) only the worst-case LP value is considered. (In fact,

one can see easily that, in the setup of [111] based on (i), the best-case LP value can

be computed in polynomial time via second-order-cone programming, making it less

interesting to study in their setup.) The authors argue that the worst-case value is

NP-hard to compute and use a specialized nonlinear semidefinite program (SDP) to

bound it from above. They also develop feasible solutions to bound the worst-case

value from below and show through a series of empirical examples that the resulting

gaps are usually quite small. Furthermore, they also demonstrate that their SDP-

based relaxation is better than the so-called affine-rule approximation (see [14]) and

the Lasserre linear matrix inequality relaxation (see [95, 84]).

Our approach is more general than [111] because we allow both b̂ and ĉ to

change, we consider more general uncertainty sets, and we study both the worst- and

best-case values. In addition, instead of developing a specialized SDP approach, we

make use of the machinery of copositive programming, which provides a theoretical

grounding for the construction of tight, tractable conic relaxations using existing

techniques. Nevertheless, we have been inspired by their approach in several ways.

For example, their proof of NP-hardness also shows that our problem is NP-hard;

we will borrow their idea of using primal solutions to estimate the quality of the

relaxation bounds; and we test our approach in some of their examples.

We mention two additional connections of our approach with the literature.

In [21], Bertsimas and Goyal consider a two-stage adaptive linear optimization prob-

lem under right-hand side uncertainty with a min-max objective. A simplified version
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of this problem, in which the first-stage variables are non-existent, reduces to worst-

case linear optimization; see the introduction of [21]. In fact, Bertsimas and Goyal

use this fact to prove that their problem is NP-hard via the so-called max-min frac-

tional set cover problem, which is a specific worst-case linear optimization problem

studied by Feige et al. [65]. Our work is also related to the study of adjustable robust

optimization [14, 131], which allows for two sets of decisions—one that must be made

before the uncertain data is realized, and one after. In fact, our problem can viewed

as a simplified case of adjustable robust optimization having no first-stage decisions.

On the other hand, our approach is distinguished by its application to sensitivity

analysis and its use of copositive and semidefinite optimization.

We organize this chapter as follows. In Section 3.2, we extend many of the

existing approaches for SA by considering simultaneous, general changes in (b̂, ĉ)

and the corresponding effect on the LP optimal value. Precisely, we model general

perturbations of (b̂, ĉ) within a compact, convex set U—the uncertainty set, borrowing

terminology from the robust-optimization literature—and define the corresponding

minimum and maximum optimal values p− and p+, respectively. We call our approach

robust sensitivity analysis , or RSA. Then, continuing in Section 3.2, we formulate the

calculation of p− and p+ as nonconvex bilinear QPs (or BQPs) and briefly discuss

attainability and complexity issues. We also discuss how p− and p+ may be infinite

and suggest alternative bounded variants, q− and q+, which have the property that,

if p− is already finite, then q− = p− and similarly for q+ and p+. Compared to

related approaches in the literature, our discussion of finiteness is novel. We then
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discuss the addition of redundant constraints to the formulations of q− and q+, which

will strengthen later relaxations. Section 3.3 then establishes COP reformulations of

the nonconvex BQPs by directly applying existing reformulation techniques. Then,

based on the COPs, we develop tractable SDP-based relaxations that incorporate

the structure of the uncertainty set U , and we also discuss procedures for generating

feasible solutions of the BQPs, which can also be used to verify the quality of the

relaxation bounds. In Section 3.4, we validate our approach on several examples,

which demonstrate that the relaxations provide effective approximations of q+ and q−.

In fact, we find that the relaxations admit no gap with q+ and q− for all tested

examples.

We mention some caveats about the approach. First, we focus only on how

the optimal value is affected by uncertainty, not the optimal solution. We do so be-

cause we believe this will be a more feasible first endeavor; determining how general

perturbations affect the optimal solution can certainly be a task for future research.

Second, as mentioned above, we believe we are the first to consider these types of

general perturbations, and thus the literature with which to compare is somewhat

limited. However, we connect with the literature whenever possible, e.g., in special

cases such as interval perturbations and worst-case linear optimization. Third, since

we do not make any distributional assumptions about the uncertainty of the param-

eters, nor about their independence or dependence, we believe our approach aligns

well with the general sprit of robust optimization. It is important to note, however,

that our interest is not robust optimization and is not directly comparable to robust
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optimization. For example, while in robust optimization one wishes to find a single

optimal solution that works well for all realizations of the uncertain parameters, here

we are only concerned with how the optimal value changes as the parameters change.

Finally, we note the existence of other relaxations for nonconvex QPs including LP

relaxations (see [125]) and Lasserre-type SDP relaxations. Generally speaking, LP-

based relaxations are relatively weak (see [4]); we do not consider them in this work.

In addition, SDP approaches can often be tailored to outperform the more general

Lasserre approach as has been demonstrated in [111]. Our copostive- and SDP-based

approach is similar; see for example the valid inequalities discussed in Section 3.3.2.

3.1.1 Notation, terminology, and copositive optimization

Let Rn denote n-dimensional Euclidean space represented as column vectors,

and let Rn
+ denote the nonnegative orthant in Rn. For a scalar p ≥ 1, the p-norm

of v ∈ Rn is defined ‖v‖p := (
∑n

i=1 |vi|p)1/p, e.g., ‖v‖1 =
∑n

i=1 |vi|. We will drop the

subscript for the 2-norm, e.g., ‖v‖ := ‖v‖2. For v, w ∈ Rn, the inner product of v and

w is defined as vTw =
∑n

i=1 viwi and the Hadamard product of v and w is defined by

v ◦ w := (v1w1, ..., vnwn)T ∈ Rn. Rm×n denotes the set of real m × n matrices, and

the trace inner product of two matrices A,B ∈ Rm×n is defined A•B := trace(ATB).

Sn denotes the space of n × n symmetric matrices, and for X ∈ Sn, X � 0 denotes

that X is positive semidefinite. In addition, diag(X) denotes the vector containing

the diagonal entries of X.
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3.2 Robust Sensitivity Analysis

In this section, we introduce the concept of robust sensitivity analysis (RSA)

of the optimal value of (3.1). In particular, we define the best-case optimal value

p− and the worst-case optimal value p+ over the uncertainty set U . Next, we clarify

when p− and p+ could be infinite and propose finite, closely related alternatives q+

and q−.

3.2.1 The best- and worst-case optimal values

In the Introduction, we have described b̂ and ĉ as varying, a concept that we

now formalize. Hereafter, (b̂, ĉ) denotes the nominal , “best guess” parameter values,

and we let (b, c) denote perturbations with respect to (b̂, ĉ). In other words, the true

data could be (b̂ + b, ĉ + c), and we think of b and c as varying. We also denote

the uncertainty set containing all possible perturbations (b, c) as U ⊆ Rm × Rn.

Throughout this chapter, we assume the following:

Assumption 3.1. U is compact, convex, and computationally tractable. In addition,

U contains (0, 0).

For the purposes of this chapter, by computationally tractable, we mean that U can

be represented as the intersection of a finite number of linear and convex quadratic

(or second-order-cone) inequalities.

Given (b, c) ∈ U , we define the perturbed optimal value function at (b, c) as

p(b, c) := min{(ĉ+ c)Tx : Âx = b̂+ b, x ≥ 0}. (3.2)

For example, p(0, 0) is the nominal optimal value of the nominal problem based on the
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nominal parameters. The main idea of robust sensitivity analysis is then to compute

the infimum (best-case) and supremum (worst-case) of all optimal values p(b, c) over

the uncertainty set U , i.e., to calculate

p− := inf{p(b, c) : (b, c) ∈ U}, (3.3)

p+ := sup{p(b, c) : (b, c) ∈ U}. (3.4)

We illustrate p− and p+ with a small example.

Example 3.1. Consider the nominal LP

min x1 + x2

s. t. x1 + x2 = 2

x1, x2 ≥ 0

(3.5)

and the uncertainty set

U :=

(b, c) :
b1 ∈ [−1, 1]

c1 ∈ [−0.5, 0.5], c2 = 0

 .

Note that the perturbed data b̂1 + b1 and ĉ1 + c1 remain positive, while ĉ2 + c2 is

constant. Thus, the minimum optimal value p− occurs when b1 and c1 are minimal,

i.e., when b1 = −1 and c1 = −0.5. In this case, p− = 0.5 at the solution (x1, x2) =

(1, 0). In a related manner, p+ = 3 when b1 = 1 and c1 = 0.5 at the point (x1, x2) =

(0, 3). Actually, any perturbation with c1 ∈ [0, 0.5] and b1 = 1 realizes the worst-case

value p+ = 3. Figure 3.1 illustrates this example.

We can obtain a direct formulation of p− by simply collapsing the inner and

outer minimizations of (3.3) into a single BLP:
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(a) Illustration of the best-case optimal value.

(b) Illustration of the worst-case optimal value.

Figure 3.1: Illustration of Example 3.1. Note that the dashed

line in both (3.1a) and (3.1b) corresponds to the feasible region

of the nominal problem.
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p− = infb,c,x (ĉ+ c)Tx

s. t. Âx = b̂+ b, x ≥ 0

(b, c) ∈ U .

(3.6)

The nonconvexity comes from the bilinear term cTx in the objective function. In the

special case that (b, c) ∈ U implies c = 0, i.e., when there is no perturbation in the

objective coefficients, we have the following:

Remark. If c = 0 for all (b, c) ∈ U , then p− can be computed in polynomial time as

the optimal value of (3.6) with c = 0, which is a tractable convex program due to

Assumption 3.1.

A direct formulation for p+ can, under a fairly weak assumption, be gotten

via duality. Define the perturbed primal and dual feasible sets for any (b, c) ∈ U :

P (b) := {x : Âx = b̂+ b, x ≥ 0},

D(c) := {(y, s) : ÂTy + s = ĉ+ c, s ≥ 0}.

For instance, P (0) and D(0) are the primal-dual feasible sets of the nominal problem.

Next define the dual LP for (3.2) as

d(b, c) := max{(b̂+ b)Ty : (y, s) ∈ D(c)}.

Considering the extended notion of strong duality, which handles the cases of infinite

values, we have that d(b, c) = p(b, c) when at least one of P (b) and D(c) is nonempty.

Hence, under the assumption that every (b, c) ∈ U yields P (b) 6= ∅ or D(c) 6= ∅, a

direct formulation for p+ can be constructed by replacing p(b, c) in (3.4) with d(b, c)
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and then collapsing the subsequent inner and outer maximizations into the BLP

p+ = supb,c,y,s (b̂+ b)Ty

s. t. ÂTy + s = ĉ+ c, s ≥ 0

(b, c) ∈ U .

(3.7)

Here again, the nonconvexity arises due to the bilinear term bTy in the objective. If

(b, c) ∈ U implies b = 0, then p+ can be calculated in polynomial time:

Remark. If b = 0 for all (b, c) ∈ U , then p+ can be computed in polynomial time as

the optimal value of (3.7) with b = 0, which is a tractable convex program due to

Assumption 3.1.

We summarize the above discussion in the following proposition:

Proposition 3.1. The best-case value p− equals the optimal value of (3.6). Moreover,

if P (b) 6= ∅ or D(c) 6= ∅ for all (b, c) ∈ U , then the worst-case value p+ equals the

optimal value of (3.7).

We view the condition in Proposition 3.1—that at least one of P (b) and D(c) is

nonempty for each (b, c) ∈ U—to be rather mild. Said differently, the case that

P (b) = D(c) = ∅ for some (b, c) ∈ U appears somewhat pathological. For practical

purposes, we hence consider (3.7) to be a valid formulation of p+. Actually, in the next

subsection, we will further restrict our attention to those (b, c) ∈ U for which both

P (b) and D(c) are nonempty. In such cases, each p(b, c) is guaranteed to be finite,

which—as we will show—carefully handles the cases when p+ and p− are infinite.

Indeed, the worst-case value p+ could equal +∞ due to some perturbed P (b)

being empty as shown in the following example:
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Example 3.2. In Example 3.1, change the uncertainty set to

U :=

(b, c) :
b1 ∈ [−3, 1]

c1 ∈ [−0.5, 0.5], c2 = 0

 .

Then p(b, c) = +∞ whenever b1 ∈ [−3,−2) since then the primal feasible set P (b) is

empty. Then p+ = +∞ overall. However, limiting b1 to [−2, 1] yields a worst-case

value of 3 as discussed in Example 3.1.

Similarly, p− might equal −∞ due to some perturbed LP having unbounded objective

value, implying infeasibility of the corresponding dual feasible set D(c).

3.2.2 Attainment and complexity

By an existing result concerning the attainment of the optimal value of BLPs,

we have that p− and p+ are attainable when U has a relatively simple structure:

Proposition 3.2 (Theorem 2 of [100]). Suppose U is representable by a finite number of

linear constraints and at most one convex quadratic constraint. Then, if the optimal

value of (3.6) is finite, it is attained. A similar statement holds for (3.7).

In particular, attainment holds when U is polyhedral or second-order-cone repre-

sentable with at most one second-order cone. Moreover, the bilinear nature of (3.6)

implies that, if the optimal value is attained, then there exists an optimal solution

(x∗, b∗, c∗) with (b∗, c∗) an extreme point of U and x∗ an extreme point of P (b∗). The

same holds for (3.7) if its optimal value is attained.

As discussed in the Introduction, the worst-case value p+ has been studied by

Peng and Zhu [111] for the special case when c = 0 and b is contained in an ellipsoid.
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The authors demonstrate (see their proposition 1.1) that calculating p+ in this case

is NP-hard. By the symmetry of duality, it thus also holds that p− is NP-hard to

compute in general.

3.2.3 Finite variants of p− and p+

We require the following feasibility and boundedness assumption:

Assumption 3.2. Both feasible sets P (0) and D(0) are nonempty, and one is bounded.

By standard theory, P (0) and D(0) cannot both be nonempty and bounded.

Also define

U := {(b, c) ∈ U : P (b) 6= ∅, D(c) 6= ∅}.

Note that (0, 0) ∈ U due to Assumption 3.2. In fact, U can be captured with linear

constraints that enforce primal-dual feasibility and hence is a compact, convex subset

of U :

U =

(b, c) ∈ U : ∃ (x, y, s) such that
Âx = b̂+ b, x ≥ 0

ÂTy + s = ĉ+ c, s ≥ 0

 .

Analogous to p+ and p−, define

q+ := sup{p(b, c) : (b, c) ∈ U} (3.8)

q− := inf{p(b, c) : (b, c) ∈ U}. (3.9)

The following proposition establishes the finiteness of q+ and q−:

Proposition 3.3. Under Assumptions 3.1 and 3.2, both q+ and q− are finite.
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Proof. We prove the contrapositive for q−. (The argument for q+ is similar.) Suppose

q− = −∞. Then there exists a sequence {(bk, ck)} ⊆ U with finite optimal values

p(bk, ck) → −∞. By strong duality, there exists a primal-dual solution sequence

{(xk, yk, sk)} with (ĉ + ck)Txk = (b̂ + bk)Tyk → −∞. Since U is bounded, it follows

that ‖xk‖ → ∞ and ‖yk‖ → ∞.

There exists a k̂ such that ‖xk‖ 6= 0 for all k ≥ k̂ as ‖xk‖ → ∞. Consider

the sequence {(zk, dk)} with (zk, dk) := (xk, bk)/‖xk‖ for all k ≥ k̂. We have Âzk =

b̂/‖xk‖+ dk, zk ≥ 0, and ‖zk‖ = 1. Moreover, b̂/‖xk‖+ dk → 0. Hence, there exists a

subsequence converging to (z̄, 0) such that Âz̄ = 0, z̄ ≥ 0, and ‖z̄‖ = 1. This proves

that the recession cone of P (0) is nontrivial, and hence P (0) is unbounded. In a

similar manner, D(0) is unbounded, which means Assumption 3.2 does not hold.

Note that the proof of Proposition 3.3 only assumes that U , and hence U , is bounded,

which does not use the full power of Assumption 3.1.

We can also employ pertrubation theory for linear programming [118] to argue

that, since every primal-dual pair of LPs implicit in the definition of q+ and q−

are primal-dual feasible by construction, then the function p(b, c) is continuous over

(b, c) ∈ U . Since U is compact by assumption, it follows that both q+ and q− are

attained, allowing us to replace sup and inf by max and min.

Similar to p−, a direct formulation of q− can be constructed by employing the

primal-dual formulation of U and by collapsing the inner and outer minimizations of
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(3.9) into a BLP:

q− = minb,c,x,y,s (ĉ+ c)Tx

s. t. Âx = b̂+ b, x ≥ 0

ÂTy + s = ĉ+ c, s ≥ 0

(b, c) ∈ U .

(3.10)

Similar to p+, after replacing p(b, c) in (3.8) by d(b, c), we can collapse the inner and

outer maximizations into the BLP:

q+ = maxb,c,x,y,s (b̂+ b)Ty

s. t. Âx = b̂+ b, x ≥ 0

ÂTy + s = ĉ+ c, s ≥ 0

(b, c) ∈ U .

(3.11)

The following proposition establishes q+ = p+ when p+ is finite and, similarly,

q− = p− when p− is finite.

Proposition 3.4. If p+ is finite, then q+ = p+, and if p− is finite, then q− = p−.

Proof. We prove the second statement only since the first is similar. Comparing the

formulation (3.6) for p− and the formulation (3.10) for q−, it is clear that p− ≤ q−.

In addition, let (b, c, x) be any feasible solution of (3.6). Because p− is finite, p(b, c)

is finite. Then the corresponding dual problem is feasible, which implies that we

can extend (b, c, x) to a solution (b, c, x, y, s) of (3.10) with the same objective value.

Hence, p− ≥ q−.

In the remaining sections of the chapter, we will focus on the finite variants

q− and q+ given by the nonconvex QPs (3.10) and (3.11), which optimize the optimal
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value function p(b, c) = d(b, c) based on enforcing primal-dual feasibility. It is clear

that we may also enforce the complementary slackness condition x ◦ s = 0 without

changing these problems. Although it might seem counterintuitive to add the redun-

dant, nonconvex constraint x ◦ s = 0 to an already difficult problem, in Section 3.3,

we will propose convex relaxations to approximate q− and q+, in which case—as we

will demonstrate—the relaxed versions of the redundant constraint can strengthen

the relaxations.

3.3 Copositive Formulations and Relaxations

3.3.1 Copositive formulations

In order to formulate (3.10) and (3.11) as COPs, we apply a result of [36]; see

also [35, 51, 60]. Consider the general nonconvex QP

min zTWz + 2wT z (3.12)

s. t. Ez = f, z ∈ K

where K is a closed, convex cone. Its copositive reformulation is

min W • Z + 2wT z (3.13)

s. t. Ez = f, diag(EZET ) = f ◦ f1 zT

z Z

 ∈ CPP(R+ ×K),

as established by the following lemma:

Lemma 3.1 (Corollary 8.3 in [36]). Problem (3.12) is equivalent to (3.13), i.e.: (i)
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both share the same optimal value; (ii) if (z∗, Z∗) is optimal for (3.13), then z∗ is in

the convex hull of optimal solutions for (3.12).

The following theorem establishes that problems (3.10) and (3.11) can be

reformulated as copositive programs according to Lemma 3.1. The proof is based

on describing how the two problems fit the form (3.12).

Theorem 3.2. Problems (3.10) and (3.11) to compute q− and q+ are solvable as

copositive programs of the form (3.13), where

K := hom(U)× Rn
+ × Rm × Rn

+

and

hom(U) := {(t, b, c) ∈ R+ × Rm × Rn : t > 0, (b, c)/t ∈ U} ∪ {(0, 0, 0)}

is the homogenization of U .

Proof. We prove the result for just problem (3.10) since the argument for problem

(3.11) is similar. First, we identify z ∈ K in (3.12) with (t, b, c, x, y, s) ∈ hom(U) ×

Rn
+×Rm×Rn

+ in (3.10). In addition, in the constraints, we identify Ez = f with the

equations Âx = tb̂ + b, ÂTy + s = tĉ + c, and t = 1. Note that the right-hand-side

vector f is all zeros except for a single entry corresponding to the constraint t = 1.

Moreover, in the objective, zTWz is identified with the bilinear term cTx, and 2wT z

is identified with the linear term ĉTx. With this setup, it is clear that (3.10) is an

instance of (3.12) and hence Lemma 3.1 applies to complete the proof.

Under Assumption 3.1, U is tractable, and so K is as well. This is a key ingredient

for devising tractable conic relaxations of (3.13); see Section 3.3.2 next.
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3.3.2 SDP-based conic relaxations

We propose relaxations that are formed from (3.13) by relaxing the cone con-

straint

M :=

1 zT

z Z

 ∈ CPP(R+ ×K).

As is well known—and direct from the definitions—cones of the form CPP(·) are

contained in the positive semidefinite cone. Hence, we will enforce M � 0. It is also

true that M ∈ CPP(R+ × K) implies z ∈ K, although M � 0 does not necessarily

imply this. So, in our relaxations, we will also enforce z ∈ K. Including z ∈ K

improves the relaxation and also helps in the calculation of bounds in Section 3.3.3.

Next, suppose that the description of R+ × K contains at least two linear

constraints, aT1 z ≤ b1 and aT2 z ≤ b2. By multiplying b1− aT1 z and b2− aT2 z, we obtain

a valid, yet redundant, quadratic constraint b1b2 − b1a
T
2 z − b2a

T
1 z + aT1 zz

Ta2 ≥ 0

for (3.12). This quadratic inequality can in turn be linearized in terms of M as

b1b2 − b1a
T
2 z − b2a

T
1 z + aT1Za2 ≥ 0, which is valid for CPP(R+ × K). We add this

linear inequality to our relaxation; it is called an RLT constraint [125]. In fact, we

add all such RLT constraints arising from all pairs of linear constraints present in the

description of R+ ×K.

When the description of R+×K contains at least one linear constraint aT1 z ≤ b1

and one second-order-cone constraint ‖d2 − CT
2 z‖ ≤ b2 − aT2 z, where d2 is a vector

and C2 is a matrix, we will add a so-called SOC-RLT constraint to our relaxation

[39]. The constraint is derived by multiplying the two constraints to obtain the valid
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quadratic second-order-cone constraint

‖(b1 − aT1 z)(d2 − CT
2 z)‖ ≤ (b1 − aT1 z)(b2 − aT2 z).

After linearization by M , we have the second-order-cone constraint

‖b1d2 − d2a
T
1 z − b1C

T
2 z + CT

2 Za1‖ ≤ b1b2 − b1a
T
2 z − b2a

T
1 z + aT1Za2.

Finally, recall the redundant complementarity constraint x◦s = 0 described at

the end of Section 3.2.3, which is valid for both (3.10) and (3.11). Decomposing it as

xisi = 0 for i = 1, . . . , n, we may translate these n constraints to (3.13) as zTHiz = 0

for appropriately defined matrices matrices Hi. Then they may be linearized and

added to our relaxation as Hi • Z = 0.

The RLT and SOC-RLT constraints discussed here are not uniquely effective

for BLPs such as (3.10) and (3.11). In fact, Anstreicher [4] provides a theoretical and

geometric explanation of how the positive semidefinite constraint and RLT constraints

together provide a tight relaxation for general nonconvex quadratically constrained

quadratic programs. The power of RLT and SOC-RLT constraints in SDP relaxations

is further discussed for extended trust-region subproblems [39]. In particular, in some

cases, such relaxations are exact. More theoretical results concerning RLT and SOC-

RLT constraints are discussed in [3, 143]. On the other hand, there is little to no

literature concerning the effectiveness of the linearized complementarity constraints

from a theoretical perspective. Computationally, Chen and Burer [43] demonstrate

that the linearized complementarity constraints derived from the KKT conditions

of nonconvex quadratic programming can strengthen corresponding SDP relaxations.
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For our examples, we discuss the empirical strength of the linearized complementarity

constraints in Section 3.4.5.

To summarize, let RLT denote the set of (z, Z) satisfying all the derived RLT

constraints, and similarly, define SOCRLT as the set of (z, Z) satisfying all the de-

rived SOC-RLT constraints. Then the SDP-based conic relaxation for (3.13) that we

propose to solve is

min W • Z + 2wT z

s. t. Ez = f, diag(EZET ) = f ◦ f

Hi • Z = 0 ∀ i = 1, . . . , n

(z, Z) ∈ RLT∩ SOCRLT1 zT

z Z

 � 0, z ∈ K.

(3.14)

It is worth mentioning that, in many cases, the RLT and SOC-RLT constraints will

already imply z ∈ K, but in such cases, we nevertheless write the constraint in (3.14)

for emphasis; see also Section 3.3.3 below. Furthermore, we emphasize that (3.14) is

computationally tractable as K is tractable under Assumption 3.1.

When translated to the problem (3.10) for calculating q−, the relaxation (3.14)

gives rise to a lower bound q−sdp ≤ q−. Similarly, when applied to (3.11), we get an

upper bound q+
sdp ≥ q+.
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3.3.3 Bounds from feasible solutions

We now discuss two methods to approximate q− from above and q+ from below,

i.e., to bound q− and q+ using feasible solutions of (3.10) and (3.11), respectively.

The first method, which has been inspired by [111], utilizes the optimal solution

of the SDP relaxation (3.14). Let us discuss how to obtain such a bound for (3.10),

as the discussion for (3.11) is similar. We first observe that any feasible solution

(z, Z) of (3.14) satisfies Ez = f and z ∈ K, i.e., z satisfies all of the constraints of

(3.12). Since (3.12) is equivalent to (3.10) under the translation discussed in the proof

of Theorem 3.2, z gives rise to a feasible solution (x, y, s, b, c) of (3.10). From this

feasible solution, we can calculate (ĉ+ c)Tx ≥ q−. In practice, we will start from the

optimal solution (z−, Z−) of (3.14). Note that computing (z−, Z−) is computationally

tractable as (3.14) is tractable. We summarize this approach in the following remark.

Remark. Suppose that (z−, Z−) is an optimal solution of the relaxation (3.14) cor-

responding to (3.10), and let (x−, y−, s−, b−, c−) be the translation of z− to a fea-

sible point of (3.10). Then, r− := (ĉ + c−)Tx− ≥ q−. Similarly, we define r+ :=

(b̂ + b+)Ty+ ≤ q+ based on an optimal solution (z+, Z+) of (3.14) corresponding to

(3.11).

Our second method for bounding q− and q+ using feasible solutions is a sam-

pling procedure detailed in Algorithm 3.1. The main idea is to generate randomly

a point (b, c) ∈ U and then to calculate p(b, c), which serves as an upper bound of

q− and a lower bound of q+, i.e., q− ≤ p(b, c) ≤ q+. Multiple points (bk, ck) and

values pk := p(bk, ck) are generated and the best bounds q− ≤ v− := mink{pk} and



73

maxk{pk} =: v+ ≤ q+ are saved. In fact, by the bilinearity of (3.10) and (3.11), we

may restrict attention to the extreme points (b, c) of U without reducing the quality

of the resultant bounds; see also the discussion in Section 3.2.2. Hence, Algorithm

3.1 generates—with high probability—a random extreme point of U by optimizing

a random linear objective over U , and we generate the random linear objective as

a vector uniform on the sphere, which is implemented by a well-known, quick pro-

cedure. Note that, even though the random objective is generated according to a

specific distribution, we cannot predict the resulting distribution over the extreme

points of U .

Algorithm 3.1 Sampling procedure to bound q− from above and q+ from below

Inputs: Instance with uncertainty set U and restricted uncertainty set U . Number

of random trials T .

Outputs: Bounds v− := mink{pk} ≥ q− and v+ := maxk{pk} ≤ q+.

for k = 1, . . . , T do

Generate (f, g) ∈ Rm × Rn uniformly on the unit sphere.

Calculate (bk, ck) ∈ Arg min{fT b+ gT c : (b, c) ∈ U}.

Set pk := p(bk, ck).

end for

As all four of the bounds r−, r+, v−, and v+ are constructed from feasible solu-

tions, we can further improve them heuristically by exploiting the bilinear objective
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functions in (3.10) and (3.11). In particular, we employ the standard local improve-

ment heuristic for programs with a bilinear objective and convex constraints (e.g.,

see [92]). Suppose, for example, that we have a feasible point (x−, y−, s−, b−, c−) for

problem (3.10) as discussed in Remark 3.3.3. To attempt to improve the solution, we

fix the variable c in (3.10) at the value c−, and we solve the resulting convex problem

for a new, hopefully better point (x1, y1, s1, b1, c1), where c1 = c−. Then, we fix x to

x1, resolve, and get a new point (x2, y2, s2, b2, c2), where x2 = x1. This alternating

process is repeated until there is no further improvement in the objective of (3.10),

and the final objective is our bound r−.

In Section 3.4 below, we use the bounds r−, r+, v−, and v+ to verify the

quality of our bounds q−sdp and q+
sdp. Our tests indicate that neither bound, r− nor

v−, dominates the other—and similarly for the bounds r+ and v+. Hence, we will

actually report the better of each pair: min{r−, v−} and max{r+, v+}. Also, for the

calculations of v− and v+, we always take T = 10, 000 in Algorithm 3.1.

3.4 Computational Experiments

We test our approach on six examples from the literature as well as an example

of our own. The first three examples in Section 3.4.1 correspond to classical sensitivity

analysis approaches for LP; the fourth example in Section 3.4.2 corresponds to an

interval LP in inventory management; the fifth example in Section 3.4.3 corresponds

to a systemic-risk calculation in financial systems; and the last example in Section

3.4.4 is a transportation network flow problem. We implement our tests in Python
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(version 3.5.2) with Mosek (version 8.0.0.28 beta, limited to 1 thread) as our convex-

optimization solver. All of Mosek’s settings are set at their defaults, and computations

are conducted on a Macintosh OS X El Capitan system with a quad-core 3.20GHz

Intel Core i5 CPU and 8 GB RAM.

3.4.1 Examples from classical sensitivity analysis

Consider the following nominal problem from [135]:

min −12x1 − 18x2 − 18x3 − 40x4

s. t. 4x1 + 9x2 + 7x3 + 10x4 + x5 = 6000

x1 + x2 + 3x3 + 40x4 + x6 = 4000

x1, . . . , x6 ≥ 0.

One of the optimal basis is B = {1, 4} with optimal solution 1
3
(4000, 0, 0, 200, 0, 0)

and the optimal value p(0, 0) = −18667. We next study three examples that consider

perturbations only in the cost coefficients of the nominal problem above.

According to standard, “textbook” sensitivity analysis, the optimal basis B

persists when the coefficient of x1 lies in the interval [−16,−10] and other parameters

remain the same. Along this interval, one can easily compute the best-case value

−24000 and worst-case value −16000, and we attempt to reproduce this analysis

with our approach. So let us choose the uncertainty set

U =


(b, c) ∈ R2 × R6 :

b1 = b2 = 0

c1 ∈ [−4, 2]

c2 = · · · = c6 = 0


,
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which corresponds precisely to the above allowable decrease and increase on the co-

efficient of x1. Note that Assumptions 3.1 and 3.2 are satisfied. We thus know from

above that q− = −24000 and q+ = −16000. Since b = 0 in U , Remark 3.2.1 implies

that q+ is easy to calculate. So we apply our approach, i.e., solving the SDP-based

relaxation, to approximate q−. The relaxation value is q−sdp = −24000, which recovers

q− exactly. The CPU time for computing q−sdp is 0.10 seconds.

Our second example is based on the same nominal problem, but we consider

the 100%-rule. The readers are refereed to [34] for the details of the mechanism.

By the 100%-rule, the nominal optimal basis B = {1, 4} persists for (c̃1, c̃2) in the

following simplex: 
(c̃1, c̃2) :

c̃1 ∈ [−16,−12]

c̃2 ∈ [−134/3,−18]

−12−c̃1
4

+ −18−c̃2
80/3

≤ 1


.

By evaluating the three extreme points (−12,−18), (−16,−18) and (−12,−134/3) of

this set with respect to the nominal optimal solution, one can calculate the best-case

optimal value as q− = −24000 and the worst-case optimal value as q+ = −18667.

We again apply our approach in an attempt to recover empirically the 100%-rule.

Specifically, let

U =


(b, c) :

b1 = b2 = 0

c1 ∈ [−4, 0], c2 ∈ [−80
3
, 0]

− c1
4
− c2

80/3
≤ 1

c3 = · · · = c6 = 0


.

Note that Assumptions 3.1 and 3.2 are satisfied. Due to b = 0 and Remark 3.2.1, we
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focus our attention on q−. Calculating the SDP-based relaxation value, we see that

q−sdp = −24000, which recovers q− precisely. The CPU time is 0.15 seconds.

Our third example illustrates the tolerance approach, and we continue to use

the same nominal problem from [135]. The tolerance approach considers simultaneous

and independent perturbations in the objective coefficients by calculating a maximum

tolerance percentage such that, as long as selected coefficients are accurate to within

that percentage of their nominal values, the nominal optimal basis persists; see details

in [138]. Let us consider perturbations in the coefficients of x1 and x2 with respect to

the nominal problem. The tolerance approach ensures that the same nominal optimal

basis B = {1, 4} persists for (c̃1, c̃2) in the following set

{
(c̃1, c̃2) : c1 ∈ [−2, 2], c2 ∈ [−3, 3]

}
.

By testing the four extreme points of the box of changes [−14,−10] × [−21,−15]

with respect to the optimal nominal solution, one can calculate the best-case optimal

value as q− = −21333 and the worst-case optimal value as q+ = −16000. To test our

approach in this setting, we set

U :=

(b, c) :
b1 = b2 = 0, c3 = · · · = c6 = 0

c1 ∈ [−2, 2], c2 ∈ [−3, 3]


and, as in the previous two examples, we focus on q−. Assumptions 3.1 and 3.2 are

again satisfied, and we calculate the lower bound q−sdp = −21333, which recovers q−

precisely. The CPU time for computing q−sdp is 0.13 seconds.
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3.4.2 An example from interval linear programming

We consider an optimization problem that is typical in inventory management,

and this particular example originates from [69]. Let T be the number of periods; sk

and xk be the available stock and the quantity ordered respectively at the beginning of

period k; yk be the holding cost or shortage cost at the period k. The order quantities

xk are nonnegative and further subject to uniform upper and lower bounds, u and

l, and every stock level sk is bounded above by U . At time k, the purchase cost is

denoted as ck, the holding cost is denoted as hk, and the shortage cost is denoted

gk. The goal of this model is to satisfy exogenous demands dk for each period k,

while simultaneously minimizing the total of purchasing, holding, and shortage costs.

Then, the problem can be formulated as the following linear programming problem

(assuming that the initial inventory is 0):

min
∑T

k=1(ckxx + yk)

s. t. s0 = 0

sk−1 + xk − sk = dk k = 1, . . . , T

yk ≥ hksk k = 1, . . . , T

yk ≥ −gksk k = 1, . . . , T

l ≤ xk ≤ u k = 1, . . . , T

sk ≤ U k = 1, . . . , T

xk, yk ≥ 0 k = 1, . . . , T.

(3.15)

As in [69], consider an instance of (3.15) in which T = 4, u = 1500, l =

1000, U = 600, and all costs are as in Table 3.1. Moreover, suppose the demands
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Period (k) Purchasing cost (ck) Holding cost (hk) Shortage cost (gk)

1 7 2 3

2 1 1 4

3 10 1 3

4 6 1 3

Table 3.1: Costs for each period of an instance of the inventory

management problem.

dk are each uncertain and may be estimated by the intervals d1 ∈ [700, 900], d2 ∈

[1300, 1600], d3 ∈ [900, 1100], and d4 ∈ [500, 700]. From [69], the worst-case optimal

value over this uncertainty set is q+ = 25600. For our approach, it is easy to verify that

Assumptions 3.1 and 3.2 are satisfied, and solving our SDP-based conic relaxation

with an uncertainty set corresponding to the intervals on dk, we recover q+ exactly,

i.e., we have q+
sdp = 25600. The CPU time for computing our SDP optimal value is

1,224 seconds.

Since the uncertainties only involve the right-hand sides, Remark 3.2.1 implies

that the best-case value q− can be calculated in polynomial-time by solving an LP

that directly incorporates the uncertainty.

3.4.3 Worst-case linear optimization

For an interbank market, systemic risk is used to evaluate the potential loss

of the whole market as a response to the decisions made by the individual banks
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[61, 111]. For a market consisting n banks, we use an n × n matrix L̂ to denote the

liability relationship between any two banks in the market. We use b̂i to denote the

exogenous operating cash flow received by bank i. Given the vector b̂, we calculate

the systemic loss l(b̂) of the market, which measures the amount of overall failed

liabilities [111]:

l(b̂) = min
x

∑n
i=1(1− xi)

s. t. (
∑n

j=1 L̂ij)xi −
∑n

j=1 L̂jixj ≤ b̂i ∀ i = 1, . . . , n

xi ≤ 1 ∀ i = 1, . . . , n.

Here the decision variables xi represent the ratio of the total payment by bank i to the

total obligation of bank i. These ratios are naturally less than or equal to 1 (xi ≤ 1)

as the banks do not pay more than their obligations. In contrast, 1− xi denotes the

ratio of bank i failing to fulfill its obligations.

In practice, however, there exist uncertainties in the exogenous operating cash

flows. Allowing for uncertainties, the worst-case systemic risk problem [111] is given

as

max
b∈V

min
x

∑n
i=1(1− xi)

s. t. (
∑n

j=1 L̂ij)xi −
∑n

j=1 L̂jixj ≤ b̂i +Qi·b ∀ i = 1, . . . , n

xi ≤ 1 ∀ i = 1, . . . , n.

where V := {b ∈ Rm : ‖b‖ ≤ 1} denotes the uncertainty set, Q ∈ Rn×m for some

m ≤ n corresponds to an affine scaling of V , and Qi· denotes the i-th row of Q.

Readers are refereed to [61, 111] for the details of the model.

After converting the nominal LP to our standard form, we can easily put the

systemic risk problem into our framework by defining U := {(b, c) : b ∈ V , c = 0}
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and slightly changing U to reflect the dependence on the affine transformation as

represented by the matrix Q.

Similar to section 5.2 in [111], we randomly generate 25 instances of size m×

n = 5×20. In accordance with Remark 3.2.1, which states that q− is easy to calculate

in this case, we focus our attention on the worst-case value q+. It is straightforward

to verify Assumptions 3.1 and 3.2. To evaluate the quality of q+
sdp, we also calculate

max{r+, v+} for each instance and the associated relative gap:

gap+ =
q+

sdp −max{r+, v+}
max{|max{r+, v+}|, 1}

× 100%.

The computational results indicate that our approach recovers q+ exactly for all 25

instances, which matches the quality of results from [111]. Furthermore, the average

computation time for solving each instance is about 915 seconds. The computation

times for computing r+ are trivial, while the average computation time for computing

each v+ is about 287 seconds.

3.4.4 A network flow problem

Consider a transportation network flow problem from [142], which has m1 = 5

suppliers/origins and m2 = 10 customers/destinations for a total of m = 15 facili-

ties. The network is bipartite and consists of n = 24 arcs connecting suppliers and

customers; see Figure 4.4. Also shown in Figure 4.4 are the (estimated) supply and

demand numbers (b̂) for each supplier and customer. In addition, the (estimated) unit

transportation costs (ĉ) associated with the arcs of the network are given in Table

3.2. Suppose at the early stages of planning, the supply and demand units and the
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unit transportation costs are uncertain. Thus, the manager would like to quantify

the resulting uncertainty in the optimal transportation cost.

Figure 3.2: The transportation network of the 5 suppliers and

10 customers.

We consider three cases for the uncertainty set, each of which is also parame-

terized by a scalar γ ∈ (0, 1). In the first case (“POLY”), we consider the polyhedral

uncertainty set

U1(γ) = {(b, c) : ‖b‖1 ≤ γ‖b̂‖1, ‖c‖1 ≤ γ‖ĉ‖1
};

in the second case (“SOC”), we consider the second-order-cone uncertainty set

U2(γ) := {(b, c) : ‖b‖ ≤ γ‖b̂‖, ‖c‖ ≤ γ‖ĉ‖ };
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Customer

Supplier 1 2 3 4 5 6 7 8 9 10

1 2 3 2

2 3 3 4 1 4

3 4 5 3

4 1 2 1 3 1 8 2

5 4 3 2 1 2 1

Table 3.2: The unit transportation costs associated with the

arcs of the network.

and in the third case (“MIX”), we consider a mixture of the first two cases:

U3(γ) := {(b, c) : ‖b‖1 ≤ γ‖b̂‖1, ‖c‖ ≤ γ‖ĉ‖ }.

For each, γ controls the perturbation magnitude in b and c relative to b̂ and ĉ, re-

spectively. In particular, we will consider three choices of γ: 0.01, 0.03, and 0.05.

For example, γ = 0.03 roughly means that b can vary up to 3% of the magnitude

of b̂. In total, we have three cases with three choices for γ resulting in nine overall

experiments.

Assumptions 3.1 and 3.2 are satisfied in this example, and so we apply our

approach to bound q− and q+; see Table 3.3. Our 18 bounds (lower and upper bounds

for each of the nine experiments) are listed in the two columns titled q−sdp and q+
sdp,

respectively. We also report the computation times (in seconds) for all 18 instances
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under the two columns marked t−sdp and t+sdp. We also compute r−, v−, r+, and v+

and define the relative gaps

gap− =
min{r−, v−} − q−sdp

max{|min{r−, v−}|, 1}
× 100%,

gap+ =
q+

sdp −max{r+, v+}
max{|max{r+, v+}|, 1}

× 100%.

Again, the computation times for r− and r+ are trivial. The average computation

time for computing v− and v+ is about 216 seconds.

Table 3.3 shows that our relaxations capture q− and q+ in all cases. As ours

is the first approach to study general perturbations in the literature, we are aware of

no existing methods for this problem with which to compare our results.

Case γ q−sdp gap− min{r−, v−} max{r+, v+} gap+ q+
sdp t−sdp(s) t+sdp(s)

POLY

0.01 2638.4 0.0% 2638.4 3088.8 0.0% 3088.8 2592 2037

0.03 2139.6 0.0% 2139.6 3437.4 0.0% 3437.4 3421 2581

0.05 1640.9 0.0% 1640.9 3769.8 0.0% 3769.8 3295 2713

SOC

0.01 2745.6 0.0% 2745.6 2981.6 0.0% 2981.6 129 99

0.03 2498.9 0.2% 2504.3 3212.1 0.0% 3212.1 127 83

0.05 2257.6 0.2% 2263.0 3442.7 0.0% 3442.7 113 85

MIX

0.01 2724.1 0.0% 2724.1 3008.4 0.0% 3008.4 704 588

0.03 2429.2 0.0% 2429.2 3281.9 0.0% 3281.9 700 472

0.05 2134.3 0.0% 2134.3 3560.7 0.0% 3560.7 716 493

Table 3.3: Results for the transportation network problem.
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3.4.5 Additional details

Example scalars cones matrices (size) constraints

Sec. 3.4.1 (#1) 0 0 1 (23× 23) 535

Sec. 3.4.1 (#2) 0 0 1 (23× 23) 561

Sec. 3.4.1 (#3) 0 0 1 (23× 23) 538

Sec. 3.4.2 0 0 1 (157× 157) 14346

Sec. 3.4.3 486 81 1 (106× 106) 13369

Sec. 3.4.4 (POLY) 0 0 1 (142× 142) 21274

Sec. 3.4.4 (SOC) 2009 98 1 (103× 103) 6300

Sec. 3.4.4 (MIX) 1975 79 1 (118× 118) 11339

Table 3.4: Statistics on the sizes of problems solved in the ex-

amples as reported by Mosek.

Table 3.4 lists the statistics on the sizes of the conic programs solved in the

above examples as reported by Mosek. The columns refer to the number of scalar

variables (scalars), the number of second-order cones (cones), the number of positive

semidefinite matrices along with their size (matrices (size)), and the number of linear

constraints (constraints). Note that the number of linear constraints corresponds

very closely to—indeed, is dominated by—the number of RLT constraints added, and

the number of second-order cones equals the number of SOCRLT constraints. Note



86

also that, within Section 3.4.3, all SDP relaxations share the same size statistics.

Similarly, the relaxations within the cases POLY, SOC, and MIX of Section 3.4.4 are

all of the same size.

Finally, we investigate the effectiveness of the linearized complementarity con-

straints of (3.14) in the calculation of q−sdp and q+
sdp by also solving the relaxations

without the constraints. As it turns out, in all calculations of q−sdp, dropping those

constraints does not change the relaxation value, i.e., those constraints are inactive

in the optimal solution. However, in all calculations of q+
sdp from Sections 3.4.1, 3.4.2,

and 3.4.4, dropping the constraints has a significant negative effect as shown in Table

3.5. In the table, the gap is defined as

gap =
(value without constraint)− q+

sdp

max{|q+
sdp|, 1}

× 100%.

We mention the effect of these constraints to highlight their practical importance—at

least in certain situations such as ours. In the future, perhaps more theoretical light

can be shed on these constraints as has already been done for the RLT and SOC-RLT

constraints; see also the discussion in Section 3.3.2.

3.5 Conclusion

In this chapter, we have introduced the idea of robust sensitivity analysis for

the optimal value of LP. In particular, we have discussed the best- and worst-case

optimal values under general perturbations in the objective coefficients and right-

hand sides. We have also presented finite variants that avoid cases of infeasibility and

unboundedness. As the involved problems are nonconvex and very difficult to solve in
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general, we have proposed copositive reformulations, which provide a theoretical basis

for constructing tractable SDP-based relaxations that take into account the nature

of the uncertainty set, e.g., through RLT and SOC-RLT constraints. Numerical

experiments have indicated that our approach works very well on examples from, and

inspired by, the literature. In future research, it would be interesting to improve the

solution speed of the largest relaxations and to explore the possibility of also handling

perturbations in the constraint matrix.
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Example q+
sdp gap value without constraint

Sec. 3.4.1 (#1) -16000 100% 0

Sec. 3.4.1 (#2) -18667 100% 0

Sec. 3.4.1 (#3) -16000 100% 0

Sec. 3.4.2 25600 1671% 453298

Sec. 3.4.4 (POLY 0.01) 3088.8 5.7% 3265.8

Sec. 3.4.4 (POLY 0.03) 3437.4 2.7% 3528.5

Sec. 3.4.4 (POLY 0.05) 3769.8 2.3% 3855.6

Sec. 3.4.4 (SOC 0.01) 2981.6 87.6% 5593.1

Sec. 3.4.4 (SOC 0.03) 3212.1 84.3% 5920.2

Sec. 3.4.4 (SOC 0.05) 3442.7 81.6% 6252.7

Sec. 3.4.4 (MIX 0.01) 3008.4 10.3% 3319.4

Sec. 3.4.4 (MIX 0.03) 3281.9 5.2% 3453.5

Sec. 3.4.4 (MIX 0.05) 3560.7 3.6% 3689.4

Table 3.5: Effectiveness of the linearized complementarity con-

straint.
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CHAPTER 4
A DATA-DRIVEN DISTRIBUTIONALLY ROBUST BOUND ON THE

EXPECTED OPTIMAL VALUE OF UNCERTAIN MIXED 0-1
LINEAR PROGRAMMING

4.1 Introduction

In this chapter, we consider the following uncertain mixed 0-1 linear program-

ming problem:

v(ξ) := max

(Fξ)Tx :
Ax = b, x ≥ 0

xj ∈ {0, 1} ∀ j ∈ B

 (4.1)

where A ∈ Rm×n, F ∈ Rn×k, and b ∈ Rm are problem data, x ∈ Rn
+ is the vector

of decision variables, and B ⊆ {1, . . . , n} is an index set. The objective coefficients

are linear in the random vector ξ ∈ Rk via F . Problem (4.1) entails two extreme

classes of programs: if B = ∅, then (4.1) represents the regular linear program with

uncertain objective coefficients; if B = {1, . . . , n}, then (4.1) represents the regular

binary program with uncertain coefficients. In general, problem (4.1) is NP-hard

[141].

The optimal value v(ξ) is a random variable as ξ is a random vector in prob-

lem (4.1). We assume that ξ follows a multivariate distribution P supported on a

nonempty set Ξ ⊆ Rk, which is, in particular, defined as a slice of a closed, convex,

full-dimensional cone Ξ̂ ⊆ R+ × Rk−1:

Ξ :=
{
ξ ∈ Ξ̂ : eT1 ξ = ξ1 = 1

}
,

where e1 is the first standard basis vector in Rk. In words, Ξ̂ is the homogenization
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of Ξ. We choose this homogenized version for notational convenience. Note that it

enables us to model affine effects of the uncertain parameters in (4.1).

The expected optimal value of (4.1), denoted by vP, is defined as

vP := EP[v(ξ)] =

∫
Ξ

v(ξ) dP(ξ).

The problem of computing vP has been extensively studied in the literature. Hagstrom

[79] showed that computing vP for the longest path problem over a directed acyclic

graph is #P-complete if the arc lengths are each independently distributed and re-

stricted to taking two possible values. Aldous [1] studied a linear assignment problem

with random cost coefficients following either an independent uniform distribution on

[0, 1] or an exponential distribution with parameter 1 and proved that the asymp-

totic value of vP approaches π2

6
as the number of assignments goes to infinity. For

additional studies, see [33, 52, 102].

In practice, it is difficult or impossible to know P completely and computing vP

is thus not well defined in this situation. An alternative is to construct an ambiguity

set, denoted by D, that contains a family of distributions supported on Ξ consistent

with any known properties of P. Ideally, the ambiguity set will possess some statistical

guarantee, e.g., the probability that P ∈ D will be at least 1 − β, where β is the

significance level. In analogy with vP, we define vQ for any Q ∈ D. Then, we are

interested in computing the maximum expected optimal value vQ over the ambiguity

set D:

v+
D := sup

Q∈D
vQ. (4.2)
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Note that, when the probability of P ∈ D is at least 1−β, the probability of vP ≤ v+
D

is at least 1− β.

There are three main issues (somehow conflicting) regarding the computation

of v+
D. First, one would like an ambiguity set D with a high statistical guarantee

to contain the true distribution P. In this way, the computed v+
D will be an upper

bound on vP with a high confidence level. (We will introduce several approaches in

the following paragraph.) Second, one would like v+
D to be tight in the sense that it

is as close to vP as possible. Generally, if D captures more information about P, then

v+
D will be closer to vP. Finally, the third concern is the complexity of the resulting

optimization problem, i.e., whether the problem can be solved in polynomial time.

Bertsimas et al. [25, 26] constructed ambiguity sets using the first two marginal

moments of each ξi. Denote the first and second of each uncertain parameter by µi

and σi respectively. They computed v+
D(µ, σ) over all joint distributions sharing the

same first two marginal moments and proved polynomial time computability if the

corresponding deterministic problem is solvable in polynomial time. However, the

computed bound may not be tight with respect to vP since the marginal-moment

model does not capture the dependence of the random variables. In a closely related

direction, Natarajan et al. [104] proposed an ambiguity set that was constructed

from the known marginal distributions of each random variable ξi, and they com-

puted v+
D(µ, σ) by solving a concave maximization problem. As an extension to the

marginal moment-based approach, Natarajan et al. [107] proposed a cross-moment

model that was based on an ambiguity set constructed using both marginal and cross
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moments. Compared to the marginal-moment approach, the quality of the bound is

tighter as the cross-moment model captures the dependence of the random variables.

However, computing the bound requires solving a completely positive program, which

itself can only be approximated in general. The authors then proposed semidefinite

programming (SDP) relaxations to approximate v+
D(µ, Σ) over the cross-moment-based

ambiguity set, where µ and Σ are the first and second moments respectively.

Moment-based ambiguity sets are also used prominently in a parallel vein of

research, called distributionally robust optimization (DRO); see [27, 42, 45, 50, 55, 62,

73, 82, 106, 133, 147, 148]. The popularity of the moment-based approach is mainly

due to the fact that it often leads to tractable optimization problems and relatively

simple models. Its weakness, however, is that moment-based sets are not guaranteed

to converge to the true distribution P when the sample size increases to infinity, even

though the estimations of the first and second moments are themselves guaranteed

to converge.

As an attractive alternative to moment-based ambiguity sets, distance-based

ambiguity sets haven been proposed in recent years. This approach defines D as a

ball in the space of probability distributions equipped with a distance measure, and

the center of the ball is typically the empirical distribution derived from a series of

independent realizations of the random vector ξ. The key ingredient of this approach

is the distance function. Classical distance functions include the Kullback-Leibler

divergence [86, 87], the φ-divergence [10, 54, 90], the Prohorov metric [62], empirical

Burg-entropy divergence balls [94], and the Wasserstein metric [112, 140].
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In this chapter, we apply the Wasserstein metric to construct a data-driven

ambiguity set D centered at the empirical distribution P̂N derived from N indepen-

dent observations of ξ. This approach has several benefits. The conservativeness

of the ambiguity set can be controlled by tuning a single parameter, the radius of

the Wasserstein ball; we will discuss this parameter in detail in Section 4.2. Also,

the Wasserstein ambiguity provides a natural confidence set for P. Specifically, the

Wasserstein ball around the empirical distribution on N independent identical sam-

ples contains P with confidence 1−β if its radius exceeds an explicit threshold εN(β)

that can be computed via a closed form equation [59, 63]. We then formulate v+
D in

(4.2) over the constructed Wasserstein ambiguity set. That is, we model the maximum

value of vQ over the ambiguity setD constructed by the Wasserstein metric. In Section

4.3, we reformulate problem (4.2) into a copositive problem under some standard as-

sumptions. As the copositive reformulation is computationally intractable, we apply

a standard approach based on semidefinite programming techniques to approximate

v+
D from above. In Section 4.4, we numerically verify our approach on two applications

from the literature. In particular, we compare our approach with the moment-based

approach in [107], and we find that the bounds form our semidefinite-based programs

approach the true expected optimal values as the number of observations increases,

while the moment-based bounds remain constant. We conclude our research and

discuss some future directions in Section 4.5.

We point out some similarities of our study to a recent technical report by

Hanasusanto and Kuhn [81]. In their report, they proposed a Wasserstein-metric
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ambiguity set for a two-stage DRO problem. In particular, they applied copositive

programming techniques to reformulate the second-stage worst-case value function,

which is essentially a max-min optimization problem, while we use copositive tech-

niques to reformulate a max-max optimization problem; see (4.3). Furthermore, they

directly used a hierarchy schema to approximate the copositive cones, while we derive

natural SDP approximations based on the copositive reformulation. Note that their

hierarchy approximations lead to SDP approximations as well. Finally, they devel-

oped an approach to derive an empirical Wasserstein radius, which is in spirit similar

to our approach in this chapter.

4.1.1 Notation, terminology, and basic techniques

We denote by Rn the n-dimensional Euclidean space, and denote by Rn
+ the

nonnegative orthant in Rn. For a scalar p ≥ 1, the p-norm of z ∈ Rn is defined

‖z‖p := (
∑n

i=1 |zi|p)1/p, e.g., ‖z‖1 =
∑n

i=1 |zi|. We will drop the subscript for the

2-norm, i.e., ‖z‖ := ‖z‖2. For v, w ∈ Rn, the inner product of v and w is denoted by

vTw :=
∑n

i=1 viwi. We denote by δξ the Dirac distribution concentrating unit mass

at ξ ∈ Rk. For any N ∈ N, we define [N ] := {1, . . . , N}.

The space Rm×n denotes the set of real m × n matrices, and the trace inner

product of two matrices A,B ∈ Rm×n is A •B := trace(ATB). Sn denotes the space

of n × n symmetric matrices, and for X ∈ Sn, X � 0 means that X is positive

semidefinite. In addition, diag(X) denotes the vector containing the diagonal entries

of X, and Diag(v) is the diagonal matrix with vector v along its diagonal. We denote
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by I ∈ Sn as the identity matrix.

For K ⊆ Rn a closed, convex cone, K∗ denotes its dual cone. We next intro-

duce some basics of copositive programming with respect to the cone K ⊆ Rn. The

copositive cone is defined as

COP(K) := {M ∈ Sn : xTMx ≥ 0 ∀ x ∈ K},

and its dual cone, the completely positive cone, is

CPP(K) := {X ∈ Sn : X =
∑

ix
i(xi)T , xi ∈ K},

where the summation over i is finite but its cardinality is unspecified. The term

copositive programming refers to linear optimization over COP(K) or, via duality,

linear optimization over CPP(K). In fact, these problems are sometimes called gen-

eralized copositive programming or set-semidefinite optimization [40, 59] in contrast

with the standard case K = Rn
+. In this chapter, we work with generalized copositive

programming, although we use the shorter phrase for convenience.

For the specific dimensions k and n of the problem in this chapter, we let ei

denote the i-th standard basis vector in Rk, and similarly, fj denotes the j-th standard

basis vector in Rn. We will also use g1 :=
(
e1
0

)
∈ Rk+n.

4.2 A Wasserstein-Based Ambiguity Set

In this section, we define the Wasserstein metric and discuss a standard method

to construct a Wasserstein-based ambiguity set. Using this ambiguity set, we fully

specify problem (4.2).
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Denote by Θ̂N := {ξ̂1, . . . , ξ̂N} the data set that contains N independent

samples of ξ governed by P. The uniform empirical distribution based on Θ̂N is

P̂N :=
1

N

∑N
i=1 δξ̂i where δζ is the Dirac distribution concentrating unit mass at

ζ ∈ Rk.

Definition 4.1 (Definition 3 in [81]). Let IA2(Ξ) be the set of all probability distribu-

tions Q that are supported on Ξ and that satisfy EQ[‖ξ− ξ′‖2] =
∫

Ξ
‖ξ− ξ′‖2dQ(ξ) <

∞ where ξ′ ∈ Ξ is some reference point, e.g., ξ′ = ξ̂i for some i ∈ [N ].

Definition 4.2 (Definition 3 in [81]). The 2-Wasserstein distance between any Q,Q′ ∈

M2(Ξ) is

W 2(Q,Q′) := inf


(∫

Ξ2

‖ξ − ξ′‖2 Π(dξ, dξ′)

)1/2

:
Π is a joint distribution of ξ and ξ′

with marginals Q and Q′, respectively

 .

With this setting, our ambiguity set contains a family of distributions that

are close to P̂N with respect to the Wasserstein metric. In particular, we define our

ambiguity set D as a 2-Wasserstein ball of radius ε that is centered at the uniform

empirical distribution P̂N :

D(P̂N , ε) :=
{
Q ∈ IA2(Ξ) : W 2(Q, P̂N) ≤ ε

}
.

Note that P̂N in D(P̂N , ε) is defined on the N independent samples in the dataset

Θ̂N . The reader is referred to [81] for the general case of IAr(Ξ) and W r(Q,Q′) for

any r ≥ 1. We use the 2-Wasserstein distance in this study for two reasons. First,

the Euclidean distance is one of the most popular distances considered in the relevant

literature; see [63, 81]. Second, we will find that problem (4.2) with an ambiguity set
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based on the 2-Wasserstein distance can be reformulated into a copositive program;

see Section 4.3.

Then, the problem of computing v+
D based on the Wasserstein-based ambiguity

set can be stated as

v+

D(P̂N , ε)
= sup

Π, Q∈IA2(Ξ)

∫
Ξ
v(ξ) dQ(ξ)

s. t.
∫

Ξ2 ‖ξ − ξ′‖2 Π(dξ, dξ′) ≤ ε2

Π is a joint distribution of ξ and ξ′

with marginals Q and P̂N , respectively.

(4.3)

The Wasserstein ball radius in problem (4.3) controls the conservatism of the optimal

value. A larger radius is more likely to contain the true distribution and thus a more

likely valid upper bound on vP, but even if it is valid, it could be a weaker upper

bound. Therefore, it is crucial to choose an appropriate radius for the Wasserstein

ball.

4.2.1 An empirical Wasserstein radius

The papers [59, 63] present a theoretical radius εN(β) for datasets of size N ,

which guarantees a desired confidence level 1 − β for P ∈ D(PN , εN(β)). Note that

εN(β) depends on N and β. However, εN(β) is known to be conservative in practice;

see [59] for example. In other words, D(PN , εN(β)) might contain significantly more

irrelevant distributions so that the computed v+
D(PN , εN (β)) is significantly larger than

vP and provides relatively less useful information. So, we propose a procedure to

derive an empirical radius that provides a desired confidence level 1− β but is much

smaller than εN(β). Our approach is based on the data set Θ̂N . In particular, we
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apply a cross-validation procedure (see details in the next paragraphs) to compute

an empirical confidence level (between 0 and 1) for a given radius ε. Our procedure

guarantees that a larger radius leads to a higher confidence level. Therefore, by

iteratively testing different ε, we can find a radius with a desired confidence level

based on the data set Θ̂N . Although the derived ε(Θ̂N , β) depends on the data set

Θ̂N , our experimental results indicate that it can be used for other datasets of the

same sample size. We will show the numerical evidence in Section 4.4. Our approach

is also similar in spirit to the one used in [63, 81].

Our procedure requires an oracle to compute (or approximate) v+
D(PN , ε)

. Later

in Section 4.3, we will propose a specific approximation; see (4.20). Assume also that,

in addition to the dataset Θ̂N , we predetermine a set E containing a large, yet finite,

number of candidate radii ε. We randomly divide Θ̂N into training and validation

datasets K times. We enforce the same dataset size denoted by NT on each of the K

training datasets.

Next, for each ε ∈ E , we derive an empirical probability based on the follow-

ing procedure: (i) we use each of the K training datasets to approximate v+

D(P̂NT
ε)

with a value called vWB(ε) by calling the oracle; (ii) we then use the corresponding

K validation datasets to simulate the expected optimal values denoted by vSB(ε);

and (iii) we finally compute P̂N [vWB(ε) ≥ vSB(ε)], which is the percentage of the K

instances where vWB(ε) ≥ vSB(ε). Let us call this empirical probability the reliability

index. Thus, the reliability index can roughly approximate the confidence level that

the underlying distribution is contained by the Wasserstein-based ambiguity set with
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the radius ε. Note that P̂N [ · ] is non-decreasing in ε and equal to 1 for some large

ε0. Therefore, the set containing all the reliability indices with respect to the set E

is essentially an empirical cumulative distribution. Then, given a desired confidence

level, we can choose a corresponding empirical radius ε ∈ E with a reliability index

that is close to the confidence level. We specify the above procedure in Algorithm

4.1.

Algorithm 4.1 Procedure to compute a reliability index for any ε ∈ E

Inputs: A dataset Θ̂N = {ξ̂1, . . . , ξ̂N} and a radius ε ∈ E

Outputs: The reliability index

for k = 1, . . . , K do

Use the kth training dataset to compute vkWB(ε)

Use the kth validation dataset to simulate vkSB(ε)

end for

Calculate the reliability index for ε as the percentage of the K instances where

vkWB(ε) ≥ vkSB(ε)

4.3 Problem Reformulation and Tractable Bound

In this section, we propose a copositive programming reformulation for prob-

lem (4.3) under some mild assumptions. As copositive programs are computationally

intractable, we then propose semidefinite-based relaxations for the purposes of com-
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putation.

Let us first define the feasible set for x ∈ Rn in (4.1) as follows:

X :=

x ∈ Rn :
Ax = b, x ≥ 0

xj ∈ {0, 1} ∀ j ∈ B

 .

We now introduce the following standard assumptions:

Assumption 4.1. The set X ⊆ Rn is nonempty and bounded.

Assumption 4.2. x ∈ {x : Ax = b, x ≥ 0} =⇒ 0 ≤ xj ≤ 1 ∀ j ∈ B.

Assumption 4.2 can be easily enforced based on [35]. For example, if B = ∅,

then the assumption is redundant. If problem (4.1) is derived from the network flow

problems, for instance the longest path problem on a directed acyclic graph, then

Assumption 4.2 is implied from the network flow constraints. When B is a nonempty

set and the assumption is not implied by the constraints, we can add constraints

xj + sj = 1, ∀ j ∈ B.

Assumption 4.3. The support set Ξ ⊆ Rk is convex, closed, and computationally

tractable.

For example, Ξ could be represented using a polynomial number of linear, second-

order-cone, and semidefinite inequalities. The set Ξ possesses a polynomial-time

separation oracle [77].

Assumption 4.4. Ξ is bounded.

By Assumption 4.1, we know that v(ξ) is finite and attainable for any ξ ∈ Ξ.

Under Assumption 4.3, the distributions of ξ in the ambiguity set D are guaranteed
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to be continuous over Ξ. Note that under Assumptions 4.1 - 4.4, v+
D is finite and

attainable and thus we can replace sup with max in (4.3) under these conditions.

Assumption 4.4 could be merged with Assumption 4.3, but it is stated separately to

highlight its role in proving the exactness of the copositive programming reformulation

below.

4.3.1 A copositive reformulation

We reformulate problem (4.3) via conic programming duality theory and prob-

ability theory. We introduce a useful result from the literature as follows.

Lemma 4.1 (Theorem 1 in [81]). v+

D(P̂N ,ε)
equals the optimal value of

sup 1
N

∑N
i=1

∫
Ξ
v(ξ) dQi(ξ)

s. t. 1
N

∑N
i=1

∫
Ξ
‖ξ − ξ̂i‖2 dQi(ξ) ≤ ε2

Qi ∈M2(Ξ) ∀ i ∈ [N ],

(4.4)

where Qi represents the distribution of ξ conditional on ξ′ = ξ̂i for all i ∈ [N ].

Proof. As Qi represents the distribution of ξ conditional on ξ′ = ξ̂i, the joint prob-

ability Π in problem (4.3) can be decomposed as Π = 1
N

∑
i∈[N ]

Qi by the law of total

probability. Thus, the optimal value of (4.4) coincides with v+

D(P̂N ,ε)
, which completes

the proof.

We next provide a copositive programming reformulation for problem (4.4).

As the first step, we use a standard duality argument to write the dual of (4.4) (see
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also [63]):

v+

D(P̂N ,ε)
= sup

Qi∈M2(Ξ)

inf
λ≥0

1

N

N∑
i=1

∫
Ξ

v(ξ) dQi(ξ) + λ

(
ε2 − 1

N

N∑
i=1

∫
Ξ

‖ξ − ξ̂i‖2 dQi(ξ)

)

(4.5)

≤ inf
λ≥0

sup
Qi∈M2(Ξ)

λ ε2 +
1

N

N∑
i=1

∫
Ξ

(v(ξ)− λ‖ξ − ξ̂i‖2) dQi(ξ) (4.6)

= inf
λ≥0

λ ε2 +
1

N

N∑
i=1

sup
ξ∈Ξ

(v(ξ)− λ‖ξ − ξ̂i‖2), (4.7)

where (4.6) follows from the max-min inequality, while Equation (4.7) follows from

the fact that M2(Ξ) contains all the Dirac distributions supported on Ξ.

By Assumption 4.1, v(ξ) is finite for all ξ ∈ Ξ. Then, the inequality in (4.6)

becomes an equality for any ε > 0 due to a straightforward generalization of a strong

duality result for moment problems in Proposition 3.4 in [121]; see also Theorem 1

in [81] and Lemma 7 in [83]. By introducing auxiliary variables si, the minimization

problem in (4.7) is equivalent to

v+

D(P̂N ,ε)
= inf

λ, si
λ ε2 + 1

N

∑N
i=1 si

s. t. sup
ξ∈Ξ

(v(ξ)− λ‖ξ − ξ̂i‖2) ≤ si ∀ i ∈ [N ]

λ ≥ 0.

(4.8)

For each i ∈ [N ], consider the following maximization problem corresponding to the

left-hand side of the constraints in (4.8):

hi(λ) := sup (Fξ)Tx− λ(ξT ξ − 2ξ̂Ti ξ + ‖ξ̂i‖2)

s. t. Ax = b, x ≥ 0

xj ∈ {0, 1} ∀ j ∈ B

eT1 ξ = 1, ξ ∈ Ξ̂,

(4.9)
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which is a mixed 0-1 bilinear program. Under Assumption 4.2, it holds also that the

optimal value of (4.9) equals the optimal value of an associated copositive program

[35, 37], which we now describe.

Define

z :=

(
ξ

x

)
∈ Rk+n, E :=

(
−beT1 A

)
∈ Rm×(k+n), (4.10)

H i(λ) :=

−λ(I − ξ̂ieT1 − e1ξ̂
T
i + ‖ξ̂i‖2e1e

T
1 ) 1

2
F T

1
2
F 0

 ∈ Sk+n, (4.11)

and for any j ∈ B, define

Qj :=

(
0

fj

)(
0

fj

)T
+

1

2

(
0

fj

)(
0

f1

)T
+

1

2

(
0

f1

)(
0

fj

)T
∈ Sk+n. (4.12)

where fj denotes the j-th standard basis vector in Rn.

Because both X and Ξ are bounded by Assumptions 4.1 and 4.4, there exists

a scalar r > 0 such that the constraint zT z = ξT ξ + xTx ≤ r is redundant for (4.9).

Furthermore, it is well-known that we can use the following quadratic constraints to

represent the binary variables in the description of X :

x2
j − xj = 0 ⇔ Qj • zzT = 0.

After adding the redundant constraint and representing the binary variables, we ho-
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mogenize problem (4.9) as follows:

max H i(λ) • zzT

s. t. Ez = 0, gT1 z = 1

I • zzT ≤ r

Qj • zzT = 0 ∀ j ∈ B

z ∈ Ξ̂× Rn
+,

(4.13)

where g1 =
(
e1
0

)
∈ Rk+n and e1 denotes the standard basis vector in Rk. The copositive

representation is thus

max H i(λ) • Z

s. t. diag(EZET ) = 0

g1g
T
1 • Z = 1

I • Z ≤ r

Qj • Z = 0 ∀ j ∈ B

Z ∈ CPP(Ξ̂× Rn
+).

(4.14)

Letting ui ∈ Rm, ρi ∈ R+, αi ∈ R, and vi ∈ R|B| be the respective dual multipliers of

diag(EZET ) = 0, I • Z ≤ r, g1g
T
1 • Z = 1, and Qj • Z = 0, standard conic duality

theory implies the dual of (4.14) is

min
αi,ρi,ui,vi

αi + rρi

s. t. αig1g
T
1 −H i(λ) + ET Diag(ui)E +

∑
j∈B

vijQj + ρiI ∈ COP(Ξ̂× Rn
+)

ρi ≥ 0.

(4.15)

Holding all other dual variables fixed, for ρi > 0 large, the matrix variable in (4.15) is

strictly copositive—in fact, positive definite—which establishes that Slater’s condition
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is satisfied, thus ensuring strong duality: the optimal value of (4.14) equals the optimal

value of (4.15). Therefore, we can reformulate problem (4.8) as follows:

v+

D(P̂N ,ε)
= min λε2 + 1

N

N∑
i=1

(αi + rρi)

s. t. αig1g
T
1 −H i(λ) + ET Diag(ui)E +

∑
j∈B

vijQj + ρiI ∈ COP(Ξ̂× Rn+) ∀ i ∈ [N ]

ρi ≥ 0 ∀ i ∈ [N ]

λ ≥ 0.

(4.16)

Note that if Assumption 4.4 fails, the constraint I •Z ≤ r should be excluded

from (4.14) and thus the terms rρi and ρiI in the objective function and the constraint

respectively should be excluded in (4.15) as well. Therefore, strong duality between

(4.14) and (4.15) cannot be established in this case. However, the modified (4.15)

still provides an upper bound on hi(λ). Accordingly, the modified problem (4.16) still

provides an upper bound on v+

D(P̂N ,ε)
.

4.3.2 A semidefinite-based relaxation

As problem (4.16) is difficult to solve in general, we propose a tractable approx-

imation based on semidefinite programming techniques. In particular, we propose an

inner approximation of COP(Ξ̂×Rn
+) in (4.16) so that the resulting problem has an

optimal value that is an upper bound on v+
D. Now, define

IA(Ξ̂× Rn
+) :=

S +M :
S11 ∈ IA(Ξ̂),Rows(S21) ∈ Ξ̂∗

S22 ≥ 0, M � 0

 ,
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where IA(Ξ̂) is an inner approximation of COP(Ξ̂), i.e., IA(Ξ̂) ⊆ COP(Ξ̂). Immedi-

ately, we have a relationship between IA(Ξ̂× Rn
+) and COP(Ξ̂× Rn

+):

Lemma 4.2. IA(Ξ̂× Rn
+) ⊆ COP(Ξ̂× Rn

+).

Proof. Let arbitrary
(
p
q

)
∈ Ξ̂× Rn

+ be given. We need to show(
p

q

)T
(S +M)

(
p

q

)
=
(
p
q

)T
S
(
p
q

)
+
(
p
q

)T
M
(
p
q

)
≥ 0.

(
p

q

)T
(S +M)

(
p

q

)
=
(
p
q

)T
S
(
p
q

)
+
(
p
q

)T
M
(
p
q

)
(4.17)

= pTS11p+ 2qTS21p+ qTS22q +
(
p
q

)T
M
(
p
q

)
(4.18)

≥ 0 (4.19)

The first term is nonnegative because p ∈ Ξ̂ and S11 ∈ IA(Ξ̂) ⊆ COP(Ξ̂); the second

term is nonnegative because p ∈ Ξ̂, q ≥ 0, and Rows(S21) ∈ Ξ̂∗; the third term

is nonnegative because q ≥ 0 and S22 ≥ 0; the last term is nonnegative because

M � 0.

When Ξ̂ = {ξ ∈ Rk : Pξ ≥ 0} is a polyhedral cone based on some matrix

P ∈ Rp×k, a typical inner approximation IA(Ξ̂) of COP(Ξ̂) is given by

IA(Ξ̂) := {S11 = P TY P : Y ≥ 0},

where Y ∈ Sp is a symmetric matrix variable. This corresponds to the RLT approach

of [4, 38, 126]. When Ξ̂ = {ξ ∈ Rk : ‖(ξ2, . . . , ξk)
T‖ ≤ ξ1} is the second-order cone, it

is known [130] that

COP(Ξ̂) = {S11 = τJ +M11 : τ ≥ 0, M11 � 0},
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where J = Diag(1,−1, . . . ,−1). Because of this simple structure, it often makes sense

to take IA(Ξ̂) = COP(Ξ̂) in practice.

Now consider the following problem by replacing COP(Ξ̂×Rn
+) with IA(Ξ̂×Rn

+)

in (4.16).

v̄+

D(P̂,ε)
= min λε2 + 1

N

N∑
i=1

(αi + rρi)

s. t. αig1g
T
1 −H i(λ) + ET Diag(ui)E +

∑
j∈B

vijQj + ρiI ∈ IA(Ξ̂× Rn+) ∀ i ∈ [N ]

ρi ≥ 0 ∀ i ∈ [N ]

λ ≥ 0.

(4.20)

Obviously, we have the following result:

Theorem 4.3. v+

D(P̂N ,ε)
≤ v̄+

D(P̂,ε)
.

4.4 Numerical Experiments

In this section, we validate our proposed Wasserstein-ball approach (WB) on

two applications. As moment-based approaches are popular in the literature, we will

compare WB with the moment-based approach (MB) proposed in [107] where the

first two moments of the distributions are required. In practice, the moments of

the distribution are often not known exactly. Delage and Ye [50] proposed a data-

driven approach to handle this case. However, in this research, we assume that the

moments are known exactly for MB. This setting actually favors MB. In particular,

we compute these moments either from a closed-form formula or from a sufficiently

large number of simulated samples. The goal of our experiments is to demonstrate

that our approach can provide an upper bound, which gets closer to vP as the size of
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the data set increases, while the MB provides an upper bound, which is invariant to

the size of the data set.

All computations are conducted with Mosek version 8.0.0.28 beta [5] on an

Intel Core i3 2.93 GHz Windows computer with 4GB of RAM and are implemented

using the modeling language YALMIP [99] in MATLAB (R2014a) version 8.3.0.532.

In order to demonstrate the effectiveness of WB, we also implement a Monte Carlo

simulation-based approach (SB) which requires a sufficiently large number of ran-

domly generated samples. In the project management problem, we need to solve a

linear program for each sample of the Monte Carlo simulation. We employ CPLEX

12.4 to solve these linear programs.

4.4.1 Statistical sensitivity analysis of highest-order statistic

The problem of finding the maximum value from a set ζ = (ζ1, . . . , ζn) of n

numbers can be formulated as the optimization problem:

max
{
ζTx : eTx = 1, x ≥ 0

}
. (4.21)

Suppose ζ1 = max{ζ1, . . . , ζn}, then the optimal solution to (4.21) is x∗1 = 1, x∗2 =

· · · = x∗n = 0. For the statistical sensitivity analysis problem, we consider a random

vector ζ following a joint distribution P. In the situation where the true distribution

is not known exactly, our focus is to investigate the upper bound on the expected

maximum value over an ambiguity set containing distributions that possess partial

shared information.

We consider an instance with n = 3 and the true distribution P of ζ is assumed
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to be jointly lognormal with first and second moments given by µlog ∈ R3 and Σlog ∈

S3, respectively. In the experiments, we use the following procedure to randomly

generate the first and second moments. We first sample µ ∈ R3 from a uniform

distribution [0, 2]3. Then, we randomly generate a matrix Σ ∈ S3 as follows: we

set the vector of standard deviations to σ = 1
4
e ∈ R3, sample a random correlation

matrix C ∈ S3 using the MATLAB command ‘gallery(‘randcorr’,3)’, and set Σ =

diag(σ)C diag(σ) + µµT . Then µlog and Σlog can be computed based on the following

formulae [80]:

(µlog)i = eµi+0.5Σii ,

(Σlog)ij = eµi+µj+0.5(Σii+Σjj)(eΣij − 1).

(4.22)

We can cast this problem into our framework by setting m = 1, k = n + 1,

ξ = (1, ζ1, . . . , ζn), F = (0, I), and B = ∅. Obviously, Assumptions 4.1 and 4.3

are satisfied. Assumption 4.2 is vacuous. Although Assumption 4.4 does not hold,

problem (4.20) can still provide a valid upper bound on the expected optimal value

as discussed in Section 4.3.1.

4.4.1.1 The deviation of empirical Wasserstein radii

In this experiment, we consider a particular underlying distribution P that

is generated by the procedure mentioned above. Also, we consider eight cases for

the size of the dataset: N ∈ {10, 20, 40, 80, 160, 320, 640, 1280}. For each case,

we randomly generate a dataset Θ̂N containing N independent samples from P and

use the procedure in Section 4.2 to determine a desired radius from a pre-specified
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set E = {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0}1.

In particular, we set K = 100 in Algorithm 4.1. Figure 4.1 shows the trend of the

reliabilities over different Wasserstein radii for N ∈ {20, 80, 320, 1280}. Clearly,

smaller Wasserstein radii tend to have lower reliability indices. Furthermore, as the

sample size increases, the reliability index increases as well for the same Wasserstein

radius. The result of this experiment indicates that we can practically choose a

Wasserstein radius with a desired statistical guarantee for each case of N .

4.4.1.2 Instances with the same underlying distribution

Our next experiment is to focus on a particular joint lognormal distribution

P whose first and second moments are randomly generated based on the above pro-

cedure. We consider eight cases: N ∈ {10, 20, 40, 80, 160, 320, 640, 1280}. For each

case, we test 100 trials and in each trial we randomly generate N independent sam-

ples from P and choose the Wasserstein radius with a reliability index of around 0.90,

denoted by ε̂ := ε(Θ̂N , 0.1). We compare our approach with MB with the first two

moments of the distribution computed by (4.22). We also randomly generate 100000

independent samples from P to simulate the true expected optimal value. Figure 4.2

shows that our approach provides weaker bounds on the expected optimal value for

smaller sample sizes. However, as the size of samples increases, our approach pro-

vides stronger bounds and the bounds get relatively close to the simulated value. In

1From preliminary experiments, the largest element 2.0 in set E returned 1 as the relia-
bility index for all the experiments we conducted. Thus, it is sufficient to have 2.0 as the
largest element here.
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(d) N = 1280

Figure 4.1: Reliabilities of different Wasserstein radii for N ∈

{20, 80, 320, 1280} respectively.
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contrast, the value from MB remains the same regardless of the change of sample

sizes.
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Figure 4.2: Illustration of the comparison of WB and MB over

different sample sizes for a particular randomly generated un-

derlying distribution. Note that the moment-based value and

simulated value remains the same over all runs since this exper-

iment is only for a particular distribution.
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4.4.1.3 Instances with different underlying distributions

Again, in the third experiment, we consider eight cases N ∈ {10, 20, 40, 80,

160, 320, 640, 1280}. However, for each case, we randomly generate 100 trials and in

each trial, we randomly generate N independent samples from a randomly generated

joint lognormal distribution P. For each trial in each case, we solve problem (4.20)

with the Wasserstein radius corresponding to a reliability index of around 0.90 and

simulate the expected optimal value over 100, 000 samples. Denote the optimal value

from WB by v̄+

D(P̂N ,ε̂)
and the simulated value by vSB. Then, we calculate the relative

gap between WB and SB as

gap :=
v̄+

D(P̂N ,ε̂)
− vSB

vSB

.

For each case, we take the average of the relative gaps over the 100 trials. For each

trial in each case, we also solve MB with the first two moments computed by (4.22).

Denote the optimal value from MB by v+
MB. Similarly, we calculate the relative gap

between MB and SB as

gap :=
v+

MB − vSB

vSB

.

We then take the average of the relative gaps over the 100 trials in each case. Figure

4.3 illustrates the average relative gaps from both WB and MB over the eight cases.

Clearly, the upper bound from WB approaches the simulated value along with the

increase of the size of samples, while the average relative gap between the bound from

MB and the simulated value does not.

Table 4.1 shows the percentage of the 100 trials where the optimal values from

WB are greater than or equal to the corresponding simulated optimal values in the
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eight cases. The result demonstrates that the derived empirical Wasserstein radii

indeed provide desired statistical guarantees in practice.

Case number 1 2 3 4 5 6 7 8

Reliability index 1.00 1.00 1.00 1.00 0.97 0.98 0.97 0.98

Table 4.1: The percentage of the 100 trials where the optimal

values from WB approach are greater or equal to the simulated

values over the 8 cases.

4.4.2 Project management problem

In this example, we consider a project management problem, which can be

formulated as a longest-path problem on a directed acyclic graph. The arcs denote

activities and nodes denote completion of a set of activities. Arc lengths denote the

time to complete the activities. Thus, the longest path from the starting node s to

the ending node t gives the time needed to compete the whole project. Let ζij be the

length (time) of arc (activity) from node i to node j. The problem can be solved as

a linear program due to the network flow structure as follows:
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max
∑

(i,j)∈A
ζijxij

s. t.
∑

i:(i,j)∈A
xij −

∑
j:(i,j)∈A

xji =


1, if i = s

0, if i ∈ N , and i 6= s, t

−1, if i = t

xij ≥ 0, ∀ (i, j) ∈ A,

(4.23)

where A denotes the set containing all the arcs and N denotes the set containing all

nodes on the network. For the stochastic project management problem, the activity

times are random. In such cases, due to the resource allocation and management

constraints, the project manager would like to quantify the worst-case expected com-

pletion time of the project, which is corresponding to the worst-case longest path of

the network.

We consider an instance with a network structure shown in Figure 4.4. This

network consists of 7 arcs and 6 nodes. There are 3 paths from the starting node

to the ending node on the network. In the experiments of this example, we consider

truncated joint normal distributions. We use the following procedure to generate a

truncated joint normal distribution P: we generate ζ ≥ 0 from a jointly normal dis-

tribution with first and second moments given by µ ∈ R|A| and Σ ∈ S |A|, respectively.

Specifically, we sample µ from a uniform distribution [0, 5]|A| while the matrix Σ is

generated randomly using the following procedure: we set the vector of standard de-

viations to σ = e, sample a random correlation matrix C ∈ S |A| using the MATLAB

command ‘gallery(‘randcorr’,|A|)’, and set Σ = diag(σ)C diag(σ) + µµT . Skipping
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the details, we can cast the network flow problem into our framework. It is straight-

forward to check that Assumptions 4.1, 4.3, and 4.4 are satisfied and Assumption 4.2

is vacuous.

4.4.2.1 Instances with the same underlying distribution

In the first experiment, we focus on a particular underlying distribution P. We

then consider seven cases where N ∈ {10, 20, 40, 80, 160, 320, 640}. For each case,

we run 100 trials and in each trial we randomly generate a dataset Θ̂N containing

N independent samples {ζ̂ i}i∈[N ] from P. We use the procedure in Section 4.2 to

compute a reliability set for each case. Then, we use computed reliability sets to derive

empirical Wasserstein radii for the following computations. For each trial in each case,

we solve problem (4.20) with a Wasserstein radius ε̂ = ε̂(Θ̂N , 0.1) corresponding to

a reliability index of 0.90. We compare our WB to the literature MB required the

first two moments. In this experiment, we approximate the moments based on a

randomly generated dataset containing 100, 000 samples. The computed moments

are close to their theoretical counterparts since the sample size is considerably large.

We also simulate the expected optimal value over the 100, 000 samples. Figure 4.5

shows that WB provides weaker bounds on the expected optimal value for smaller

sample sizes. However, as the size of samples increases, WB provides stronger bounds

and the bounds get relatively close to the simulated value. In contrast, the bounds

from MB remains the same regardless of the change of sample sizes.
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4.4.2.2 Instances with different underlying distributions

The next experiment is also to consider the seven cases N ∈ {10, 20, 40, 80,

160, 320, 640}. Again, for each case, we randomly generate 100 trials in which N

independent samples are drawn from a randomly generated truncated joint normal

distribution using the above procedure. Then, for each trial in each case, we solve

problem (4.20) with a Wasserstein radius ε̂(Θ̂N , 0.1) corresponding to a 0.90 reliabil-

ity index and we solve MB problem with moments approximated from a randomly

generated dataset containing 100, 000 samples. We also simulate the expected opti-

mal value over the 100, 000 samples for each trial in each case. Similarly, we compute

the relative gap between the WB optimal value and the simulated optimal value and

the relative gap between the MB optimal value and simulated optimal value. Then,

for each case, we take the average of the relative gaps from both WB and MB over

the 100 trials. Figure 4.3 illustrates the average relative gaps over the seven cases.

Clearly, the upper bound from WB approaches to the simulated value along with the

increase in the size of samples, while the gap between the bound from MB and the

simulated value does not become narrow with the increase in the sample size. Table

4.2 shows the percentage of the 100 trials where the optimal values from WB are

greater than or equal to the corresponding simulated optimal values over the seven

cases.
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Case number 1 2 3 4 5 6 7

Reliability index 1.00 1.00 1.00 1.00 0.97 0.98 0.97

Table 4.2: The percentage of the 100 trials where the optimal

values from WB are greater than or equal to the corresponding

simulated optimal values over the 7 cases.

4.5 Concluding Remarks

In this chapter, we have studied the expected optimal value of a mixed 0-1

programming problem with uncertain objective coefficients following a joint distribu-

tion whose information is not known exactly but a set of independent samples can

be collected. Using the samples, we have constructed a Wasserstein-based ambiguity

set that contains the true distribution with a desired confidence level. We proposed

an approach to compute the upper bound on the expected optimal value. Then un-

der mild assumption, the problem was reformulated to a copositive program, which

leads to a semidefinite-based relaxation. We have validated the effectiveness of our

approach over several applications.
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Figure 4.3: Illustration of the average relative gaps from both

MB and WB in the case of N ∈ {10, 20, 40, 80, 160, 320, 640,

1280}. The blue line represents the average relative gap between

the optimal values from WB and the simulated value; the red line

represents the average relative gap between the optimal values

from MB and the simulated value.
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Figure 4.4: The structure of a project network.
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CHAPTER 5
CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

In this thesis, we apply techniques including mathematical programming, data

analytics, and algorithmic computations to address several issues in optimization

problems under uncertainty. In particular, we study a two-stage adjustable robust

linear optimization problem with uncertain right-hand sides in which the first-stage

decision is determined before the realizations of the uncertainties while the second-

stage decision is determined after observing the realizations. We also study the effects

of the uncertain parameters on the objective values of linear programming or mixed

0-1 linear programming from either distribution-free or distributionally robust per-

spectives. We highlight the main contributions of this thesis as follows.

In Chapter 2, we study a two-stage adjustable robust linear programming in

which the right-hand sides are uncertain and belong to a convex, compact uncer-

tainty set. The two-stage problem, in general, is computationally intractable. The

affine policy is a popular, tractable approximation. Under some standard and simple

conditions, we show that the two-stage problem can be reformulated as a copositive

optimization problem, which in turn leads to a class of tractable, semidefinite-based

approximations. We also show that the semidefinite-based approximation performs at

least as well as the affine policy. We investigate several examples from the literature

and the numerical results indicate that our tractable approximations significantly im-



123

prove the affine policy. In particular, our approach solves exactly in polynomial time

a class of instances of increasing size for which the affine policy admits an arbitrarily

large gap.

In Chapter 3, we leverage the concept of robust optimization to develop a

framework for sensitivity analysis of linear programs (LPs) in minimization form.

This framework allows for simultaneous perturbations in the objective coefficients

and right-hand sides. We assume that the perturbations are modeled in a compact,

convex, tractable uncertainty set. We investigate the best-case and worst-case LP

optimal values over the parameter perturbations. We show that this framework can

unify and extend multiple approaches for LP sensitivity analysis in the literature and

has close ties to worst-case linear optimization and two-stage adaptive optimization.

We reformulate the problems into copositive programs, which lead to semidefinite-

based relaxations. We numerically show that the framework works effectively over

several examples.

In Chapter 4, we investigate the distributionally robust bound on the expected

optimal value of mixed 0-1 linear optimization problems with uncertain objective co-

efficients, in which the exact distribution of the cost coefficients is unknown and

assumed to be in an ambiguity set. We construct the ambiguity set by using Wasser-

stein balls. We show that the problem can be reformulated as a copositive program

under some standard and simple conditions. We then provide a tractable semidefinite

programming relaxation to approximate the robust bound. We compare our approach

with a well-known literature approach over several examples. The numerical results
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indicate that our approach can be an effective alternative.

5.2 Future Research and Open Questions

Our result in Chapter 2 motivates us to extend the approach to two-stage

robust optimization problems with binary recourse variables, which is known to be

NP-hard in general. An interesting question is to see if there exists some conditions

under which we can reformulate the two-stage binary recourse problem into a copos-

itive program. A following question is if there exists efficient tight approximations to

the problem.

The robust sensitivity analysis in Chapter 3 is conducted on linear program-

ming problems, the semidefinite-based relaxations can provide tight bounds on the

best- and worst-case optimal values. Inspired by this result, a natural question is if we

can extend to approach to consider general perturbations in all problem data includ-

ing the constraint matrix, cost coefficients, and right-hand sides. Another interesting

question is if we can extend the approach to conduct robust sensitivity analysis in

the optimal value of binary programming problems.
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Montréal, 2014.

[7] A. Ardestani-Jaafari and E. Delage. Linearized robust counterparts of two-

stage robust optimization problem with applications in operations management.

Manuscript, HEC Montreal, 2016.



126

[8] A. Atamtürk and M. Zhang. Two-stage robust network flow and design under

demand uncertainty. Operations Research, 55(4):662–673, 2007.

[9] A. Ben-Tal, G. Boaz, and S. Shimrit. Robust multi-echelon multi-period in-

ventory control. European Journal of Operational Research, 199(3):922–935,

2009.

[10] A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen.

Robust solutions of optimization problems affected by uncertain probabilities.

Management Science, 59(2):341–357, 2013.

[11] A. Ben-Tal, B. Do Chung, S. R. Mandala, and T. Yao. Robust optimization

for emergency logistics planning: Risk mitigation in humanitarian relief supply

chains. Transportation research part B: methodological, 45(8):1177–1189, 2011.

[12] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski. Robust Optimization. Princeton

University Prss, Princeton, N.J.,, 2009.

[13] A. Ben-Tal, B. Golany, A. Nemirovski, and J.-P. Vial. Retailer-supplier flexible

commitments contracts: a robust optimization approach. Manufacturing &

Service Operations Management, 7(3):248–271, 2005.

[14] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust

solutions of uncertain linear programs. Mathematical Programming, 99(2):351–

376, 2004.



127

[15] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of

Operations Research, 23(4):769–805, 1998.

[16] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs.

Operations Research Letters, 25(1):1–14, 1999.

[17] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming prob-

lems contaminated with uncertain data. Mathematical Programming Ser. A,

88(3):411–424, 2000.

[18] A. Ben-Tal and A. Nemirovski. Robust optimization—methodology and appli-

cations. Math. Program. Ser. A, 92(3):453–480, 2002.

[19] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of

robust optimization. SIAM Review, 53(3):464–501, 2011.

[20] D. Bertsimas and F. J. de Ruiter. Duality in two-stage adaptive linear op-

timization: Faster computation and stronger bounds. INFORMS Journal on

Computing, 28(3):500–511, 2016.

[21] D. Bertsimas and V. Goyal. On the power and limitations of affine policies in

two-stage adaptive optimization. Mathematical programming, 134(2):491–531,

2012.



128

[22] D. Bertsimas, V. Goyal, and P. Y. Lu. A tight characterization of the per-

formance of static solutions in two-stage adjustable robust linear optimization.

Mathematical Programming Ser. A, 150(2):281–319, 2014.

[23] D. Bertsimas, D. A. Iancu, and P. A. Parrilo. A hierarchy of near-optimal

policies for multistage adaptive optimization. IEEE Transactions on Automatic

Control, 56(12):2809–2824, 2011.

[24] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng. Adaptive robust

optimization for the security constrained unit commitment problem. IEEE

transactions on power systems, 28(1):52–63, 2013.

[25] D. Bertsimas, K. Natarajan, and C.-P. Teo. Probabilistic combinatorial opti-

mization: Moments, semidefinite programming, and asymptotic bounds. SIAM

Journal on Optimization, 15(1):185–209, 2004.

[26] D. Bertsimas, K. Natarajan, and C.-P. Teo. Persistence in discrete optimization

under data uncertainty. Mathematical programming, 108(2):251–274, 2006.

[27] D. Bertsimas and I. Popescu. Optimal inequalities in probability theory: A

convex optimization approach. SIAM Journal on Optimization, 15(3):780–804,

2005.

[28] D. Bertsimas and M. Sim. Robust discrete optimization and network flows.

Math. Program. Ser. B, 98:49–71, 2003.



129

[29] D. Bertsimas and M. Sim. The price of robustness. Operations Research,

52(2):35–53, 2004.

[30] J. R. Birge and F. Louveaux. Introduction to stochastic programming. Springer-

Verlag, New York, 1997.

[31] I. M. Bomze and E. De Klerk. Solving standard quadratic optimization prob-

lems via linear, semidefinite and copositive programming. Journal of Global

Optimization, 24(2):163–185, 2002.

[32] I. M. Bomze, M. Dür, E. De Klerk, C. Roos, A. J. Quist, and T. Terlaky. On

copositive programming and standard quadratic optimization problems. Jour-

nal of Global Optimization, 18(4):301–320, 2000.

[33] R. Bowman. Efficient estimation of arc criticalities in stochastic activity net-

works. Management Science, 41(1):58–67, 1995.

[34] S. Bradley, A. Hax, and T. Magnanti. Applied mathematical programming.

1977.

[35] S. Burer. On the copositive representation of binary and continuous nonconvex

quadratic programs. Mathematical Programming, 120:479–495, 2009.



130

[36] S. Burer. Copositive programming. In M. Anjos and J. Lasserre, editors, Hand-

book of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms,

Software and Applications, International Series in Operational Research and

Management Science, pages 201–218. Springer, 2011.

[37] S. Burer. Copositive programming. In Handbook on semidefinite, conic and

polynomial optimization, pages 201–218. Springer, 2012.

[38] S. Burer. A gentle, geometric introduction to copositive optimization. Mathe-

matical Programming, 151(1):89–116, 2015.

[39] S. Burer and K. M. Anstreicher. Second-order-cone constraints for extended

trust-region subproblems. SIAM Journal on Optimization, 23(1):432–451, 2013.

[40] S. Burer and H. Dong. Representing quadratically constrained quadratic pro-

grams as generalized copositive programs. Operations Research Letters, 40:203–

206, 2012.

[41] G. C. Calafiore and L. El Ghaoui. On distributionally robust chance-constrained

linear programs. Journal of Optimization Theory and Applications, 130(1):1–22,

2006.

[42] G. C. Calafiore and L. El Ghaoui. On distributionally robust chance-constrained

linear programs. Journal of Optimization Theory and Applications, 130(1):1–22,

2006.



131

[43] J. Chen and S. Burer. Globally solving nonconvex quadratic programming

problems via completely positive programming. Mathematical Programming

Computation, 4(1):33–52, 2012.

[44] X. Chen and Y. Zhang. Uncertain linear programs: Extended affinely adjustable

robust counterparts. Operations Research, 57(6):1469–1482, 2009.

[45] Z. Chen, M. Sim, and H. Xu. Distributionally robust optimization with infinitely

constrained ambiguity sets. Working Paper, 2016.

[46] G. B. Dantzig. Linear programming under uncertainty. Management Sci.,

1:197–206, 1955.

[47] G. B. Dantzig. Linear programming and extensions. Princeton University Prss,

Princeton, N.J.,, 1963.

[48] E. De Klerk and D. V. Pasechnik. Approximation of the stability number of a

graph via copositive programming. SIAM Journal on Optimization, 12(4):875–

892, 2002.

[49] E. Delage and D. A. Iancu. Robust Multistage Decision Making, chapter 2,

pages 20–46. INFORMS, 2015.

[50] E. Delage and Y. Ye. Distributionally robust optimization under moment

uncertainty with application to data-driven problems. Operations research,

58(3):595–612, 2010.



132

[51] P. J. Dickinson, G. Eichfelder, and J. Povh. Erratum to: On the set-semidefinite

representation of nonconvex quadratic programs over arbitrary feasible sets.

Optimization Letters, 7(6):1387–1397, 2013.

[52] B. Dodin. Bounding the project completion time distribution in pert networks.

Operations Research, 33(4):862–881, 1985.

[53] S. H. H. Doulabi, P. Jaillet, G. Pesant, and L.-M. Rousseau. Exploiting the

structure of two-stage robust optimization models with integer adversarial vari-

ables. Manuscript, MIT, 2016.

[54] J. Duchi, P. Glynn, and H. Namkoong. Statistics of robust optimization: a

generalized empirical likelihood approach. arXiv preprint arXiv:1610.03425,

2016.
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