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(a) r = 10e1 (b) r = 10e5

Figure 5.4: Convergence rate in terms of operation time with different tdelay = r × tlp
in communication.
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CHAPTER 6
FAST DOSE OPTIMIZATION FOR ROTATING SHIELD

BRACHYTHERAPY

6.1 Introduction

High-dose-rate brachytherapy (HDR-BT) involves placing a radiation source

inside of or adjacent to a target organ, i.e., tumor. Conventional HDR-BT uses an

unshielded brachytherapy source with a radially-symmetric dose distribution [115,

148], which limits the intensity modulation capacity of the approach. Rotating-

shield brachytherapy (RSBT) has a rotating radiation-attenuating shield around a

brachytherapy source. The RSBT concepts for single-catheter treatment [75] and

multi-catheter treatment [76] were introduced by Ebert in 2002 and 2006 respectively.

In the multi-helix RSBT (H-RSBT) treatment, a radiation source travels in-

side a brachytherapy applicator having helical keyways. While moving along the

applicator for a given keyway, the partial shield rotates around the radiation source

simultaneously. In traveling along each keyway, the radiation source stops at desig-

nated locations called dwell positions. By adjusting the distance between adjacent

dwell positions, the rotation angle of the partial shield is determined accordingly.

Intensity modulated dose distributions can be delivered to the target with reduced

dose exposure to non-target organs by controlling the treatment time in an optimal

manner for each dwell position. Hence, it is reported that a radiation source with

rotating shields can deliver more conformal dose distributions than an unshielded

radiation source. [59]
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HDR-BT treatment plans are often generated using inverse planning tools

[2, 7, 53, 63, 104, 121, 133]. Based on the given clinical prescription, various optimiza-

tion problems were introduced previously ranging from minimizing treatment time

under restrictions [116, 153] to minimizing dose error [3, 104, 121, 133]. Inverse plan-

ning by simulated annealing (IPSA) [121] is a well known method to optimize the

dose volume histogram (DVH) directly with given constraints. The BrachyVision

treatment planning system (Varian Medical System Inc., Palo Alto, CA) uses this

type of DVH-based optimization algorithm. [133]

Unlike the conventional HDR-BT optimization, the RSBT optimization prob-

lem has the additional optimization variables of radiation exposure time at each angle

of the shield. Due to the increased degrees of freedom in RSBT, RSBT optimization

is more difficult than that for the conventional HDR-BT. In addition, there is a com-

pelling need to quickly obtain optimal treatment plans in RSBT to enable clinical

usage. To achieve this, researchers have used the dose-surface optimization (DSO)

method [126,193], which minimizes the total dose errors over only voxels on the HR-

CTV surface. Instead of dealing with only voxels on the HR-CTV surface, Liu et

al. [125] defined the region of interest in tumor which includes the surface of HR-

CTV as well as the inside voxels of tumor. Additionally, the authors used the total

variation (TV) norm penalty in their optimization problem to make smooth changes

in the emission times of adjacent beams in the treatment process to facilitate the

efficient delivery of an RSBT plan. This optimization problem for RSBT is called

asymmetric dose-volume optimization with smoothness control (ADOS).
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In this paper, we consider the ADOS optimization problem. A fast computa-

tional method is proposed to solve the ADOS optimization problem for the optimal

cancer treatment planning for RSBT. Liu et al. used a commercial optimization

solver called CPLEX [125]. In order to efficiently solve the ADOS optimization prob-

lem, which is a large-scale RSBT optimization problem, we designed an optimization

method based on the proximal graph solver (POGS) [85], which is a solver using the

alternating direction method of multipliers (ADMM). For using POGS, we derived

closed-form formulas for the proximal operators used in POGS. Further, we applied

our method to the H-RSBT, which is a mechanically-feasible delivery technique for

RSBT proposed by Dadkhah et al. [59]. In the numerical experiments, we considered

cervical cancer, even though our method is also applicable to other types of cancer

such as breast cancer and prostate cancer.

6.2 Background on the Multi-helix RSBT

6.2.1 Delivery method

In order to deliver the radiation dose to a target organ, we consider a me-

chanically feasible delivery technique for RSBT, called the multi-helix RSBT (H-

RSBT) [59]. Fig. 6.1 shows the illustration of the H-RSBT method. The shield

opening is represented by the azimuthal and zenith emission angles, denoted by ∆ϕ

and ∆θ respectively.

In H-RSBT, a Xoft Axxent radiation source, inside its cooling catheter, with

a freely-rotating partial radiation shield is translated inside an applicator with six
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Figure 6.1: (a) Illustration of multihelix rotating shield brachytherapy (H-RSBT)
system. (b) Partially shielded radiation source.

helical keyways carved out of the inner wall. The six keyways are evenly spaced

on the applicator cross section, by 60○, and each keyway has a helical pitch of one

rotation per 33.3 mm of translation. The partial shield has a protruding key that

travels down a given keyway, and, due to the helical design of the keyways, the

shield rotates about the radiation source as the source catheter is translated, and

the emission angle of the shield is known for a given keyway and translational dwell

position. As the H-RSBT applicator has 6 helices, with 33.3 mm of translation along

the applicator per helical rotation and 1.7 mm spacing between dwell positions, it

yields 17.5○ of rotation for the shield per 5 mm (standard dwell position spacing) of

its translation along the applicator. The dose calculation resolution was 1×1×3 mm3

for all cases. The transmission through the shield is 0.1% and approximated to be 0%

for the dose calculation. For each patient considered, 45○ azimuthal emission angle

was used for treatment planning. The zenith emission angle of the modeled shields

was an asymmetric 116○, which is consistent with previous work. [59]
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6.2.2 Radiation source model and dose calculation

For H-RSBT, the delivery is parameterized by keyway number and dwell posi-

tion number along the keyway. To quantitatively describe the structure of high-dose-

regions formed by a partially shielded source, we introduce the notation of beamlet. A

beamlet, denoted by Di(j, b), is defined as the dose rate at point r⃗i with the shielded

source positioned at the j-th dwell position while the shield is aligned with the b-th

keyway.

To calculate the beamlet, we use the TG-43 dose calculation model of Rivard

et al. [154]. The radiation source is assumed to be partially shielded 50kVp Xoft

AxxentTM (Sunnyvale, CA). To be consistent with previous work [126, 182, 193], we

consider that the dose to the points blocked by the shield is 0, since the transmission

rate from 50kVp Xoft AxxentTM can be controlled to be less than 0.1% when using a

0.5 mm tungsten shield. [126, 193] Then, we can quantify the radiation dose amount

at the point r⃗i, denoted by di, as a time-weighted sum of all beamlets as follows:

di =∑
j,b

Di(j, b)tj,b, (6.1)

where tj,b is the duration time of the beamlet Di(j, b).

In the next subsection, we introduce the RSBT optimization problem having

asymmetric penalty parameters for HR-CTV and organs at risk (OARs), with TV

regulation term for smoothness in the beamlet emission times.
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6.3 Optimization problem for cancer treatment planning in RSBT

6.3.1 Problem Formulation

Let t ∈ Rmn×1 be the beamlet emission time vector for all keyways and all dwell

positions, where m and n are the number of keyways, i.e, m = 6, and the number of

dwell positions along a keyway respectively. We can obtain t by vectorizing tj,b in

Eqn. (6.1); namely, the vector t ∈ Rmn×1 is a concatenated vector, which is expressed

as t = [t[1]T , t[2]T , ..., t[m]T ]T , where t[j] ∈ Rn×1 is the dwell time vector for all the

beamlets along a keyway, and the super-script T represents the transpose. Let us

define a concatenated dose rate matrix D = [D[1],D[2], ...,D[m]] ∈ Rl×mn, where

D[j] ∈ Rl×n, j = 1, ...,m, is the dose rate matrix for the j-th selected keyway, and l

is the number of voxels that we are interested in. We denote the whole index set for

voxels of interest (VOIs) as IV OIs and the index set for HR-CTV, bladder, rectum,

sigmoid, and normal tissue around the HR-CTV as Itumor, Ibladder, Irectum, Isigmoid,

and Inormal respectively. The dose rate matrix D has information about dose rate

delivered to each tissue point in IV OIs from each beamlet.

We consider the following RSBT optimization problem having a quadratic

objective function with total variation (TV) regulation term for smooth beamlet

emission times:

minimize
t∈Rmn,d∈Rl

∑
i∈IV OIs

h(di) +
m

∑
j=1

β∣∣Lt[j]∣∣1

subject to Dt = d,

t ≥ 0, (6.2)
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where D ∈ Rl×mn is a dose rate matrix, t ≥ 0 is the element-wise non-negative emission

time, di, which is the i-th element of d, is the dose amount at the i-th voxel as

introduced in Eqn. (6.1). In Eqn. (6.2),

h(di) ≜ (λ+iH(di − d̂i) + λ−iH(d̂i − di))(di − d̂i)2,

where H(x) is the unit step function, which is H(a) = 1 if a > 0, and H(a) = 0 if

a ≤ 0, and λ+i and λ−i represent overdose and underdose penalty parameters for the

i-th voxel respectively. L ∈ Rn×n is the matrix which calculates TV norm of a vector;

namely, L is defined as follows:

L ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 ... 0 0

0 1 −1 0 ... 0 0

0 0 1 −1 ... 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ... 1 −1

0 0 0 0 ... 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

d̂i is a prescribed dose amount for the i-th voxel. d̂i can have a different value for each

VOI. For example, d̂i = d̂tumor if i ∈ Itumor, and d̂i = d̂badder if i ∈ Ibladder. We denote the

prescribed dose amount for HR-CTV, bladder, rectum, sigmoid, and normal tissue

around the HR-CTV as d̂tumor, d̂bladder, d̂rectum, d̂sigmoid, and d̂normal. For λ+i and λ−i ,

we use different non-negative overdose and underdose parameter values including 0.

The TV norm alleviates the positioning uncertainty in the treatment process.

If we have two dramatically different emission times tj,b and tj+1,b between two adja-

cent beamlets along the same keyway, a small error in the dwell positions may cause
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an unacceptable treatment result. By applying the smoothness term between two

adjacent beamlets along the same keyway in H-RSBT, we can reduce the treatment

error caused by the positioning uncertainty in the treatment process.

Since we use different penalty parameter values for the overdose and underdose

of a voxel, we call Eqn. (6.2) as RSBT optimization problem having asymmetric

penalty parameters or simply ADOS.

6.3.2 POGS implementation

In order to simplify the sum of the TV norms in Eqn. (6.2), let us introduce

a matrix L̄ ≜ Im×m ⊗ L, where ⊗ is the Kronecker product, and Im×m is an m ×m

identity matrix. By assigning L̄t = y and introducing the indicator function I(⋅), we

restate Eqn. (6.2) as follows:

minimize
t,y∈Rmn,d∈Rl

∑
i∈IV OIs

h(di) + β∣∣y∣∣1 + I(x ≥ 0)

subject to Dt = d,

L̄t = y, (6.3)

where D ∈ Rl×mn, L̄ ∈ Rmn×mn, and I(t ≥ 0) is the element-wise indicator function;

namely, I(ti ≥ 0) = 0 if ti ≥ 0, and I(ti ≥ 0) =∞ if ti < 0.

By letting

A =
⎛
⎜⎜⎜
⎝

D

L̄

⎞
⎟⎟⎟
⎠
, z =

⎛
⎜⎜⎜
⎝

d

y

⎞
⎟⎟⎟
⎠
,
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we can further simplify Eqn. (6.3) into

minimize
t∈Rmn,z∈Rl+mn

l

∑
i=1

h(zi) + β∣∣z[l+1∶l+mn]∣∣1 + I(t ≥ 0)

subject to At = z, (6.4)

where z[a∶b] is the partial vector of z by taking vector z from the a-th element to the

b-th element. We define the following functions:

g(t) = I(t ≥ 0), (6.5)

f(z) =
l

∑
i=1

h(zi) + β∣∣z[l+1∶l+mn]∣∣1. (6.6)

Then we turn Eqn. (6.4) into a graph-form convex optimization problem [85], where

the constraint is z = At, and A = [DT L̄T ]T ∈ R(l+mn)×mn. We have derived the detailed

updating rules for each optimization variable in the POGS solver for Eqn. (6.4). We

introduce our derived results in detail for the proximal operators used in the POGS

solver, updating steps, and stopping criteria as follows.

The POGS updates primal variables, conducts the projection onto the space

z = At, and then, updates dual variables iteratively until the stopping criteria are

satisfied or the maximum number of iterations, denoted by MaxItr, is reached. The

primal variable and dual variable are updating variables to be used for optimality

condition in the algorithm. For the primal variable, dual variable, and projection

result, we used (t̂, ẑ), (t, z), and (t̃, z̃) respectively. We introduce each updating steps

in detail for our optimization problem in Eqn. (6.4). We use the super-script k to

represent the k-th iteration.
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Updating primal variables t̂k+1 and ẑk+1: In updating the primal variables,

we use the following proximal operators with a penalty parameter ρ:

t̂k+1 = Proxg(tk − t̃k)

= argmin
t

I(t ≥ 0) + ρ
2
∣∣t − (tk − t̃k)∣∣2,

ẑk+1 = Proxf(zk − z̃k)

= argmin
z

l

∑
i=1

h(zi) + β∣∣z[l+1∶l+mn]∣∣1 +
ρ

2
∣∣z − (zk − z̃k)∣∣2.

The proximal operator is used to make a compromise between the solution at the k-th

iteration and the function value with the solution at the k + 1 iteration. We are able

to explicitly derive closed-form formulas for the proximal operators. For t̂k+1 ∈ Rmn,

we have

t̂k+1 =max(tk − t̃k,0), (6.7)

where max(a, b) provides the maximum value between a and b element-wise. For

ẑk+1
i , 1 ≤ i ≤ l, we also derive

ẑk+1
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zki − z̃ki −
β
ρ , if zki − z̃ki >

β
ρ

zki − z̃ki +
β
ρ , if zki − z̃ki < −

β
ρ

0, otherwise

. (6.8)

For ẑk+1
i , l + 1 ≤ i ≤ l +mn, we obtain

ẑk+1
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2λ+i d̂i+ρ(z
k
i −z̃

k
i )

2λ+i +ρ
, if zki − z̃ki ≥ d̂i,

2λ−i d̂i+ρ(z
k
i −z̃

k
i )

2λ−i +ρ
, if zki − z̃ki < d̂i.

. (6.9)
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POGS uses the adaptive value for ρ as default to further increase the convergence

speed.

Projection onto z = At from (t̂k+1+t̃k, ẑk+1+z̃k): The projection operation is

mapping the primal variables to the closest feasible solution. The projected variables

onto z = At from (t̂k+1+ t̃k, ẑk+1+ z̃k), denoted as tk+1 and zk+1, are obtained by solving

the following optimization:

minimize
t,z

1

2
∣∣t − (t̂k+1 + t̃k)∣∣22 +

1

2
∣∣z − (ẑk+1 + z̃k)∣∣22

subject to At = z

By solving this optimization and using Lagrange conditions [20], we have the following

formulation:

⎛
⎜⎜⎜
⎝

tk+1

zk+1

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

I AT

A −I

⎞
⎟⎟⎟
⎠

−1

⎛
⎜⎜⎜
⎝

t̂k+1 + t̃k +AT (ẑk+1 + z̃t)

0

⎞
⎟⎟⎟
⎠
.

Updating dual variables t̃k+1 and z̃k+1: We obtain the dual variable at

iteration (k + 1) by updating the dual variable at the k-th iteration as follows:

t̃k+1 = t̃k + t̂k+1 − tk+1,

z̃k+1 = z̃k + ẑk+1 − zk+1.

We summarize the updating steps in Algorithm 6.1.

Stopping criteria: For the stopping criteria, we define the primal and dual

residuals as follows:

∣∣At̂k+1 − ẑk+1∣∣2 ≤ εpri,

∣∣AT v̂k+1 + µ̂k+1∣∣2 ≤ εdual, (6.10)
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Algorithm 6.1 Fast treatment planning for RSBT in POGS implementation

Input: A ∈ R(l+mn)×mn, MaxItr, λ+, λ−, d̂ ∈ Rl, β
Output: t
Initialize: k ← 0, tk ← 0, zk ← 0, t̃← 0,z̃ ← 0
for k = 1 to MaxItr do

Updating primal variables t̂k+1, ẑk+1:
t̂k+1 ← Proxg(t

k − t̃k) ▷ See (6.7)
ẑk+1 ← Proxf(z

k − z̃k) ▷ See (6.8) and (6.9)
Projection onto z = At:

(
tk+1

zk+1)← (
I AT

A −I
)

−1

(
t̂k+1 + t̃k +AT (ẑk+1 + z̃t)

0
)

Updating dual variables t̃k+1, z̃k+1:
t̃k+1 ← t̃k + t̂k+1 − tk+1

z̃k+1 ← z̃k + ẑk+1 − zk+1

if Stopping criteria are met then
break

end

end

where v̂k+1 = −ρ(ẑk+1−zk+ z̃k), µ̂k+1 = −ρ(t̂k+1−tk+ t̃k). Here, εpri and εdual are positive

tolerances for primal and dual residuals respectively:

εpri = εabs + εrel∣∣ẑk+1∣∣2,

εdual = εabs + εrel∣∣µ̂k+1∣∣2, (6.11)

where we used (εabs, εrel) = (10−4,10−2) in the numerical experiments.

6.4 Treatment Planning

Five patients with cervical cancer were considered, whose HR-CTV volumes

range from 42.2 to 98.8 cm3. Table 6.1 shows the volume and maximum dimension of

HR-CTV for five patients. All the HR-CTVs and OARs were manually contoured by

physicians on T2 weighted 1×1×3 mm3 resolution MR images taken with a Siemens

MAGNETOM 3T scanner (Siemens, Germany) at the beginning of the first fraction
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Figure 6.2: EQD2 dose distributions on MR images for five patient cases obtained
from CPLEX and POGS with H-RSBT using 45○ azimuthal angle.

of brachytherapy. A titanium Fletcher-Suit-Delclos style tandem and ovoids (Varian

Medical Systems, Palo Alto, CA) were used as the brachytherapy applicator. We

used the same datasets as the previous research conducted by Liu et al. [125] and

Dadkhah et al. [59].

Table 6.1: HR-CTV volumes and dimensions for all patients

Patient Num. HR-CTV volume (cm3) HR-CTV maximum dimension (cm)

Case 1 42.2 6.3
Case 2 45.8 7.4
Case 3 78.0 8.6
Case 4 98.8 9.6
Case 5 75.0 7.5
Avg. 68.0 7.9
SDa 23.8 1.8

a
Standard Deviation

All the patients had external beam radiation treatment in 25 fractions at 1.8
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Table 6.2: Parameter settings

Method d̂tumor d̂bladder d̂rectum d̂sigmoid d̂normal
a Tumor Bladder Rectum Sigmoid Normalb

β
λ+i / λ−i λ+i / λ−i λ+i / λ−i λ+i / λ−i λ+i / λ−i

CPLEX 40 25 20 20 40 0/ 2 2/ 0 2/ 0 2/ 0 2/ 0 100
POGS 40 25 20 20 40 0/ 2 2/ 0 2/ 0 2/ 0 2/ 0 100

a Prescribed dose amount for tumor boundary b Penalty parameter for tumor boundary

Table 6.3: Comparison between POGS and CPLEX for 45○ azimuthal angle

Case Method
HR-CTV HR-CTV Bladder Rectum Sigmoid Execution
D90 (Gy) D100 (Gy) D2cc (Gy) D2cc (Gy) D2cc (Gy) time (sec.)

Case 1
CPLEX 110.8 54.0 89.9 62.4 75.0 32.1
POGS 111.4 54.0 90.0 64.7 74.7 2.1

Case 2
CPLEX 111.5 44.3 90.0 72.2 54.4 37.0
POGS 111.5 44.3 90.0 71.7 54.8 2.1

Case 3
CPLEX 96.0 44.3 85.9 57.3 75.0 65.4
POGS 95.0 44.3 85.2 55.1 75.0 3.9

Case 4
CPLEX 107.0 55.3 90.0 69.9 54.0 39.4
POGS 106.9 55.4 90.0 69.8 54.0 2.3

Case 5
CPLEX 112.7 44.3 90.0 68.1 59.2 65.4
POGS 112.7 44.3 90.0 68.1 59.2 3.2

Average
CPLEX 107.6 48.4 89.2 66.0 63.5 47.9
POGS 107.5 48.5 89.0 65.9 63.5 2.7

Gy/fraction. We assume that the external beam radiotherapy dose was uniformly

delivered to the HR-CTV and OARs for all the patient cases. The dose in each voxel

was converted to equivalent dose in 2 Gy per fraction of external radiation therapy

(EQD2) using the linear quadratic model, [109] where the linear-quadratic parameter,

α/β, is set to 3 Gy for OARs and 10 Gy for HR-CTV.

For VOIs, we define the voxels located at a distance between 3 mm and 20 mm

to the radiation source path or those within 10 mm inside and outside of the HR-CTV

boundary surface. [125] We deal with the HR-CTV, HR-CTV boundary, bladder,

sigmoid, and rectum inside of VOIs in our optimization problem. The optimization
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parameter settings are shown in Table 6.2.

For all the brachytherapy treatment plans, we escalated the EQD2 of the

HR-CTV without exceeding the D2cc tolerance of the bladder, rectum, and sigmoid

colon. We used 90 Gy for bladder tolerance, and 75 Gy for rectum and sigmoid

colon tolerances according to Groupe Européen de Curiethérapie, European Society

for Therapeutic Radiology and Oncology (GEC ESTRO). [92,149]

6.5 Numerical Experiments

Optimized treatment plans were generated for all patients using the POGS

method and the previously considered CPLEX method. [125] The same objective

function, with the same input parameters and beamlets, was minimized for each

patient with both methods. A total variation term was included in the objective

function as a regularization term, resulting in smoothly-varying emission times along

each keyway. The regularization promotes robustness of the resulting overall dose

distribution with respect to small errors (expected ≤ 1 mm) in source positioning.

The rectum, bladder, sigmoid colon, HR-CTV, and HR-CTV boundary were the

structures considered.

We compared our method with the previous research conducted by Liu et

al. [125] using CPLEX [103] for H-RSBT. We evaluated the quality of the delivery

plans as well as the execution time to solve Eqn. (6.2) with POGS [85]. Since Liu

et al. compared their method based on CPLEX with other existing RSBT dose

optimization methods ranging from DSO to IPSA in their previous research [125], we
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only compared POGS and CPLEX in this paper.

The comparison metrics for the quality of the delivery plans are the HR-CTV

D90, HR-CTV D100, OARs D2cc, DVH, and dose distributions. Since the goal of this

research is achieving a fast solution to the RSBT dose optimization problem without

compromising the plan quality, we compared the execution times to solve Eqn. (6.2)

for all five patient cases. We conducted our numerical experiments on HP Z220 CMT

with an Intel Core i7-3770 dual core CPU @3.4GHz clock speed and 16GB DDR3

RAM, using Matlab (R2013b) on the Windows 7 operating system.

Table 6.4: Dimension of D ∈ Rl×mn in Eqn. (6.2)

Patient Num. l ×mn

Case 1 54693 × 144
Case 2 51109 × 126
Case 3 79065 × 222
Case 4 50680 × 144
Case 5 59220 × 228
Avg. 58953 × 173

Results for five cervical cancer patient cases are shown in Table 6.3. Table 6.4

shows the dimension of the dose matrix D in Eqn. (6.2). Fig. 6.3 shows the corre-

sponding DVH in H-RSBT. With the same parameter settings as in Table 6.2, POGS

can achieve an RSBT plan with almost the same D90 value (less than 1% difference)

as that achieved by CPLEX in each of the five patient cases. D2cc values for OARs

obtained by POGS are also almost the same (less than 1% difference) as those from

CPLEX. For the execution time, we achieved around 18 times faster speed to solve
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Figure 6.3: Dose volumn histograms (DVH) of all treatment planning for five patient
cases in H-RSBT with 45○ azimuthal angle.

the ADOS problem for H-RSBT than the CPLEX based method on average. Over

all patients, total optimization times were 32.1-65.4 seconds for CPLEX and 2.1-3.9

seconds for POGS.

Fig. 6.2 shows that the EQD2 figures were similar for each case between

CPLEX and POGS.
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6.6 Discussion

Various treatment planning methods in radiation therapy have been studied.

One of the well known methods, which is called IPSA, was introduced to directly

optimize DVH with given constraints in heuristic way. Due to its heuristic nature, a

global solution is not guaranteed. Instead of directly optimizing DVH, we consider

the voxel-wise optimization problem for the RSBT treatment planning, called ADOS

optimization problem, which can be expressed in a convex optimization problem. We

can take advantage of the convexity to obtain a global solution.

In the ADOS optimization problem, we reduced the size of the ADOS op-

timization problem by defining VOIs. Instead of defining VOIs, the whole voxels

can be considered in the optimization problem under the expectation of better treat-

ment quality with heavy computation. Since parallel computing and GPU-based high

performance computing can play an important role in solving extremely large-scale

optimization problems, there is a rising question about the usability of POGS in

parallel computing environment or GPU-based implantation. The implementation of

POGS in such environment is another research work.

In addition, we used a partial shield with 4○ azimuthal angle in H-RSBT for

our numerical experiments. However, finding the optimal shield angle in H-RSBT

is still an open problem. In order to determine the size of angle and the radiation

exposure time at each angle of shield, considering both variables in the optimization

problem is also a possible optimization problem.

Finally, POGS (and ADMM) was used in previous research on intensity-
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modulated radiation therapy (IMRT) [85, 198], fluence map optimization [86], and

external beam radiotherapy (EBRT) optimization [124]. Right at the time of submit-

ting our journal manuscript, we learned of the recently-appearing (published on April

12th, 2017) work [124] which applied POGS algorithms to EBRT dose optimization.

The work [124] focused on EBRT, while our paper is the first work to use POGS in

brachytherapy, including the mechanically-feasible delivery system called H-RSBT.

In our paper, we use TV norm to promote smoothly-varying emission times along

each keyway, such that the treatment plan is robust to positioning errors of dwell po-

sitions. By comparison, the TV norm is instead applied to promote the smoothness

of the resulting fluence map in the research [124] and simplify the delivery. Our pro-

posed method is applicable to conventional HDR-BT as well as dynamic modulated

brachytherapy [183] with simple modifications, since they share similar mechanisms

as H-RSBT.

6.7 Conclusion

POGS substantially reduced treatment plan optimization time around 18 times

for RSBT with similar HR-CTV D90, OAR D2cc values, and EQD2 figure comparing

to CPLEX, which is significant progress toward clinical translation of RSBT. Over all

cervical cancer patients, total optimization times were 32.1-65.4 seconds for CPLEX

and 2.1-3.9 seconds for POGS. POGS is also applicable to conventional high-dose-rate

brachytherapy.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

Our future plans for each subject are provided in the following sections.

7.1 Super-resolution

Based on our previous research on super-resolution, applying our proposed

super-resolution theories and algorithms to various applications can be one specific

research area. The possible applications include X-ray crystallography, optic mi-

croscopy, and Direction of Arrival (DoA) radar. Since images can be understood as

the sum of unit step functions, by calculating the derivative of images, we can ex-

press the images as the sum of Dirac delta functions; our super-resolution algorithms

ranging from the phaseless super-resolution algorithm to the super-resolution with

prior information are then applicable. Therefore, by using our super-resolution meth-

ods, we can obtain high resolution images with low frequency magnitude information,

which is one specific example. Designing numerical algorithms to solve even larger

super-resolution problems in 2D or 3D fast is another direction of this research.

7.2 Designing algorithms for distributed system

As introduced in the introduction and motivation section, optimization prob-

lems in the technological era of ubiquitous computing and networking will be even

larger and much more complicated than the traditional optimization problems. In

addition, the amount of data that we can access is skyrocketing. Therefore, the de-
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mand for efficient algorithms to solve the large scale optimization problems in the

distributed system model is extensively increasing. As for designing algorithms for

distributed systems, current research involves reducing the complexity of the op-

timization problems by taking advantage of data structure information, as well as

dealing with distributed processors and memories. For this research, use of the first

order methods such as coordinate descent, stochastic gradient descent, and dual coor-

dinate ascent has been encouraged due to their low complexity and adequate quality

of solution. The communication-efficient first order method is especially interesting

for this research. The authors in [106] proposed the distributed dual coordinate ascent

method with the geometric convergence rate on the optimization problem minimizing

a convex and smooth loss function with a convex regularization term in a star network

model. In order to deal with highly connected system models targeting the Internet

of Things (IoTs) and big data problems, designing general algorithms for various net-

work models such as ring, randomly connected models, and fully connected models

is one potential research topic [50].

7.3 Optimal treatment plan for rotating-shield brachytherapy

In the rotating-shield brachytherapy for prostate cancer, around 15-20 needles

are used to deliver radiation source to prostate. In the previous research [1], the au-

thors have chosen the locations of needles somehow arbitrary. For optimal treatment

planning, determining the optimal needle locations as well as the optimal number

of needles is an open problem. Hence, we can conduct research on developing an
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algorithm for prostate cancer to choose the optimal number of needles as well as the

locations. For the possible needle locations, we are able to discretize the target organ

and consider each grid point as a possible needle location. In the algorithm, we can

consider block sparsity to choose possible needle locations, since tumor tissues can

be located closely each other. Therefore, designing an algorithm for prostate is a

possible direction for the rotating-shield brachytherapy.
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