
 44

Figure 17: Plot of the system velocity under three torques applied in gear 1.

Figure 18: Plot of the system velocity under three torques applied in gear 3.

!" #" $" %" &" '"
()*+ !, "

!

#

$

%

&

-+./0)12 !* #, "
!"#$%& '"()*$ +",-.&.",

!" #" $" %" &" '"
()*+ !, "

!

#

$

%

&

'
-+./0)12 !* #, "

!"##$% &'()*% +',#"-"',

 45

Figure 19: Plot of the system velocity under three torques applied in gear 5.

Table 6 presents the input torque, the initial acceleration and the terminal velocity, both

experimentally and theoretically predicted, for each of the three gears. The estimates of the

initial acceleration were derived from a nonlinear fit model using the following equation:

𝑎(𝑇𝑎𝑛ℎ 𝑏𝑡) (4.6)

This equation describes the velocity of the Hank Bicycle Simulator at a given time, 𝑡. The

derivative of the nonlinear fit model is the acceleration of the Hank Bicycle Simulator at any

point in time. The initial acceleration is the acceleration of the simulator at 𝑡 = 0, which

simplifies the initial acceleration results to be 𝑎𝑏.

10 20 30 40 50 60
Time (s)

1

2

3

4

5

6

Velocity (m/s)
Highest Torque Condition

 46

Table 6: Theoretical and actual initial acceleration and terminal velocity for a constant input

torque in several gears.

Gear Torque
Initial Acceleration (m/s2) Terminal Velocity (m/s)

Theoretical Measured Error
(%)

Theoretica
l Measured Error

(%)

1
1.717 0.54 0.57 0.62% 4.16 4.26 2.38%
1.870 0.59 0.65 1.24% 4.34 4.54 4.47%
2.028 0.65 0.73 1.94% 4.52 4.77 5.46%

3
2.315 0.37 0.37 0.07% 4.83 4.83 0.08%
2.471 0.40 0.40 0.02% 4.99 5.10 2.26%
2.629 0.42 0.43 0.20% 5.15 5.34 3.73%

5
2.920 0.29 0.30 0.20% 5.42 5.43 0.07%
3.077 0.31 0.31 0.05% 5.57 5.72 2.71%
3.234 0.32 0.33 0.10% 5.71 5.92 3.70%

4.6.3 Discussion and Conclusion

The initial accelerations across the three gears was better than 2%, and much better than

1% for most cases that would be encountered for heavier riders. The terminal velocities were

better than 5.5%, again most accurate for heavier riders. Given the mechanical and electrical

complexity of the system, this is quite good and most likely sufficient for the application

scenario.

 47

CHAPTER 5

DISCUSSION & CONCLUSION

 The purpose of the Hank Bicycle Simulator is to observe the behavior of children and

adults riding across a street on a bicycle, with particular emphasis on how participants judge the

gaps between passing cars when choosing their moment to cross. The participants’ decisions are

likely to be dominated by their estimates of how long it will take to cross the street. This estimate

is likely to be a function of their past experience with bicycles, an experienced dominated by the

challenge of physically overcoming the mechanical inertia of the system.

Thus, the most important factor in the Hank Bicycle Simulator is the simulation of the

inertial force. As seen throughout the results of the experiments, the flywheel produces a

sufficient amount of kinetic energy compared to the kinetic energy produced by the rider. This

can be observed by the starting acceleration results in experiment 5. The error on the starting

acceleration is 0.20% or under for gears 3 and 5. Gear 1 has a higher error, but this gear produces

too low of a simulated weight for any rider to use (gear 1 is for a 10 lb. rider). Thus, gear 1 will

not be used at all in the virtual environment, and neither will gear 2 for the same issue.

 The air drag produced by the back motor of the system gives the rider a specific terminal

velocity based on the force they use for pedaling. The terminal velocity will rarely be a factor in

the application of the Hank Bicycle Simulator because the riders in the experiment are simply

crossing the street. This gives little time to accelerate to terminal velocity, making terminal

velocity of the bicycle unlikely. The results for the terminal velocity in the system performance

experiment were favorable, however. Just like the starting acceleration, gear 1 produced the

 48

highest error in terminal velocity. Since gear 1 is not used, the most important results of the

terminal velocity are for gears 3 and 5. The highest error was 3.73%, meaning the rider had a

terminal velocity that was about 0.20 m/s faster than the theoretical terminal velocity. The lowest

error was 0.07%, meaning that the terminal velocity of the rider was under 0.01 m/s faster than

the theoretical value.

Figure 20: Graph showing the time difference between the experimental rider and the theoretical

rider crossing the street in a virtual reality environment.

Based on the results from the system performance experiment, given a constant

propulsive force the time to cross a street can be found (Figure 20). The street that the Hank

Bicycle Simulator is crossing in the virtual reality environment is about 10 ft. wide or 3.06 m.

From the data of the experiments, we can calculate the time it takes the rider to move 10 ft.

4.090 3.958 3.838

4.625 4.505 4.394
4.109 3.928 3.769

4.521 4.439 4.332

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

2.315(3) 2.471(3) 2.629(3) 2.920(5) 3.077(5) 3.234(5)

Ti
m

e
(s

)

Torque (Nm) (Gear)

Crossing Street in Virtual Reality
Environment (10 ft.)

Theoretical Experimental

 49

starting from rest and pedaling at a constant propulsive force. The average time difference

between the predicted and observed time to cross the street in gears 1, 3, and 5 is about 80 ms.

For the more commonly used gears 3 and 5, the average time difference goes down to about 60

ms with the Hank Bicycle Simulator typically being faster. When a real rider uses the Hank

Bicycle Simulator they will use higher propulsive forces that will in turn increase the velocity of

the system. Increasing the propulsive force will decrease the time it takes to cross the street, as

well as decrease the time difference between the theoretical and experimental performance.

These times produced by the Hank Bicycle Simulator are very close to the theoretical time in a

real environment. Thus, the Hank Bicycle Simulator has proven that it can produce accurate

performances given 33 different simulated weights.

A study by Plumert et al. (2004) observed 10-year olds, 12-year-olds and adults crossing

a two-lane intersection using a bicycle simulator. When the rider stopped at the intersection

traffic would approach the intersection from the left of the rider in the lane closest to them. The

rider would then have to choose an appropriate gap width to safely cross the intersection. On

average, all participants chose to cross the intersection during the 3.5 s gap size between

vehicles. They found that the average time left to spare when the rider cleared the lane of the

approaching vehicle decreased with the younger riders. The average time left was 1.13 s for the

10-year-old riders, 1.49 s for 12-year-old riders and 1.98 s for the adult riders. The 60 ms time

difference between the predicted and observed time will have little to no effect on the

performance of the riders in the Hank Bicycle Simulator. The riders will typically be around 60

ms ahead of where they may predict, however that 60 ms results in a displacement difference of

only a few inches. For example, in the worst case with the widest time difference of 104 ms, if

 50

we assume a constant propulsive force of 2.920 Nm in gear 5, this will result in an observed

displacement of about five inches ahead of the predicted displacement.

In future iterations of the Hank Bicycle Simulator, there are various ways that this

simulator can continue to improve for better performance and quality. The gear ratio switch

could be changed to be automatic. When the gear is set it can measure the velocity of the rear

wheel and compare it to the velocity of the motor. This will give the gear ratio of the system.

Reduction of the steering delay could always be improved, as well as the mechanics of the

bicycle. Further iterations will be able to refine the mechanical model for better performance.

 The next step for the Hank Bicycle Simulator is to compare the behavior of riders as they

use it. By observing and testing the riders in their natural environments, we can record their

behavior and other factors that might be useful for future changes to the Hank Bicycle Simulator.

For instance, we could observe the rider’s steering performance and the resistance they feel from

steering at a given velocity in a natural environment. Using that information, we can compare the

Hank Bicycle Simulator to the natural environment and implement a steering damper that

produces realistic steering resistance dependent on the velocity. These comparisons would help

enhance the Hank Bicycle Simulator experience.

 Overall, it is easy to see how quick the inertial response of the Hank Bicycle Simulator is

given any rider compared to the delay of other simulators. The other simulators mentioned in

Table 1 all use electrical systems that have inevitable electronic delays. The bicycle simulators,

as well as other simulators from the literature review, lack validation of the theory behind their

structure. They produced well-made bicycle simulators, but did not compare their simulator’s

system performance to the real-life riders. The mechanical simulation of inertia in the Hank

Bicyce Simulator provides an accurate and immediate reproduction of the expected inertia. How

 51

this compares with other simulators, particularly those relying on electrical motors and magneto-

rheological fluid brakes is unclear, because previous studies have not provided enough

performance detail to be able to make a valid comparison. We hope that the current study will

encourage future researchers to report the details of their underlying models and their system

performance, particularly those with ties to the physical parameters of the simulation they wish

to reproduce, so that the community may move forward together, taking the best elements of

each system.

 52

REFERENCES

Babu, S. V. et al. (2009) A Virtual Peer for Investigating Social Influences on Children's
Bicycling. 2009 IEEE Virtual Reality Conference, Lafayette, 91-98.
DOI: 10.1109/VR.2009.4811004

Babu, S. V. et al. (2011). An Immersive Virtual Peer for Studying Social Influences on Child
Cyclists' Road-Crossing Behavior. IEEE Transactions on Visualization and Computer
Graphics, 17(1), 14-25. DOI: 10.1109/TVCG.2009.211

Deligiannidis, L., & Jacob, R. (2006). The VR Scooter: Wind and Tactile Feedback Improve
User Performance. 3D User Interfaces (3DUI'06), 143-150.
DOI: 10.1109/VR.2006.131

Grechkin, T. Y., Chihak, B. J., Cremer, J. F., Kearney, J. K., & Plumert, J. M. (2013).
Perceiving and acting on complex affordances: How children and adults bicycle
across two lanes of opposing traffic. Journal of Experimental Psychology: Human
Perception and Performance, 39(1), 23-36. DOI:10.1037/a0029716

Gross, A., Kyle, C., & Malewicki, D. (n.d.). “Human Powered Vehicle Performance”
[Digital image]. Retrieved from http://2.bp.blogspot.com/-
6rUkPBorBnY/UKGkyUzCMII/AAAAAAAABVA/3KflV7aANbg/s1600/Human
Powered Vehicle Data.jpg

He, Q., Fan, X., & Ma, D. (2005). Full bicycle dynamic model for interactive bicycle
simulator. Journal of Computing and Information Science in Engineering, 5(4), 373-
380. DOI: 10.11115/1.2121749

Huang, S. F. et al. (2008). The Comparisons of Heart Rate Variability and Perceived
Exertion During Simulated Cycling with Various Viewing Devices. Presence, 17(6),
575-583.

Kikuchi, T., Kobayashi, K. & Sugiyama, M. (2012). Development of virtual reality bike with
cylindrical MR fluid brake. Robotics and Biomimetics (ROBIO), 2012 IEEE
International Conference on, Guangzhou, 1753-1758.

Kwon, D. et al. (2001). KAIST interactive bicycle simulator. Robotics and Automation,
2001. Proceedings 2001 ICRA. IEEE International Conference on, 2001, 3, 2313-
2318. DOI: 10.1109/ROBOT.2001.932967

Kwon, D. et al. (2002). KAIST interactive bicycle racing simulator: the 2nd version with
advanced features. Intelligent Robots and Systems, 2002. IEEE/RSJ International
Conference on, 2002, 3, 2961-2966. DOI: 10.1109/IRDS.2002.1041722

Kyle, C. et al., (2001). International Human Powered Vehicle Association (D. G. Wilson,
Ed.). Human Power, 52(Summer 2001). Retrieved from
http://www1.bhpc.org.uk/Data/Sites/1/Uploads/humanpower/PDF/hp52-2001.pdf

 53

Leblanc, M. & Sicard, P. (2010). EMR and inversion-based control of a virtual reality
bicycle trainer. 2010 IEEE Vehicle Power and Propulsion Conference, 1-7.
DOI: 10.1109/VPPC.2010.5728993

Mestre, D., Dagonneau, V., & Mercier, C. (2011). Does Virtual Reality Enhance Exercise
Performance, Enjoyment, and Dissociation? An Exploratory Study on a Stationary
Bike Apparatus. Presence, 20(1), 1-14.

Miyanoue, K., Suzuki, M., & Yai, T. (2015). Journal of Japan Society of Civil Engineers,
Ser. D3 (Infrastructure Planning and Management), 71(5), I_859-I_604.
DOI: 10.2208/jscejipm.71.I_589

National Center for Statistics and Analysis. (2016, May). Bicyclists and other cyclists: 2014
data. (Traffic Safety Facts. Report No. DOT HS 812 282). Washington, DC: National
Highway Traffic Safety Administration.

Plumert, J. M., Kearney, J. K. & Cremer, J. F. (2004). Children's Perception of Gap
Affordances: Bicycling Across Traffic-Filled Intersections in an Immersive Virtual
Environment. Child Development, 75, 1243–1253.
DOI:10.1111/j.1467-8624.2004.00736.x

Plumert, J. M., Kearney, J. K. & Cremer J. F. (2007). Children's Road Crossing a Window
into Perceptual–Motor Development. Current Directions in Psychological Science,
16(5), 255-258. DOI: 10.1111/j.1467-8721.2007.00515.x

Sari, R. F. et al. (2009). 3D object implementation on bicycling at ui virtual reality
application based on 3D-Gamestudio," 2009 International Multiconference on
Computer Science and Information Technology, 509-515.

Tang, Y et al. (2007). The Development of a Virtual Cycling Simulator. Technologies for E-
Learning and Digital Entertainment, 2007. Second International Conference,
Edutainment 2007, 162-170. DOI: 10.1007/978-3-540-73011-8_18

Wilson, D. (2004). Power and speed. In Bicycling science. (pp. 123-172), Cambridge, MA:
MIT Press.

 54

1 2 3 4 5 6 7 8 9

10 9 8 7 6 5 4 3 2 1

G
ND

S
TO

-B
R

+
BR PE U V W

-D
C

-R
B

+
RB

+
DC L1 L3L2 PE

2
4
+

X8

A
R
D
U
IN

O
	U
N
O

2
4
0V
	A
C
/2
4
V
	D
C
	C
on
v
e
rt
e
r

Fr
on
t	
P
ot

E-
S
to

p

2
4
0
V
	O
u
tl
e
t

9
	P
in

C
o
n
n
e
ct
o
rs

MMM

A
K
D
	M

o
to

r

G
e
a
r	
R
a
ti
o	
P
ot

APPENDIX A

HANK BICYCLE SIMULATOR ELECTRICAL SCHEMATIC

Fr
on

t H
ub

 M
ot

or
 C

on
tr

ol
le

r

El
ec

tr
ic

 B
ox

Ba
ck

 M
ot

or
 C

on
tr

ol
le

r

 55

APPENDIX B

MICROCONTROLLER CODE

/* Full_bike_program: An arduino sketch by Jaemin Powell
Inputs:

A potentiometer input from 0-5V, with approximately 2.5 V straight ahead, larger turns to right.
A hall effect sensor that starts high and goes low each time a magnet passes the sensor. Assume
two magnets on the wheel. A velocity input from the motor controller, 0-5V. Scale depends on
motor controller and must be compiled into this sketch. Bike size voltage: 0V for 20" diam
wheel, 2.5V for 24" diameter wheel and 5V for 26" diameter wheel.

Outputs:
Front wheel motor controller, 0-5V.
Send torque command to back motor controller, 0-5V.
Text read by Hank Bicycle Simulator (velocity (m/s), steering angle (degrees))*/

const short buffLength = 32;
unsigned long buff[buffLength];
int pBuff = 0;
float TorqueConstant = 1 / 1.468; // 1 / 1.242 for old motor, 1 / 1.468 for new motor Arms / Nm
float VoltsPerARMS = 1 / 1.580; // V / Arms, value found from motor controller under Motor
 input
float RPSperVolt = 9.3333; // Value found from motor controller under Motor output
float VoltsPerFrontVelocity = 5 / 11.176; // 5 V / 11.176 m/s (max speed)
//short samplingIntervalSecs = 5; // Seconds to intergrate hall effect sensor clicks
float SteeringZeroOffset = 2.5; // Volts
float SteeringVoltsToDegrees = 340 / 5; // Degrees / Volts Figure this out from datasheet
//pins 3, 4 don't work
float SteeringGearRatio = 0.583; // 42 / 72 ratio between steering angle and pot
float MotorRPSOffset = 2.60;
short HallEffectInputPin = 3;
short SteeringAngleInputPin = 2; // A2
short FrontMotorOutputPin = 6;
short MotorTorqueOut = 9;
short VelocityInputFromMotorController = 4; // A4
short BikeSelectionInput = 3; // A3
//short LedPin = 7;
short GearRatioPin = 0; // A0
///
void setup() {

pinMode(HallEffectInputPin, INPUT);
pinMode(SteeringAngleInputPin, INPUT);
pinMode(FrontMotorOutputPin, OUTPUT);
pinMode(MotorTorqueOut, OUTPUT);
pinMode(BikeSelectionInput,INPUT);
pinMode(VelocityInputFromMotorController, INPUT);
// pinMode(LedPin,OUTPUT);
pinMode(GearRatioPin, INPUT);

 56

Serial.begin(19200);
attachInterrupt(digitalPinToInterrupt(HallEffectInputPin), interrupt_function,FALLING);}

///
/*int countRecentHallClicksInBuffer(int samplingIntervalSecs) {

int counter = 0;
unsigned long currentTime;
int ptr = pBuff - 1;
if (ptr < 0) {ptr = buffLength - 1;}
currentTime = millis();
while ((buff[ptr] > currentTime - samplingIntervalSecs * 1000) && ptr != pBuff) {

counter++;
 ptr = ptr - 1;
 if (ptr < 0) {ptr = buffLength - 1;}}
 return (counter);}

///
void HallEffect(int *HallInput,int *TotalTime, int *counter, float *RPM, int *OldVal) {

if (*HallInput == 0) {if (*OldVal!= 0) { *counter=*counter + 1;}}
*RPM = *counter / (*TotalTime / 1000);}

///
float getRearWheelRPS(int samplingIntervalSecs) { // rps

int magnetsPerWheel = 2;
float rotations = countRecentHallClicksInBuffer(samplingIntervalSecs) / magnetsPerWheel;
float rotationsPerSecond = rotations / samplingIntervalSecs;
return (rotationsPerSecond);}*/

///
float getBikeWheelCircumference() { // m, from A3

float circ;
int val;
int maxAnalog = 1023;
val = analogRead(BikeSelectionInput);
if (val < (maxAnalog / 3)) {circ = 1.5959; // approx. from 1.5959 m}
else if (val < ((2 * maxAnalog) / 3)) {circ = 1.9151; // approx. from 1.9151 m}
else {circ = 2.0747; // approx. from 2.0747m}
return (circ);}

///
float getMotorVelocity() { // rps

float val;
int maxAnalog = 1023;
int secsPerMinute = 60;
float volts;
int counterLoop = 0;
float valAvg = 0;
float total = 0;
long Start = millis();
long Stop = millis() - Start;
while (Stop < 20) {val = analogRead(A4); total = total + val; counterLoop++;
 Stop = millis() - Start;}
val = analogRead(A4);
valAvg = total / counterLoop;
volts = 5.0 * valAvg / maxAnalog;
float velocityRPS = RPSperVolt * volts - MotorRPSOffset;

 57

return (velocityRPS);}
///
float calcBikeVelocity(float motorVelocity, float wheelCircumference, float gearRatio) {

float bikeVelocity;
bikeVelocity = motorVelocity * wheelCircumference / gearRatio; //go from motor rps to bike m/s
return (bikeVelocity);}

///
float calcAirDrag(float bikeVelocity, float wheelCircumference){ // in N

float massDensityAir = 1.184; // kg/m^3. Air at 25 degrees C
float dragCoefficient = 1.1;
float area; /* 0.4 m^2 - 0.7 m^2 typical http://www.analyticcycling.com/ForcesPower_Page.html
*/
/* estimated from http://2.bp.blogspot.com/-
6rUkPBorBnY/UKGkyUzCMII/AAAAAAAABVA/3KflV7aANbg/s1600/Human+Powered+Ve
hicle+Data.jpg */
if (wheelCircumference == 1.5959) {area = 0.40; // m^2}
else if (wheelCircumference == 1.9151) {area = 0.50; // m^2 .45}
else {area = 0.60; // m^2 .5}
return (0.5 * massDensityAir * bikeVelocity * bikeVelocity * dragCoefficient * area);}

///
float getSteeringAngle(void) { // degrees

int val = analogRead(SteeringAngleInputPin);
float volts = 5.0 * val / 1023.;
float angle = SteeringVoltsToDegrees * (volts - SteeringZeroOffset) * SteeringGearRatio;
return (angle);}

///
float getTorqueOutput(float airDragForce, float wheelCircumference, float gearRatio) { // Nm

float wheelRadius = wheelCircumference / (2 * PI); // m
float desiredTorque = airDragForce * wheelRadius; // Nm of the backwheel
float torqueOutput = desiredTorque / gearRatio; // Nm of the motor
return (torqueOutput);}

///
float getGearRatio() {

float gearRatio;
int val = analogRead(GearRatioPin);
float volts = 5.0 * val / 1023.;
if (volts < 0.3) {gearRatio = 2.306;}
else if (volts < 0.8) {gearRatio = 2.979;}
else if (volts < 1.4) {gearRatio = 3.369;}
else if (volts < 1.9) {gearRatio = 3.841;}
else if (volts < 2.5) {gearRatio = 4.353;}
else if (volts < 3.0) {gearRatio = 4.961;}
else if (volts < 3.6) {gearRatio = 5.653;}
else if (volts < 4.1) {gearRatio = 6.396;}
else if (volts < 4.7) {gearRatio = 7.293;}
else {gearRatio = 8.260;}
return gearRatio;}

///
void sendTorqueToMotorController(float torqueOutput) {

float ARMS = torqueOutput * TorqueConstant;
float volts = ARMS * VoltsPerARMS;

 58

int val = (int) ((255 * (volts / 5.0)));
if (val < 3) {analogWrite(MotorTorqueOut, 0);}
else {analogWrite(MotorTorqueOut, val);}}

///
void sendVelocityToFrontMotor(float bikeVelocity) {

float volts = bikeVelocity * VoltsPerFrontVelocity;
int valOffset = 93;
int val = (int) (valOffset + (255 * (volts / 5.0)));
if (bikeVelocity < 0.1) {analogWrite(FrontMotorOutputPin, 0);}
else if (val < 255) {analogWrite(FrontMotorOutputPin, val);}
else {analogWrite(FrontMotorOutputPin, 255);}}

///
void printResults(float velocity, float steeringAngle) {

Serial.print(velocity); // bike m/s
Serial.print(" , ");
Serial.println(steeringAngle); // degrees}

///
/*void updateLED(float steeringAngle) {

if (steeringAngle > 0) {digitalWrite(LedPin, HIGH);}
else {digitalWrite(LedPin, LOW);}}*/

///
void loop() {

float gearRatio = getGearRatio();
float wheelCircumference = getBikeWheelCircumference(); // m
float motorVelocity = getMotorVelocity(); // rps
float bikeVelocity = calcBikeVelocity(motorVelocity, wheelCircumference, gearRatio); // m/s
float airDragForce = calcAirDrag(bikeVelocity, wheelCircumference); // N
float torqueOutput = getTorqueOutput(airDragForce, wheelCircumference, gearRatio); // Nm
sendTorqueToMotorController(torqueOutput);
sendVelocityToFrontMotor(bikeVelocity);
float steeringAngle = getSteeringAngle();
printResults(bikeVelocity, steeringAngle);
// updateLED(steeringAngle);}

///
void interrupt_function() {buff[pBuff] = millis(); pBuff = (pBuff + 1)% buffLength; }

