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Figure 17: Plot of the system velocity under three torques applied in gear 1. 

 

Figure 18: Plot of the system velocity under three torques applied in gear 3. 
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Figure 19: Plot of the system velocity under three torques applied in gear 5. 

 

Table 6 presents the input torque, the initial acceleration and the terminal velocity, both 

experimentally and theoretically predicted, for each of the three gears.  The estimates of the 

initial acceleration were derived from a nonlinear fit model using the following equation: 

𝑎(𝑇𝑎𝑛ℎ 𝑏𝑡 )               (4.6) 

This equation describes the velocity of the Hank Bicycle Simulator at a given time, 𝑡. The 

derivative of the nonlinear fit model is the acceleration of the Hank Bicycle Simulator at any 

point in time. The initial acceleration is the acceleration of the simulator at 𝑡 = 0, which 

simplifies the initial acceleration results to be 𝑎𝑏. 
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Table 6: Theoretical and actual initial acceleration and terminal velocity for a constant input 

torque in several gears. 

Gear Torque 
Initial Acceleration (m/s2) Terminal Velocity (m/s) 

Theoretical Measured Error 
(%) 

Theoretica
l Measured Error 

(%) 

1 
1.717 0.54 0.57 0.62% 4.16 4.26 2.38% 
1.870 0.59 0.65 1.24% 4.34 4.54 4.47% 
2.028 0.65 0.73 1.94% 4.52 4.77 5.46% 

3 
2.315 0.37 0.37 0.07% 4.83 4.83 0.08% 
2.471 0.40 0.40 0.02% 4.99 5.10 2.26% 
2.629 0.42 0.43 0.20% 5.15 5.34 3.73% 

5 
2.920 0.29 0.30 0.20% 5.42 5.43 0.07% 
3.077 0.31 0.31 0.05% 5.57 5.72 2.71% 
3.234 0.32 0.33 0.10% 5.71 5.92 3.70% 

 

 

4.6.3 Discussion and Conclusion 

The initial accelerations across the three gears was better than 2%, and much better than 

1% for most cases that would be encountered for heavier riders.  The terminal velocities were 

better than 5.5%, again most accurate for heavier riders. Given the mechanical and electrical 

complexity of the system, this is quite good and most likely sufficient for the application 

scenario.   
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CHAPTER 5 

DISCUSSION & CONCLUSION 

 

 The purpose of the Hank Bicycle Simulator is to observe the behavior of children and 

adults riding across a street on a bicycle, with particular emphasis on how participants judge the 

gaps between passing cars when choosing their moment to cross. The participants’ decisions are 

likely to be dominated by their estimates of how long it will take to cross the street. This estimate 

is likely to be a function of their past experience with bicycles, an experienced dominated by the 

challenge of physically overcoming the mechanical inertia of the system.  

Thus, the most important factor in the Hank Bicycle Simulator is the simulation of the 

inertial force. As seen throughout the results of the experiments, the flywheel produces a 

sufficient amount of kinetic energy compared to the kinetic energy produced by the rider. This 

can be observed by the starting acceleration results in experiment 5. The error on the starting 

acceleration is 0.20% or under for gears 3 and 5. Gear 1 has a higher error, but this gear produces 

too low of a simulated weight for any rider to use (gear 1 is for a 10 lb. rider). Thus, gear 1 will 

not be used at all in the virtual environment, and neither will gear 2 for the same issue.  

 The air drag produced by the back motor of the system gives the rider a specific terminal 

velocity based on the force they use for pedaling. The terminal velocity will rarely be a factor in 

the application of the Hank Bicycle Simulator because the riders in the experiment are simply 

crossing the street. This gives little time to accelerate to terminal velocity, making terminal 

velocity of the bicycle unlikely. The results for the terminal velocity in the system performance 

experiment were favorable, however. Just like the starting acceleration, gear 1 produced the 



 48 

highest error in terminal velocity. Since gear 1 is not used, the most important results of the 

terminal velocity are for gears 3 and 5. The highest error was 3.73%, meaning the rider had a 

terminal velocity that was about 0.20 m/s faster than the theoretical terminal velocity. The lowest 

error was 0.07%, meaning that the terminal velocity of the rider was under 0.01 m/s faster than 

the theoretical value.  

 

 

Figure 20: Graph showing the time difference between the experimental rider and the theoretical 

rider crossing the street in a virtual reality environment. 

 

Based on the results from the system performance experiment, given a constant 

propulsive force the time to cross a street can be found (Figure 20). The street that the Hank 

Bicycle Simulator is crossing in the virtual reality environment is about 10 ft. wide or 3.06 m. 

From the data of the experiments, we can calculate the time it takes the rider to move 10 ft. 
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starting from rest and pedaling at a constant propulsive force. The average time difference 

between the predicted and observed time to cross the street in gears 1, 3, and 5 is about 80 ms. 

For the more commonly used gears 3 and 5, the average time difference goes down to about 60 

ms with the Hank Bicycle Simulator typically being faster. When a real rider uses the Hank 

Bicycle Simulator they will use higher propulsive forces that will in turn increase the velocity of 

the system. Increasing the propulsive force will decrease the time it takes to cross the street, as 

well as decrease the time difference between the theoretical and experimental performance. 

These times produced by the Hank Bicycle Simulator are very close to the theoretical time in a 

real environment. Thus, the Hank Bicycle Simulator has proven that it can produce accurate 

performances given 33 different simulated weights. 

A study by Plumert et al. (2004) observed 10-year olds, 12-year-olds and adults crossing 

a two-lane intersection using a bicycle simulator. When the rider stopped at the intersection 

traffic would approach the intersection from the left of the rider in the lane closest to them. The 

rider would then have to choose an appropriate gap width to safely cross the intersection. On 

average, all participants chose to cross the intersection during the 3.5 s gap size between 

vehicles. They found that the average time left to spare when the rider cleared the lane of the 

approaching vehicle decreased with the younger riders. The average time left was 1.13 s for the 

10-year-old riders, 1.49 s for 12-year-old riders and 1.98 s for the adult riders. The 60 ms time 

difference between the predicted and observed time will have little to no effect on the 

performance of the riders in the Hank Bicycle Simulator. The riders will typically be around 60 

ms ahead of where they may predict, however that 60 ms results in a displacement difference of 

only a few inches. For example, in the worst case with the widest time difference of 104 ms, if 
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we assume a constant propulsive force of 2.920 Nm in gear 5, this will result in an observed 

displacement of about five inches ahead of the predicted displacement.  

In future iterations of the Hank Bicycle Simulator, there are various ways that this 

simulator can continue to improve for better performance and quality. The gear ratio switch 

could be changed to be automatic. When the gear is set it can measure the velocity of the rear 

wheel and compare it to the velocity of the motor. This will give the gear ratio of the system. 

Reduction of the steering delay could always be improved, as well as the mechanics of the 

bicycle. Further iterations will be able to refine the mechanical model for better performance.  

 The next step for the Hank Bicycle Simulator is to compare the behavior of riders as they 

use it. By observing and testing the riders in their natural environments, we can record their 

behavior and other factors that might be useful for future changes to the Hank Bicycle Simulator. 

For instance, we could observe the rider’s steering performance and the resistance they feel from 

steering at a given velocity in a natural environment. Using that information, we can compare the 

Hank Bicycle Simulator to the natural environment and implement a steering damper that 

produces realistic steering resistance dependent on the velocity. These comparisons would help 

enhance the Hank Bicycle Simulator experience.  

 Overall, it is easy to see how quick the inertial response of the Hank Bicycle Simulator is 

given any rider compared to the delay of other simulators. The other simulators mentioned in 

Table 1 all use electrical systems that have inevitable electronic delays. The bicycle simulators, 

as well as other simulators from the literature review, lack validation of the theory behind their 

structure. They produced well-made bicycle simulators, but did not compare their simulator’s 

system performance to the real-life riders. The mechanical simulation of inertia in the Hank 

Bicyce Simulator provides an accurate and immediate reproduction of the expected inertia. How 
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this compares with other simulators, particularly those relying on electrical motors and magneto-

rheological fluid brakes is unclear, because previous studies have not provided enough 

performance detail to be able to make a valid comparison. We hope that the current study will 

encourage future researchers to report the details of their underlying models and their system 

performance, particularly those with ties to the physical parameters of the simulation they wish 

to reproduce, so that the community may move forward together, taking the best elements of 

each system. 

  



 52 

REFERENCES 

 

Babu, S. V. et al. (2009) A Virtual Peer for Investigating Social Influences on Children's 
Bicycling. 2009 IEEE Virtual Reality Conference, Lafayette, 91-98.       
DOI: 10.1109/VR.2009.4811004 

Babu, S. V. et al. (2011). An Immersive Virtual Peer for Studying Social Influences on Child 
Cyclists' Road-Crossing Behavior. IEEE Transactions on Visualization and Computer 
Graphics, 17(1), 14-25. DOI: 10.1109/TVCG.2009.211 

Deligiannidis, L., & Jacob, R. (2006). The VR Scooter: Wind and Tactile Feedback Improve 
User Performance. 3D User Interfaces (3DUI'06), 143-150. 
DOI: 10.1109/VR.2006.131 

Grechkin, T. Y., Chihak, B. J., Cremer, J. F., Kearney, J. K., & Plumert, J. M. (2013). 
Perceiving and acting on complex affordances: How children and adults bicycle 
across two lanes of opposing traffic. Journal of Experimental Psychology: Human 
Perception and Performance, 39(1), 23-36. DOI:10.1037/a0029716 

Gross, A., Kyle, C., & Malewicki, D. (n.d.). “Human Powered Vehicle Performance” 
[Digital image]. Retrieved from http://2.bp.blogspot.com/-
6rUkPBorBnY/UKGkyUzCMII/AAAAAAAABVA/3KflV7aANbg/s1600/Human 
Powered Vehicle Data.jpg 

He, Q., Fan, X., & Ma, D. (2005). Full bicycle dynamic model for interactive bicycle 
simulator. Journal of Computing and Information Science in Engineering, 5(4), 373-
380. DOI: 10.11115/1.2121749 

Huang, S. F. et al. (2008). The Comparisons of Heart Rate Variability and Perceived 
Exertion During Simulated Cycling with Various Viewing Devices. Presence, 17(6), 
575-583. 

Kikuchi, T., Kobayashi, K. & Sugiyama, M. (2012). Development of virtual reality bike with 
cylindrical MR fluid brake. Robotics and Biomimetics (ROBIO), 2012 IEEE 
International Conference on, Guangzhou, 1753-1758. 

Kwon, D. et al. (2001). KAIST interactive bicycle simulator. Robotics and Automation, 
2001. Proceedings 2001 ICRA. IEEE International Conference on, 2001, 3, 2313-
2318. DOI: 10.1109/ROBOT.2001.932967 

Kwon, D. et al. (2002). KAIST interactive bicycle racing simulator: the 2nd version with 
advanced features. Intelligent Robots and Systems, 2002. IEEE/RSJ International 
Conference on, 2002, 3, 2961-2966. DOI: 10.1109/IRDS.2002.1041722 

Kyle, C. et al., (2001). International Human Powered Vehicle Association (D. G. Wilson, 
Ed.). Human Power, 52(Summer 2001). Retrieved from 
http://www1.bhpc.org.uk/Data/Sites/1/Uploads/humanpower/PDF/hp52-2001.pdf 



 53 

Leblanc, M. & Sicard, P. (2010). EMR and inversion-based control of a virtual reality 
bicycle trainer. 2010 IEEE Vehicle Power and Propulsion Conference, 1-7.          
DOI: 10.1109/VPPC.2010.5728993  

Mestre, D., Dagonneau, V., & Mercier, C. (2011). Does Virtual Reality Enhance Exercise 
Performance, Enjoyment, and Dissociation? An Exploratory Study on a Stationary 
Bike Apparatus. Presence, 20(1), 1-14. 

Miyanoue, K., Suzuki, M., & Yai, T. (2015). Journal of Japan Society of Civil Engineers, 
Ser. D3 (Infrastructure Planning and Management), 71(5), I_859-I_604.                  
DOI: 10.2208/jscejipm.71.I_589 

National Center for Statistics and Analysis. (2016, May). Bicyclists and other cyclists: 2014 
data. (Traffic Safety Facts. Report No. DOT HS 812 282). Washington, DC: National 
Highway Traffic Safety Administration. 

Plumert, J. M., Kearney, J. K. & Cremer, J. F. (2004). Children's Perception of Gap 
Affordances: Bicycling Across Traffic-Filled Intersections in an Immersive Virtual 
Environment. Child Development, 75, 1243–1253.        
DOI:10.1111/j.1467-8624.2004.00736.x 

Plumert, J. M., Kearney, J. K. & Cremer J. F. (2007). Children's Road Crossing a Window 
into Perceptual–Motor Development. Current Directions in Psychological Science, 
16(5), 255-258. DOI: 10.1111/j.1467-8721.2007.00515.x 

Sari, R. F. et al. (2009). 3D object implementation on bicycling at ui virtual reality 
application based on 3D-Gamestudio," 2009 International Multiconference on 
Computer Science and Information Technology, 509-515. 

Tang, Y et al. (2007). The Development of a Virtual Cycling Simulator. Technologies for E-
Learning and Digital Entertainment, 2007. Second International Conference, 
Edutainment 2007, 162-170. DOI: 10.1007/978-3-540-73011-8_18 

Wilson, D. (2004). Power and speed. In Bicycling science. (pp. 123-172), Cambridge, MA: 
MIT Press. 

  



 54 

1 2 3 4 5 6 7 8 9

10 9 8 7 6 5 4 3 2 1

G
ND

S
TO

-B
R

+
BR PE U V W

-D
C

-R
B

+
RB

+
DC L1 L3L2 PE

2
4
+

X8

A
R
D
U
IN

O
	U
N
O

2
4
0V
	A
C
/2
4
V
	D
C
	C
on
v
e
rt
e
r

Fr
on
t	
P
ot

E-
S
to

p

2
4
0
V
	O
u
tl
e
t

9
	P
in

C
o
n
n
e
ct
o
rs

MMM

A
K
D
	M

o
to

r

G
e
a
r	
R
a
ti
o	
P
ot

APPENDIX A 

HANK BICYCLE SIMULATOR ELECTRICAL SCHEMATIC  
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APPENDIX B 

MICROCONTROLLER CODE 

 

/* Full_bike_program:  An arduino sketch by Jaemin Powell  
Inputs: 

A potentiometer input from 0-5V, with approximately 2.5 V straight ahead, larger turns to right. 
A hall effect sensor that starts high and goes low each time a magnet passes the sensor. Assume 
two magnets on the wheel. A velocity input from the motor controller, 0-5V. Scale depends on 
motor controller and must be compiled into this sketch. Bike size voltage:  0V for 20" diam 
wheel, 2.5V for 24" diameter wheel and 5V for 26" diameter wheel. 

Outputs: 
Front wheel motor controller, 0-5V. 
Send torque command to back motor controller, 0-5V. 
Text read by Hank Bicycle Simulator (velocity (m/s), steering angle (degrees))*/ 

const short buffLength = 32; 
unsigned long buff[buffLength]; 
int pBuff = 0; 
float TorqueConstant = 1 / 1.468; // 1 / 1.242 for old motor, 1 / 1.468 for new motor Arms / Nm  
float VoltsPerARMS = 1 / 1.580; // V / Arms, value found from motor controller under Motor  
           input 
float RPSperVolt = 9.3333; // Value found from motor controller under Motor output 
float VoltsPerFrontVelocity = 5 / 11.176; // 5 V / 11.176 m/s (max speed) 
//short samplingIntervalSecs = 5; // Seconds to intergrate hall effect sensor clicks 
float SteeringZeroOffset = 2.5; // Volts 
float SteeringVoltsToDegrees = 340 / 5; // Degrees / Volts Figure this out from datasheet 
//pins 3, 4 don't work 
float SteeringGearRatio = 0.583; // 42 / 72 ratio between steering angle and pot 
float MotorRPSOffset = 2.60; 
short HallEffectInputPin = 3; 
short SteeringAngleInputPin = 2; // A2 
short FrontMotorOutputPin = 6; 
short MotorTorqueOut = 9; 
short VelocityInputFromMotorController = 4; // A4 
short BikeSelectionInput = 3; // A3 
//short LedPin = 7; 
short GearRatioPin = 0; // A0 
///////////////////////////////////////////////////////////////////////////////// 
void setup() {  

pinMode(HallEffectInputPin, INPUT); 
pinMode(SteeringAngleInputPin, INPUT); 
pinMode(FrontMotorOutputPin, OUTPUT); 
pinMode(MotorTorqueOut, OUTPUT); 
pinMode(BikeSelectionInput,INPUT); 
pinMode(VelocityInputFromMotorController, INPUT); 
// pinMode(LedPin,OUTPUT); 
pinMode(GearRatioPin, INPUT); 
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Serial.begin(19200); 
attachInterrupt(digitalPinToInterrupt(HallEffectInputPin), interrupt_function,FALLING);} 

///////////////////////////////////////////////////////////////////////////////// 
/*int countRecentHallClicksInBuffer(int samplingIntervalSecs) { 

int counter = 0; 
unsigned long currentTime; 
int ptr = pBuff - 1;  
if (ptr < 0) {ptr = buffLength - 1;} 
currentTime = millis(); 
while ((buff[ptr] > currentTime - samplingIntervalSecs * 1000) && ptr != pBuff) { 

counter++; 
     ptr = ptr - 1; 
     if (ptr < 0) {ptr = buffLength - 1;}} 
  return (counter);} 

///////////////////////////////////////////////////////////////////////////////// 
void HallEffect(int *HallInput,int *TotalTime, int *counter, float *RPM, int *OldVal) { 

if (*HallInput == 0) {if (*OldVal!= 0) { *counter=*counter + 1;}}  
*RPM = *counter / (*TotalTime / 1000);} 

///////////////////////////////////////////////////////////////////////////////// 
float getRearWheelRPS(int samplingIntervalSecs) { // rps 

int magnetsPerWheel = 2; 
float rotations = countRecentHallClicksInBuffer(samplingIntervalSecs) / magnetsPerWheel;  
float rotationsPerSecond = rotations / samplingIntervalSecs; 
return (rotationsPerSecond);}*/ 

///////////////////////////////////////////////////////////////////////////////// 
float getBikeWheelCircumference() { // m, from A3 

float circ; 
int val; 
int maxAnalog = 1023; 
val = analogRead(BikeSelectionInput); 
if (val < (maxAnalog / 3)) {circ = 1.5959; // approx. from 1.5959 m} 
else if (val < ((2 * maxAnalog ) / 3)) {circ = 1.9151; // approx. from 1.9151 m}  
else {circ = 2.0747; // approx. from 2.0747m} 
return (circ);} 

///////////////////////////////////////////////////////////////////////////////// 
float getMotorVelocity() { // rps 

float val; 
int maxAnalog = 1023; 
int secsPerMinute = 60; 
float volts; 
int counterLoop = 0; 
float valAvg = 0; 
float total = 0; 
long Start = millis(); 
long Stop = millis() - Start; 
while (Stop < 20) {val = analogRead(A4); total = total + val; counterLoop++; 
     Stop = millis() - Start;} 
val = analogRead(A4); 
valAvg = total / counterLoop; 
volts = 5.0 * valAvg / maxAnalog; 
float velocityRPS = RPSperVolt * volts - MotorRPSOffset; 
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return (velocityRPS);} 
///////////////////////////////////////////////////////////////////////////////// 
float calcBikeVelocity(float motorVelocity, float wheelCircumference, float gearRatio) { 

float bikeVelocity;  
bikeVelocity = motorVelocity * wheelCircumference / gearRatio; //go from motor rps to bike m/s 
return (bikeVelocity);} 

///////////////////////////////////////////////////////////////////////////////// 
float calcAirDrag(float bikeVelocity, float wheelCircumference){ // in N 

float massDensityAir = 1.184; // kg/m^3.  Air at 25 degrees C 
float dragCoefficient = 1.1; 
float area; /* 0.4 m^2 - 0.7 m^2 typical http://www.analyticcycling.com/ForcesPower_Page.html 
*/ 
/* estimated from http://2.bp.blogspot.com/-
6rUkPBorBnY/UKGkyUzCMII/AAAAAAAABVA/3KflV7aANbg/s1600/Human+Powered+Ve
hicle+Data.jpg */ 
if (wheelCircumference == 1.5959) {area = 0.40; // m^2} 
else if (wheelCircumference == 1.9151) {area = 0.50; // m^2 .45} 
else {area = 0.60; // m^2 .5} 
return (0.5 * massDensityAir * bikeVelocity * bikeVelocity * dragCoefficient * area);} 

///////////////////////////////////////////////////////////////////////////////// 
float getSteeringAngle(void) { // degrees 

int val = analogRead(SteeringAngleInputPin); 
float volts = 5.0 * val / 1023.; 
float angle = SteeringVoltsToDegrees * (volts - SteeringZeroOffset) * SteeringGearRatio; 
return (angle);} 

///////////////////////////////////////////////////////////////////////////////// 
float getTorqueOutput(float airDragForce, float wheelCircumference, float gearRatio) { // Nm 

float wheelRadius = wheelCircumference / (2 * PI); // m 
float desiredTorque = airDragForce * wheelRadius; // Nm of the backwheel 
float torqueOutput = desiredTorque / gearRatio; // Nm of the motor 
return (torqueOutput);} 

///////////////////////////////////////////////////////////////////////////////// 
float getGearRatio() { 

float gearRatio; 
int val = analogRead(GearRatioPin); 
float volts = 5.0 * val / 1023.; 
if (volts < 0.3) {gearRatio = 2.306;} 
else if (volts < 0.8) {gearRatio = 2.979;} 
else if (volts < 1.4) {gearRatio = 3.369;} 
else if (volts < 1.9) {gearRatio = 3.841;} 
else if (volts < 2.5) {gearRatio = 4.353;} 
else if (volts < 3.0) {gearRatio = 4.961;} 
else if (volts < 3.6) {gearRatio = 5.653;} 
else if (volts < 4.1) {gearRatio = 6.396;} 
else if (volts < 4.7) {gearRatio = 7.293;} 
else {gearRatio = 8.260;} 
return gearRatio;} 

///////////////////////////////////////////////////////////////////////////////// 
void sendTorqueToMotorController(float torqueOutput) { 

float ARMS = torqueOutput * TorqueConstant; 
float volts = ARMS * VoltsPerARMS; 
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int val = (int) ((255 * (volts / 5.0))); 
if (val < 3) {analogWrite(MotorTorqueOut, 0);} 
else {analogWrite(MotorTorqueOut, val);}} 

///////////////////////////////////////////////////////////////////////////////// 
void sendVelocityToFrontMotor(float bikeVelocity) { 

float volts = bikeVelocity * VoltsPerFrontVelocity; 
int valOffset = 93; 
int val = (int) (valOffset + (255 * (volts / 5.0))); 
if (bikeVelocity < 0.1) {analogWrite(FrontMotorOutputPin, 0);} 
else if (val < 255) {analogWrite(FrontMotorOutputPin, val);} 
else {analogWrite(FrontMotorOutputPin, 255);}} 

///////////////////////////////////////////////////////////////////////////////// 
void printResults(float velocity, float steeringAngle) { 

Serial.print(velocity); // bike m/s 
Serial.print(" , "); 
Serial.println(steeringAngle); // degrees} 

///////////////////////////////////////////////////////////////////////////////// 
/*void updateLED(float steeringAngle) { 

if (steeringAngle > 0) {digitalWrite(LedPin, HIGH);} 
else {digitalWrite(LedPin, LOW);}}*/ 

///////////////////////////////////////////////////////////////////////////////// 
void loop() { 

float gearRatio = getGearRatio(); 
float wheelCircumference = getBikeWheelCircumference(); // m  
float motorVelocity = getMotorVelocity(); // rps 
float bikeVelocity = calcBikeVelocity(motorVelocity, wheelCircumference, gearRatio); // m/s 
float airDragForce = calcAirDrag(bikeVelocity, wheelCircumference); // N 
float torqueOutput = getTorqueOutput(airDragForce, wheelCircumference, gearRatio);   // Nm 
sendTorqueToMotorController(torqueOutput); 
sendVelocityToFrontMotor(bikeVelocity); 
float steeringAngle = getSteeringAngle(); 
printResults(bikeVelocity, steeringAngle); 
//  updateLED(steeringAngle);} 

///////////////////////////////////////////////////////////////////////////////// 
void interrupt_function() {buff[pBuff] = millis(); pBuff = (pBuff + 1 )% buffLength; } 


