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Figure 4.10: Prediction of the future disease outbreaks on a sparse or dense network.
Figure A-C are network contacts. Figure E-G are histograms of the contacts. Figure
H-J are Kaplan-Meier plots of disease infections on the three networks.

school contact network. The social contact network is compressed into a 2-dimensional

latent space, where each individual is represented by a location on a 2-dimensional

plane. We also used Markov chain Monte Carlo methods to estimate the disease

transmission rate in the social network. The posterior predictive distribution in-

dicated that the fitted model parameters provided realistic predictions of future

disease transmissions. We used the plot function of our epinet package to illus-

trate the spatial distribution of hazard rate on the social network at each time

point. We also predicted the disease transmissions on two different networks. The
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estimations and predictions are in good accordance with the influenza transmission

patterns.
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CHAPTER 5

DISCUSSION

Infectious diseases can have huge impacts on human health during local out-

breaks and global epidemics. Even with wide use of vaccines, common infectious

diseases such as influenza still kill about 250,000 to 500,000 individuals worldwide

each year [75]. Moreover, fear of novel infectious disease or new strands of antibiotic-

resistant infections still clouds the human race. In less than several months between

2002 and 2003, an outbreak of a previously unknown virus SARS (severe acute res-

piratory syndrome) caused 8000 infections and 700 deaths in multiple countries

[88]. Hospital-acquired infections often spread antibiotic-resistant bacteria among

patients and health care workers, which can potentially create an environment for

bacteria to evolve into a super strand which renders antibiotics useless. Facing the

great threat of infectious diseases, many methodological and technological advance-

ments have been developed to monitor and model the transmission of infectious

diseases. More recently, with the advancement of mobile sensor technology, it be-

comes feasible to monitor person-to-person contacts by deploying close-proximity

sensors to all the individuals in a relatively-confided environment, such as a hospital

intensive-care unit. The use of mobile sensors generates a complex network data

of person-to-person contact. New statistical models are needed to model disease

transmission using the big contact network data.

We have developed a Bayesian framework (epinet) to efficiently model disease

transmissions using observed person-to-person contact data collected from mobile

sensors. Our method has several advantages. First, Our method is different from the

previous methods which assume homogeneity of individuals that individuals have

the same susceptibility and infectivity; and assume homogeneity of population that

an infected person is likely to transmit diseases to any susceptible individuals with
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equal probability. Our method allows the modeling of heterogeneous individuals

and populations where each individual can have different susceptibility and infec-

tivity related to the age, gender and other covariates of the individual. Additionally,

an infected individual has different probabilities of transmitting the disease to dif-

ferent susceptible individuals, related to the contact frequency between the infected

individual and the susceptible individuals. Second, different from the determin-

istic epidemic models suitable for large population, our method uses a stochastic

epidemic model to allow for more detailed modeling of the randomness in a small

community, because our observed contact data are collected by using mobile sensors

in a small community. Using the stochastic epidemic model also enables parame-

ter estimates from disease outbreak data with standard errors. Third, our model

reduces the high dimensionality of a contact network by mapping the network struc-

ture onto a 2-dimension latent space. Fourth, our model also allows the prediction

of a future disease outbreak on a new contact network. Such prediction allows re-

searchers to simulate future disease outbreaks based on previously observed contact

structures and disease-specific transmission rates. Through simulation studies and

the analysis of a real contact network, we demonstrate that our method is a robust

and flexible method for modeling disease transmission.

We carried out a series of simulation studies to evaluate our model fitting al-

gorithm. We showed that the estimated parameters of our model converged to the

true parameters in disease transmission networks with either Binomial contacts or

Poisson contacts. We also demonstrated in the simulation studies that our model

selection algorithm selected the right network kernel function and number of clusters

using DIC. Moreover, the estimation from a real contact network is in good accor-

dance with the influenza transmission patterns. These simulations and real data

showed that our method can reliably estimate the disease transmission parameters

over a contact network.
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The epinet framework provides the foundation for future extensions. Cur-

rently, our method uses observed contact network data collected before the occur-

rence of infection to model the probability of disease transmission from infectious

individuals to susceptible individuals. It should be noted that with future develop-

ment of mobile survey devices, it will be possible to establish a real-time contact

network that monitors the contacts in each time point before and during the infec-

tions. Although our current framework allows simple modifications of the contact

network over time through a weight matrix, it is also possible to extend the current

framework to model the time-variant network structure through new locations on

the latent space. Such extensions will provide more flexibility to model the longitudi-

nal data of network changes over time. Another potential area of improvement is to

add statistical tests to compare the disease transmissions between different network

structures; and evaluate effects of prevention measurements that change network

structures. Prevention measurements such as mandatory hand-hygiene protocols or

vaccinations will reduce transmission rates between individuals covered by the pre-

vention measurements. We would like to add statistical tests to evaluate whether

implementing prevention measurements on a certain percent of the population will

significantly reduce the overall occurrence of infections.

One of the limitations of our model is that it is designed for a closed system

where we assume that all subjects are enrolled in the beginning of the study and the

total population is fixed. For example, in an SIR framework, we have S(t) + I(t) +

R(t) = N , and assume that each individual is in one and only one health state at

a time. Although the number of infected individuals evolves over time, the total

number of population does not change over time. This is a common assumption

in most mathematical or statistical epidemic models. However, it is not realistic

in some situations. For example, patients are constantly admitted or discharged in

a hospital in real life, and therefore the total number of patients is not fixed. In
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addition, when modeling the spread of influenza in the high school in Chapter 4, we

assumed the disease only spread within the high school, but ignored the transmission

from the community outside of the school. The closed system assumption is for

convenience in mathematical modeling. However, extensions should be made to the

current model to account for the transmission risk from the community, as well as to

provide real-time monitoring/update of diseases when new admissions are available.

Missing data imposes a great challenge for inference in epidemic models. For

example, in seasonal influenza epidemics, pathogens such as repiratory syncytial

virus (RSV) can cause influenza-like illness (ILI), which makes it difficult for the

identification of the infection status of influenza. However, it is impractical to

collect every specimen and test for each potential pathogen due to budget limits

or administrative difficulty. Inference may be biased if the missing infection status

is not properly imputed or integrated out. The problem becomes more challenging

as the size and complexity of the model increases. The Bayesian framework offers

a natural way to handle these issues, since missing data can simply be treated as

unknown parameters in the model. Under the assumption of missing at random

(MAR), they have shown that a moderate amount of missing infectious status has

only a small impact on inference in the setting of close contact groups [94]. However,

with large amounts of missing data, in order to have reasonable acceptance rate

and good mixing of the chain, efficient proposal distributions should be carefully

designed and selected [55].

Sensitivity Analyses has been conducted where different priors for parameters

in the network and disease model were investigated. The results are consistent

under different prior assumptions. Ideally, a range of parameter values and initial

conditions should be investigated to test the stability of the model. However, due

to the limitation of computing resource and time we had, we didn’t perform and

compare simulation studies using different parameter values, which is what we need
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to improve in the future.

Ideally, we would like to relax the static network assumption, since contacts

in real world are frequently reformed or broke. By assuming networks are static, we

used aggregated contact data (e.g., the total number of contacts in a day) instead of

time-varying contact data. It certainly loses some temporal features in the contact

data. However, we focuses more on the temporal features of the disease data. We

focuses on relaxing the homogeneous assumptions in epidemic models which is a

higher priority than the static network assumption. Nevertheless, we still incorpo-

rated some of the temporal features such as the duration and frequency of contacts,

which demonstrated the flexibility of our model. In the future, we intend to extend

our work to dynamic networks.

The epinet package takes the observed contact data between individuals, the

time-to-event data about disease infection (e.g., time to infection, time to recovery,

etc) and the covariates of individuals (e.g., age and gender of the individuals) as the

input. It identifies the transmission rate, baseline hazard of the infectious disease

and fixed effects of the individual covariates. The epinet package also provides

a prediction function to apply an identified transmission rate and baseline hazard

of an infectious disease to a new network structure, which predicts future disease

transmission on a new group of individuals with different contact networks. We

anticipate that epinet will be a useful tool for modeling disease transmissions from

observed contact data.
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