Type 2 Diabetes Update

04/02/14
Disclosure

GSK research support
Objectives for this talk

• Brief discussion of pathogenesis of type 2 diabetes
• Treatment rationale and targets
• Updated approaches to glycemic control, BP and lipids in type 2 diabetes
• New on the horizon
What goes wrong in type 2 diabetes?

• Insulin resistance
• Impaired (not absent) ability to secrete insulin
Normal

Fasting AM blood tests

<table>
<thead>
<tr>
<th>Age</th>
<th>Insulin (U/ml)</th>
<th>Glucose (mg/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>12</td>
<td>90</td>
</tr>
</tbody>
</table>
Pre-diabetes (impaired fasting glucose)

Fasting AM blood tests

<table>
<thead>
<tr>
<th>Age</th>
<th>Insulin (U/ml)</th>
<th>Glucose (mg/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>38</td>
<td>22</td>
<td>112</td>
</tr>
</tbody>
</table>
Early type 2 diabetes

Fasting AM blood tests

<table>
<thead>
<tr>
<th>Age</th>
<th>Insulin (U/ml)</th>
<th>Glucose (mg/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>38</td>
<td>22</td>
<td>112</td>
</tr>
<tr>
<td>43</td>
<td>29</td>
<td>128</td>
</tr>
</tbody>
</table>
Type 2 diabetes

Fasting AM blood tests

<table>
<thead>
<tr>
<th>Age</th>
<th>Insulin (U/ml)</th>
<th>Glucose (mg/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>38</td>
<td>22</td>
<td>112</td>
</tr>
<tr>
<td>43</td>
<td>29</td>
<td>128</td>
</tr>
<tr>
<td>46</td>
<td>40</td>
<td>147</td>
</tr>
</tbody>
</table>
Worse type 2 diabetes

Fasting AM blood tests

<table>
<thead>
<tr>
<th>Age</th>
<th>Insulin (U/ml)</th>
<th>Glucose (mg/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>38</td>
<td>22</td>
<td>112</td>
</tr>
<tr>
<td>43</td>
<td>29</td>
<td>128</td>
</tr>
<tr>
<td>46</td>
<td>40</td>
<td>147</td>
</tr>
<tr>
<td>48</td>
<td>26</td>
<td>218</td>
</tr>
</tbody>
</table>
Worse type 2 diabetes with symptoms

Fasting AM blood tests

<table>
<thead>
<tr>
<th>Age</th>
<th>Insulin (U/ml)</th>
<th>Glucose (mg/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>38</td>
<td>22</td>
<td>112</td>
</tr>
<tr>
<td>43</td>
<td>29</td>
<td>128</td>
</tr>
<tr>
<td>46</td>
<td>40</td>
<td>147</td>
</tr>
<tr>
<td>48</td>
<td>26</td>
<td>218</td>
</tr>
<tr>
<td>52</td>
<td>14</td>
<td>357</td>
</tr>
</tbody>
</table>
Worse type 2 diabetes with symptoms

Fasting AM blood tests

<table>
<thead>
<tr>
<th>Age</th>
<th>Insulin (U/ml)</th>
<th>Glucose (mg/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>38</td>
<td>22</td>
<td>112</td>
</tr>
<tr>
<td>43</td>
<td>29</td>
<td>128</td>
</tr>
<tr>
<td>46</td>
<td>40</td>
<td>147</td>
</tr>
<tr>
<td>48</td>
<td>26</td>
<td>218</td>
</tr>
<tr>
<td>52</td>
<td>14</td>
<td>357</td>
</tr>
</tbody>
</table>

Bottom line: Type 2 diabetes is a progressive disorder
Worse type 2 diabetes with symptoms

Fasting AM blood tests

<table>
<thead>
<tr>
<th>Age</th>
<th>Insulin (U/ml)</th>
<th>Glucose (mg/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>38</td>
<td>22</td>
<td>112</td>
</tr>
<tr>
<td>43</td>
<td>29</td>
<td>128</td>
</tr>
<tr>
<td>46</td>
<td>40</td>
<td>147</td>
</tr>
<tr>
<td>48</td>
<td>26</td>
<td>218</td>
</tr>
<tr>
<td>52</td>
<td>14</td>
<td>357</td>
</tr>
</tbody>
</table>

Bottom line: Type 2 diabetes is a progressive disorder
Need to consider therapeutic implications of this.
How do we prevent diabetes or stop the progression of early type 2 diabetes?

- Patients with A1c 5.7–6.4% should be targeted to weight loss of 7% and at least moderate activity (e.g. walking) for at least 150 min/week.
 - Lifestyle change effective as long as 20 years in Da Qing study
 - 7% weigh loss based on US prevention trial (DPP2)
- Metformin therapy for prevention of type 2 diabetes may be considered in those with IGT, IFG, or an A1C 5.7–6.4%
 - Metformin may be as effective as lifestyle if BMI > 35
 - Not better than placebo in older subjects (> age 60)
- Annual monitoring for the development of diabetes
- a-glucosidase inhibitors, orlistat, thiazolidinediones (TZDs), glargine insulin have been shown to decrease incident diabetes to various degrees
- TZDs may prevent the onset of diabetes in subjects at risk and prevent worsening of early diabetes
 - But associated with worrisome adverse effects
 - Effects over long term od concern
- Incretin therapy increases islet mass in rodents
- GRADE study ongoing
ADA Treatment Goals for Glycemic Control

<table>
<thead>
<tr>
<th>Metric</th>
<th>Goal/Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>HgbA1c (%)</td>
<td>< 7.0% (normal 4.0 - 6.0)</td>
</tr>
<tr>
<td>Selected Individuals</td>
<td>As close to normal as possible without significant hypoglycemia</td>
</tr>
<tr>
<td>Preprandial capillary plasma glucose</td>
<td>70-130 mg/100 ml</td>
</tr>
<tr>
<td>Peak postprandial plasma glucose</td>
<td>< 180 mg/100 ml</td>
</tr>
<tr>
<td>Severe lows, limited life expectancy, co-morbidity, children, long hx DM with minimal complications, hypoglycemic unawareness</td>
<td>Less stringent (e.g. HbA1c < 8.0)</td>
</tr>
</tbody>
</table>

Approach to management of hyperglycemia:

- More stringent
- Less stringent

- Risks potentially associated with hypoglycemia, other adverse events
 - Low
 - High

- Disease duration
 - Newly diagnosed
 - Long-standing

- Life expectancy
 - Long
 - Short

- Important comorbidities
 - Absent
 - Few / mild
 - Severe

- Established vascular complications
 - Absent
 - Few / mild
 - Severe

- Resources, support system
 - Readily available
 - Limited

Some important diabetes treatment trials
Glycemic control and macrovascular disease in ACCORD, ADVANCE, and VADT

Large randomized trials directed at the effect of glycemic control on cardiovascular risk in type 2 diabetes in participants at **high risk for vascular events**.

<table>
<thead>
<tr>
<th></th>
<th>ACCORD</th>
<th>ADVANCE</th>
<th>VADT</th>
</tr>
</thead>
<tbody>
<tr>
<td># subjects</td>
<td>10,251</td>
<td>11,140</td>
<td>1,791</td>
</tr>
<tr>
<td>Average age</td>
<td>62</td>
<td>66</td>
<td>60</td>
</tr>
<tr>
<td>A1c control</td>
<td>6.4 vs 7.5 %</td>
<td>6.4 vs 7.0 %</td>
<td>6.9 vs 8.4 %</td>
</tr>
<tr>
<td>Primary results</td>
<td>No decrease in cardiovascular events. Increased cardiovascular mortality with intensive Rx</td>
<td>No decrease in cardiovascular risk Reduced risk of nephropathy</td>
<td>No decrease in cardiovascular risk</td>
</tr>
</tbody>
</table>
Data from DCCT/EDIC and UKPDS

- **DCCT**
 - Nine years after DCCT, incidence of CV events was reduced 57% in former intensive patients
 - Younger age at onset (13-39) with no known CVD

- **UKPDS**
 - 10 years after UKPDS, follow-up showed at 15% decrease in MI in intense treatment group initially on sulfonylurea or insulin; and 33% in more obese treated initially with metformin.
 - Mortality also reduced 13 and 27% respectively

Nathan DM, et. al. *NEJM* 353:2643, 2005
Holman RR, et. al. *NEJM* 359, 1577, 2008
UKPDS: Effects of Treatment on HbA$_1$c in Glucose Control Study

Implications of major Rx trials

• Target of 7.0 % HbA1c still considered valid
• More aggressive treatment may need to be implemented early with cautious approach with more advanced diabetes and cardiovascular disease
• Overly persistent efforts to lower glucose in patients at risk for macrovascular events may not be warranted
• Strong evidence for microvascular benefits of glucose control
• Treat BP, lipids, smoking cessation, nutrition and lifestyle
• Type 3 DM worsens with time. Can we prevent this?
Drug therapy for type 2 diabetes
Metformin

- Near universal acceptance as initial drug therapy in absence of contraindication (e.g. renal failure, hypoxia)
- Decrease hepatic glucose release and increases muscle glucose uptake
- Beneficial effects on weight and lipids
- Lack of hypoglycemia when used alone
- Generic drug with long history of use worldwide
<table>
<thead>
<tr>
<th>Drug</th>
<th>Actions</th>
<th>Mechanism</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfonylureas</td>
<td>↑ β-cell insulin secretion</td>
<td>Potassium channels</td>
<td>Well tolerated, Low cost</td>
<td>Hypoglycemia, Weight gain, Low durability, May reduce myocardial ischemic reconditioning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glipizide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glimepiride</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glyburide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLP-1 agonists</td>
<td>↑ insulin secretion, ↓ glucagon, ↓ gastric emptying, ↑ satiety</td>
<td>Activate GLP-1 receptors in β-cell, and nervous system</td>
<td>Weight loss, Possible ↑ β-cell mass/function, Little hypoglycemia</td>
<td>Nausea, vomiting, diarrhea, Acute pancreatitis risk, ? Medullary thyroid tumors, Long term safety?</td>
</tr>
<tr>
<td>exenatide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liraglutide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPP-4 inhibitors</td>
<td>↑ insulin secretion, ↓ glucagon, ↑ endogenous GLP-1</td>
<td>Prevent GLP-1 break-down</td>
<td>Little or no hypoglycemia, Weight neutral</td>
<td>Urticaria, angioedema, Pancreatitis, Long term safety?</td>
</tr>
<tr>
<td>sitagliptin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vildagliptin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>saxagliptin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>linagliptin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>Well known</td>
<td>Well Known</td>
<td>Effective, “natural”</td>
<td>Hypoglycemia, Weight gain, may need multiple injections and large dose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Drugs for type 2 diabetes beyond Metformin (continued)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Actions</th>
<th>Mechanism</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canagliflozin</td>
<td>Increase urine glucose excretion</td>
<td>Inhibits hSGLT2 (sodium/glucose cotransporter) in renal tubules</td>
<td>Hypoglycemia very unusual</td>
<td>UTIs, vulvovaginitis, balanitis: mostly mild, rarely limit therapy</td>
</tr>
<tr>
<td>Dapaglifloxin</td>
<td></td>
<td></td>
<td>Familial renal glycosuria is a benign disease</td>
<td>Osmotic diuresis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dehydration, Hypotension, Increased hepatic glucose output</td>
</tr>
</tbody>
</table>

Pending are postmarketing studies: a cardiovascular outcomes trial; an enhanced pharmacovigilance program to monitor for malignancies, pancreatitis, hypersensitivity reactions, photosensitivity reactions, liver abnormalities, and adverse pregnancy outcomes; a bone safety study; and two pediatric studies under the Pediatric Research Equity Act.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Actions</th>
<th>Mechanism</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meglitinides</td>
<td>↑ β-cell insulin secretion</td>
<td>Potassium channels</td>
<td>Action focused on time of food intake</td>
<td>Not very effective Other concerns shared with sulfonylureas</td>
</tr>
<tr>
<td>repaglinide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nateglinide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiazolidinediones (TZDs)</td>
<td>↑ Insulin sensitivity mainly in muscle</td>
<td>Activate PPAR-γ</td>
<td>Pioglit ↑ HDL, ↓ TG No hypoglycemia</td>
<td>Any use is questionable Wt gain, edema, CHF, ↑ LDL, bone fractures, bladder CA</td>
</tr>
<tr>
<td>pioglitazone</td>
<td></td>
<td></td>
<td></td>
<td>Rosiglit ↑ CV events</td>
</tr>
<tr>
<td>rosiglitazone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-glucosidase Inhibitors</td>
<td>↓ intestinal glucose absorption</td>
<td>Inhibit α-glucosidase</td>
<td>Nonsystemic No hypoglycemia</td>
<td>Not very effective GI gas, diarrhea</td>
</tr>
<tr>
<td>acarbose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miglitol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>colesevelam</td>
<td>Unclear</td>
<td>Bile acid sequestrant</td>
<td>No hypoglycemia</td>
<td>Constipation, ↑ TGS ↓ absorption of meds</td>
</tr>
<tr>
<td>bromocriptine</td>
<td>↑ Insulin sensitivity</td>
<td>Hypothalamic dopaminergic effect</td>
<td>No hypoglycemia</td>
<td>Dizziness, syncope, nausea, fatigue, rhinitis, Long term safety?</td>
</tr>
</tbody>
</table>
Initial Pharmacologic treatment

- Metformin
 - Goal achieved
 - Goal not achieved
 - Add second drug
 - Another drug
 - What drug?

Severe hyperglycemia

Contraindication or intolerance to metformin

Insulin
Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study (GRADE Study)
Overall Goal of GRADE study

To carry out an unbiased comparison of the most commonly used drugs to treat diabetes in metformin-treated patients.
Screening
Type 2 diabetes
Treated with metformin alone
HbA1c >6.8% at screening
<10 years duration of diagnosed diabetes at screening

Metformin run-in
Titrate metformin to 1000 (min) – 2000 (goal) mg/day

HbA1c 6.8-8.5% at final run-in visit

Randomization
n=5000 eligible subjects

Sulfonylurea (glimepiride) n=1250
DPP-4 inhibitor (sitagliptin) n=1250
GLP-1 analog (liraglutide) n=1250
Insulin (glargine) n=1250
Grade Objectives

• Comparison of the relative effects of four commonly used diabetes medications with different mechanisms of action on durability of glycemic control (i.e. prevention of worsening of the diabetic state)
 – Maintenance of metabolic control, defined as time-to-primary failure with A1c \(\geq 7.0\% \), confirmed, while on maximally tolerated doses of both metformin, up to 2000 mg/d, and the assigned medication
 – Time dependent loss of insulin secretory capacity and insulin sensitivity
• CVD risk factors
• Adverse effects, tolerability and quality-of-life
Grade Problem

• Recruiting is difficult. **We need your help!**
• Major criteria for participation
 – On Metformin alone
 – Diabetes < 10 years
 – A1c somewhere close to range required for eligibility (6.8 to 8.5) (Can be screened even if off a bit)
• What can be done without interfering with a busy practice schedule?
 – Place brochures or poster in waiting room
 – Direct patient to brochure and/or advise to call the number listed
 – If you wish, call us yourself or have staff call
• All participants are required (per eligibility criteria) to have an ongoing relationship with a primary provider.
• We offer recognition as a research partner.
Insulin

Advantages

- Most effective
- “Natural”
- Least expensive
- Once daily for many patients
- Less weight gain than TZD
- Essentially no side effects apart from hypoglycemia

Disadvantages

- Weight gain
- Injections
Figure 1. Schematic Time–Activity Curves for Selected Insulin Formulations. The graph depicts time–activity profiles for selected insulin formulations. For simplicity, the known dose-dependent variability in duration of action and the wide variability in hypoglycemic effect for the selected formulations among patients are not represented. Biphasic insulin preparations are not shown.
Insulin regimens

• Simple: once or twice daily
• Complex: basal and bolus Rx using multiple doses
• Choice depends on severity of diabetes

JAMA 289:2254-2264, 2003
Med Clin N Am 88, 865–895, 2004
FIGURE 1. Plasma glucose and insulin concentrations in six healthy nondiabetic subjects. The shaded area represents the mean ± 1 SD. B = breakfast; L = lunch; S = supper; HS = bedtime snack. (Modified from Rizza et al.)
FIGURE 1. Plasma glucose and insulin concentrations in six healthy non-diabetic subjects. The shaded area represents the mean ± 1 SD. B = breakfast; L = lunch; S = supper; HS = bedtime snack. (Modified from Rizza et al.)
FIGURE 1. Plasma glucose and insulin concentrations in six healthy non-diabetic subjects. The shaded area represents the mean ± 1 SD. B = breakfast; L = lunch; S = supper; HS = bedtime snack. (Modified from Rizza et al.)
U-500 insulin

- 500 units/ml (as opposed to 100 units/ml for U-100 insulin)
- There are no U-500 syringes so, e.g. 25 units drawn in a U-100 syringe will deliver 125 units of insulin.
- Effect begins within 30 minutes, has peak similar to U-100 regular human insulin but has a relatively long duration of activity following a single dose (up to 24 hours) as compared with U-100 regular insulin.
- Formulated as regular insulin but duration longer than regular
- Generally used in multiple doses pre-meals and sometimes HS – but does not match well to meal glucose absorption
- Can be used in pumps

Prescribing information, Eli Lilly Co, Indianapolis, IN
U-100 Insulin Syringe

100 units of Humulin R U-500

100 units of U-100 insulin

5 times more concentrated to allow your patients to inject up to 80% less volume when compared with U-100 insulin.

Prescription

Name: ___________________________ Age: __________

Address: ___________________________ Date: __________

Rx

BID Dosage (U-100 insulin syringe)

Humulin R U-500 (500 units/mL)

Dispense: 1 vial (#20 mL)

Refill: 2 vials

Administer 12.0 units SC 30 minutes ac-breakfast and evening meal using a "U-100 syringe".

Patient instructions: Draw to 24 unit markings on a U-100 insulin syringe 2 times daily, 30 minutes before breakfast and evening meals.

_____________________________ M.D. Refill 1 2 3 4 5

Lilly USA, LLC 2014
Lipid lowering therapy (American Diabetes Association)

- Lifestyle modification: reduction of saturated fat, trans fat, and cholesterol intake; increase of n-3 fatty acids, viscous fiber and plant stanols/sterols; weight loss (if indicated) and physical activity
- Statin therapy should be added to lifestyle, regardless of baseline lipid levels, for diabetic patients
 - with overt CVD
 - without CVD who are over the age of 40 years and have one or more other CVD risk factors (family history of CVD, hypertension, smoking, dyslipidemia, or albuminuria).
- For lower-risk patients than the above statin therapy should be considered if
 - LDL cholesterol remains above 100 mg/dl
 - multiple CVD risk factors.
- Without overt CVD, the goal is LDL cholesterol of 100 mg/dL.
- With overt CVD, the goal is LDL cholesterol of 70 mg/dL with a high dose of a statin as an option.
- If drug-treated patients do not reach the above targets on maximum tolerated statin therapy, a reduction in LDL cholesterol of 30–40% from baseline is an alternative goal.
- Triglycerides: Goals are 50 mg/dL and HDL cholesterol 40 mg/dL in men and 50 mg/dL in women.
- LDL cholesterol–targeted statin therapy remains the preferred strategy.
- Combination therapy has been shown not to provide additional benefit above statin alone.
- Statin therapy is contraindicated in pregnancy.

American Diabetes Association: Standards of Care (Diabetes Care 37, Suppl. 1, Jan. 2014)
Online www.diabetes.org/
ASCVD Statin Benefit Groups

Heart healthy lifestyle habits are the foundation of ASCVD prevention. In individuals not receiving cholesterol-lowering drug therapy, recalculate estimated 10-y ASCVD risk every 4-6 y in individuals aged 40-75 y without clinical ASCVD or diabetes and with LDL–C 70-189 mg/dL.

Definitions of High- and Moderate-Intensity Statin Therapy

- **High**: Daily dose lowers LDL–C by approx. ≥50%
- **Moderate**: Daily dose lowers LDL–C by approx. 30% to <50%

Estimate 10-y ASCVD Risk with Pooled Cohort Equations*

- ≥7.5% estimated 10-y ASCVD risk and age 40-75 y
- Moderate-to-high intensity statin

- No

Heart healthy lifestyle habits are the foundation of ASCVD prevention.

In individuals not receiving cholesterol-lowering drug therapy, recalculate estimated 10-y ASCVD risk every 4-6 y in individuals aged 40-75 y without clinical ASCVD or diabetes and with LDL–C 70-189 mg/dL.

Definitions of High- and Moderate-Intensity Statin Therapy

- **High**: Daily dose lowers LDL–C by approx. ≥50%
- **Moderate**: Daily dose lowers LDL–C by approx. 30% to <50%

Estimate 10-y ASCVD Risk with Pooled Cohort Equations*

- ≥7.5% estimated 10-y ASCVD risk and age 40-75 y
- Moderate-to-high intensity statin

ASCVD prevention benefit of statin therapy may be less clear in other groups

In selected individuals, consider additional factors influencing ASCVD risk and potential ASCVD risk benefits and adverse effects, drug-drug interactions, and patient preferences for statin treatment.

Higher intensity = atorvastatin 40–80 mg
Moderate intensity = atorvastatin 10 mg, pravastatin 40 mg, or simvastatin 20–40 mg

A conservative estimate of adverse events includes excess cases of incident diabetes, myopathy, and hemorrhagic stroke.

BP goals (American Diabetes Association)

- People with diabetes and hypertension should be treated to a systolic blood pressure (SBP) goal of 140 mmHg.
- Lower systolic targets, such as 130 mmHg, may be appropriate for certain individuals, such as younger patients, if it can be achieved without undue treatment burden.
- Patients with diabetes should be treated to a diastolic blood pressure (DBP) 80 mmHg.

American Diabetes Association: Standards of Care (Diabetes Care 37, Suppl. 1, Jan. 2014) Online www.diabetes.org/
HOPE study and MICRO-HOPE substudy. Lancet 2000;355: 253–259
BP treatment (American Diabetes Association)

• Remember lifestyle treatment
• RAS inhibitors have advantages
• Diuretics are effective and often added to ACE/ARB therapy
 – RAS inhibitors and diuretics are effective in reducing CV events in type 2 diabetes
 – RAS inhibitors protect against microvascular complications
• Often need multi-drug therapy, usually include diuretic if triple drug therapy
• If Rx not effective, consider a secondary etiology of hypertension
• Avoid ACE and ARBs and diuretics in pregnancy

American Diabetes Association: Standards of Care (*Diabetes Care* 37, Suppl. 1, Jan. 2014)
Online www.diabetes.org/
A few new ideas
Inhibition of PCSK9: A new way to lower cholesterol

- PCSK9 (proprotein convertase subtilisin/kexin type 9) binds to LDL receptors leading to their degradation.
 - Mutations resulting in lower levels of the circulating protein were associated with reduced LDL and CAD risk
 - PCSK9 is a target of LDL-lowering therapies
- Inhibit by infusion of an RNA interference drug (ALN-PCS) or by antibody administration
 - ALN-PCS is delivered using a lipid nanoparticle and inhibits synthesis of PCSK9
- Highest ALN-PCS dose resulted in average LDL reduction of 40% relative to placebo ($P<0.0001$)
- Still needs larger study – mainly proof of concept at this point

PCSK9 pathway and RNA interference synthesis-inhibitor approach PCSK9 has a role in both intracellular and extracellular degradation of the LDL receptor (LDLR). PCSK9 synthesis inhibitors such as ALN-PCS inhibit PCSK9 synthesis (A) and therefore both intracellular and extracellular functions, whereas PCSK9 blockers (such as anti-PCSK9 antibodies) inhibit only extracellular function (B). mRNA=messenger RNA.

Medtronic i-port

Use with syringe or pen needle

Sterile Paper

Disposable Inserter

Insertion Needle

Septum, accommodates up to 75 needle sticks

Hypo-Allergenic Adhesive Pad

Soft Cannula, 6mm and 9mm lengths

Needle Guard

Soft cannula

Medication delivered directly into subcutaneous tissue

Plastic Lid
New insulins

• U-300 or U-?? Insulins. These will probably need to be administered in pen form to avoid dosing problems
• New long acting insulins
• Super short acting insulin
END

Thanks for your attention

Help us make the GRADE