Emerging Infections & Update in STIs

Judy Streit, MD
Infectious Disease
Carver College of Medicine

Figure 1: Mosquito vectors of chikungunya virus
(A) Blood-gorged A albopictus female feeding on a human host. A albopictus is the primary chikungunya virus vector in the current Indian Ocean outbreak. (B) A aegypti mosquito. A aegypti is the primary chikungunya virus vector in Asian chikungunya outbreaks. Images from United States Department of Agriculture.
Objectives

- Know the evolving epidemiology and risk of chikungunya & *Babesia* infection
- Recognize features of chikungunya infection and babesiosis and methods of diagnosis
- Review evolving diagnostic and treatment strategies for certain STDs

Disclosures: None
Chikungunya Virus

Family Togaviridae

-Alphavirus (29 SS RNA viruses)

Old World: 6 cause human joint dz

• O’nyong-nyong virus
• Ross River virus
• Mayaro virus

New World: Encephalitis Viruses (EEEV, VEEV)

Reportable illness
Chikungunya Life Cycle
Evolving Profile of Outbreaks
(Simon Curr inf Dis Rep 2011;13:218)

Current global profile

African profile
- Sporadic cases
- Focal urban outbreaks
- Wild primates
- Forest-dwelling mosquitoes: Ae. fusciger, Ae. taylori
- Humans

Asian profile
- Focal urban outbreaks
- Humans
- Peridomestic mosquitoes: Ae. aegypti, Ae. albopictus

Timeline:
- 1954
- 2004
- 2006
- 2011
Imported Chikungunya: France 2014
(Paty Euro Surveill 2014;19(28):20856)
U.S. Cases of Chikungunya 2015 (CDC)
43 cases (FL, NY > TX, PA, etc); 45 cases in territories
Aedes vectors in U.S.
Chikungunya: Clinical Illness

- Chikungunya = “that which bends up”
 Makonde (Tanzania)
- High rates of illness if infected (~95%)
- Incubation: 3-7 days
- Acute phase: abrupt fever, severe arthralgia & myalgias, prostration > rash

 High viral load [10(9) - 10(12) copies/ml]
- Chronic phase: Polyarthritis, enthesitis, soft tissue pain & fatigue x weeks to years
Chikungunya: Time Course
(Pialoux Lancet Inf Dis 2007 7:319)

Figure 6: Biological diagnosis of chikungunya
Acute Chikungunya
(Pialoux Lancet Inf Dis 2007;7:319)

<table>
<thead>
<tr>
<th></th>
<th>Malaysia 1998 (%)</th>
<th>Réunion 2005–Feb 2006 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin rash</td>
<td>50</td>
<td>39</td>
</tr>
<tr>
<td>Myalgia</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Headache, spinal pain</td>
<td>50, 50</td>
<td>70, NR</td>
</tr>
<tr>
<td>Arthralgia (all types)</td>
<td>78</td>
<td>100</td>
</tr>
<tr>
<td>Large joints</td>
<td>18</td>
<td>NR</td>
</tr>
<tr>
<td>Fever</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Number of reported cases</td>
<td>51</td>
<td>504</td>
</tr>
</tbody>
</table>

NR=not reported. Data for Malaysia from Lam and colleagues (2001) and data for Réunion from http://www.invs.sante.fr.

Table: Frequency of clinical manifestations during the 1998 Malaysian epidemic and the 2005 Réunion epidemic
Adult Skin Manifestations: Return from Reunion Island

(Simon Medicine 2007; 86(3):123)
Rash of Chikungunya in Children
Laboratory Findings: Acute Dz

- Elevated LDH, AST, ALT, GGT
- Elevated CK
- Mild thrombocytopenia
- No or mild leukopenia
- Elevated ESR and CRP in majority

Rare: marked cytopenias
Chikungunya vs Dengue

Epidemiology overlaps
Identical vectors
Dengue: differentiating features
• Lymphadenopathy
• Retro-orbital/ocular pain
• Diaphoresis
• Prominent back pain >> peripheral joint pain
• Absent arthritis/tenosynovitis
• Bleeding more common
Rare/Uncommon Complications

- Severe cytopenias
- Myocarditis
- Meningoencephalitis, GBS, flaccid paralysis
- Mild hemorrhage
- Neonatal infection (if mom viremic near parturition)
- Incidence of severe dz: < 0.02%

more common w/ older age/co-morbidities

(Reunion Island: mortality rate est 0.3-1%)
Acute Chikungunya

Diagnosis

- **Serology (ELISA)**
 - IgM (usually present by Day 5-7 of illness) or
 - IgG (us by 2 wk; 4x rise b/t acute/convalesc.)
 (caveats: x-reactive Ab, FN w/ cryoglob’s, persistent IgM x mos)

- **Viral PCR of blood** (or vesicle fluid)
 - Through Day 7 of illness

- **Viral culture**: not routinely used (BSL 3)

Treatment: pain medications/NSAIDs; avoid ASA
 - steroids effective but w/ rebound effect
Second Stage of Chikungunya (>10 days)

- Persistent/relapsing arthralgias and stiff joints
- Exacerbation of prior rheumatic conditions
- Tenosynovitis: usually > 2 sites (hypertrophic) wrists/hands and ankles
- Transitory vascular disorders (Raynaud syndrome) possibly 2nd to mixed cryoglobulins
- Decreased strength
- Ocular: ant uveitis, retinitis, episcleritis, optic neuritis
- Chronic sx’s associated with:
 - Age > 60 yrs
 - High viral load
 - High [TNF-a] and [IL12] (Hoaru)
Joint Manifestations: Return from Reunion Island; > 10 d illness

(Simon Medicine 2007; 86(3):123)
MSK DZ of chronic CHIK (Simon Curr Inf Dis Resp 2011;13:218)
Babesiosis

- Emerging Infection, nationally reportable ’11
 Incr recog/# immunocompr; Changing ecology
- Apicomplexan (malaria, toxo); > 100 spp infect animals
 2nd most-common blood parasite in mammals (<tryps)
- Human infx: U.S.—*B. microti*

Ixodes scapularis vector; Mice/deer reservoir
 Rare: *B. duncani* (WA/CA) or *B. divergens*-like (KY/MI/WA)
Risk: Transfusion transmission
nejm babesia

Figure 1. Geographic Areas Where Human Babesiosis and Ixodes Tick Vectors Are Endemic.
Life Cycle of Babesia
(Hunfeld Int J Parsit 2008 38:1219)
Babesia: Pathogenesis and Burden in U.S.

(Lobo Curr Opin Hematol 2012 12:170)(CDC--graph)
Wide spectrum of clinical severity

Sx’s: 1-4 wks after bite; 1-9 wks after PRBCs
- Gradual malaise, then fever/chills/sweat
- Myalgia, cough, arthralgia, nausea > abd pain, photophobia, depression, conjunctivitis,

Exam: splenomegaly, OP erythema, jaundice

Labs: low hgb/hapto & plt’s; incr retic/LDH
Immune Competence & Babesiosis

Immunocompetent: 25% no sx’s
- If sx’s: 1-2 wks F/C, fatigue x mos
- A’sx parasitemia x months w/ tx; > 1 yr w/o tx

Immunodeficient: can see fulminant dz
- Splenect, CA, SOT, HIV, SC, a-TNF, X-age
- ARDS, DIC, CHF, coma, liver failure, AKI
- Fatality rate: up to 20% w/ immunosuppression
Diagnosis of Babesiosis

- Consider: any pt w/ febrile illness & residence in/travel to endemic area < 2 mos or blood transfusion < 6 mos
- Strong clinical suspicion required since no classic signs
- Automated blood counter will not detect
- Suspect co-infx w/ Lyme/Anaplasma if more severe disease/poor response to tx
Thin Smears w/ Babesia microti
Diagnostic Algorithm
(Vannier nejm 2012;366(25):2397)

- Patient at risk for *Babesia microti* infection
 - Lives or travels where babesiosis is endemic
 - Blood transfusion within 6 mo
 - Strong suspicion of babesiosis

- Giemsa or Wright staining of thin blood smear

- Negative
 - If symptoms persist
 - Repeat blood smear
 - Negative: Repeat testing if illness is severe
 - Positive: Antimicrobial therapy

- Positive
 - Antimicrobial therapy
 - PCR or antibody assay
 - Negative: Repeat testing if illness is severe
 - Positive: Consider antimicrobial therapy
Transfusion-transmitted Babesia

- Most common & potentially morbid microbiologic threat of transfusion (Katz ‘14 Transfus)

• CDC compiled cases transfused 1979-2009
• Assume under-reporting and missed dx’s
• 162 cases; donors implicated for 86%
• PRBCs >>> plts; 18% all-cause mortality
• All seasons; Many pts at risk of severe dz
• 19 states, 87% in 7 main endemic states
- Tonnetti (‘09 Transfusion): 5/18 fatal cases
Transfusion-Transmitted Babesia Timeline

(Herwaldt Annals Int Med 2011 155(8):509)
Transfusion-Transmitted Babesia
(Herwaldt Annals Int Med 2011 155(8):509)

Figure 3. Box-and-whisker plots of the distributions of time from transfusion to various events for U.S. transfusion-associated Babesia microti index cases, 1979–2009.
Blood Supply & Babesia

• No FDA-approved screening test
• Regional risk: broad policy more challenging
• Current query of hx of babesiosis
• Assessed Serology or PCR:
• Unfavorable cost/benefit ratio in safety budgets
Treatment of Babesiosis *(Table: Vannier nejm)*

Table 1. Antimicrobial Treatment of Human Babesiosis.*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atovaquone and azithromycin†</td>
<td>Adult, 750 mg; pediatric, 20 mg/kg (maximum, 750 mg/dose) every 12 hr</td>
</tr>
<tr>
<td>Atovaquone</td>
<td>Adult, 500 mg on day 1 and 250 mg on subsequent days; pediatric, 10 mg/kg (maximum, 500 mg/dose) on day 1 and 5 mg/kg (maximum, 250 mg/dose) on subsequent days</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>Adult, 600 mg every 8 hr; pediatric, 7–10 mg/kg (maximum, 600 mg/dose) every 6–8 hr</td>
</tr>
<tr>
<td>Clindamycin and quinine</td>
<td>Adult, 300–600 mg every 6 hr; pediatric, 7–10 mg/kg (maximum, 600 mg/dose) every 6–8 hr</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>Adult, 650 mg every 6–8 hr; pediatric, 8 mg/kg (maximum, 650 mg/dose) every 8 hr</td>
</tr>
</tbody>
</table>

No sx’s & immunocompetent: Tx if continued infx @ 3 months
Wks of tx depends on immunocompetence/relapse (1-2 wks vs 4+ wks)
High parasitemia: adjunctive RBC exchange
Poor tolerance w/ quinine regimen (cinchonism, N/V)
Monitor parasitemia load if severely ill until < 5%
Part 3: Update of STIs

- Recommended screening tests for populations
- Evolving aspects of NGU
- Evolving aspects of Tx of Chlamydia, Gonorrhea
Sexually Active MSM: Annual Screening Tests & Other Care

- HIV if pt/partner w/ > 1 partner
- Syphilis serology
- Urethral** Chlamydia/Gonorrhea (urine NAAT)
- Rectal** Chlamydia/Gonorrhea (rectal swab for NAAT)
- Pharyngeal** Gonorrhea (NAAT preferred)
 (STI screen q 3-6 months if ongoing multiple partners)
- Hep B sAg
- If HIV (+): Hep C Ab (Viral load if CD4<200 & incr ALT)
 (HPV vaccine if ≤ 26 yrs; Hep A/B vaccines if nonimmune)
 (**based on sexual practices/sites of exposure)
 (NAAT=nucleic acid amplification test)
Extragenital GC/CT Infection in MSM
MSM @ STD Clinic (Patton Clin Inf Dis 2014;58:1564)

GC: 8% pharyngeal, 10% rectal (at recent visit or prior year)
CT: 32% pharyngeal, 46% rectal

Graph: proportion of positive GC/CT tests w/ neg urethral tests
CT Screening and Women

(Gratrix Clin Inf Dis 2015;60:398) STI clinic: women screened rectally & GU

3055 women screened

Prevalence rectal CT: 12-13%

Rectal scrn: incr detection 44%

25% of rectal-only reported AI

Table 1. Prevalence of Chlamydia Among Women Who Underwent Rectal Screening by Sexually Transmitted Infection Clinic, 20 July–31 December 2012 (N = 3055)

Anatomical Site	Calgary			
	No. Tested	No. Positive	No. Tested	No. Positive
Any site	1570	204 (13.0)	1485	256 (17.2)
Rectal	1570	183 (11.7)	1485	201 (13.5)
Cervix	1500	106 (7.1)	1278	169 (13.2)
Urine	43	4 (9.3)	125	8 (6.4)

Chlamydia cases

<table>
<thead>
<tr>
<th></th>
<th>Calgary (n = 191), No. (%)</th>
<th>Edmonton (n = 241), No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectal only</td>
<td>89 (46.6)</td>
<td>43 (17.8)</td>
</tr>
<tr>
<td>Genitourinary and rectal</td>
<td>81 (42.4)</td>
<td>143 (59.3)</td>
</tr>
<tr>
<td>Genitourinary only</td>
<td>21 (11.0)</td>
<td>55 (22.8)</td>
</tr>
</tbody>
</table>
N. gonorrhoea: Whom to Screen

Sexually active women < 25 yrs

Other women:
• New or multiple partners
• Prior gonorrhea or other STIs
• Commercial sex workers, illicit drug use
• Living in communities w/ high prevalence

MSM at high risk
(Not MSW)
Possible Causes Recurrent/Persistent NGU

Mycoplasma genitalium: azithro if objective urethritis

? TCN-resistant *Ureaplasma* (inconsistent data)

Trichomonas vaginalis: MSW

- Some ref labs: urine-based *T. vaginalis* NAAT
- NAAT more sensitive than culture
- In high-prevalence areas: presumptive metronidazole 2 g or tinidazole 2 g x 1 after failed 1st-line tx for MSW

HSV
Mycoplasma genitalium in STIs

Cause of male urethritis (sole or co-infx)
• ~20% NGU; ~25% Non-CTU; 30% persistent urethritis

Less definitive cause of female STI
• Found in lower, upper genital tract, often a’sx
• Possible role in cervicitis, PID, pre-term delivery

Diagnosis: no FDA-approved test available
• Suspect: persistent/recurrent urethritis/cerv/PID

Tx: Doxy cure 31%; Azithro cure :85→40%
 Moxi 7-14D if failure w/ azithro
Chlamydia: Evolving Tx

- **Doxycycline more effective than azithro**
 (NGU per: Sena et al. J Inf Dis 2012;206:357)
 (CDC maintains Azithro or Doxy as 1st line for CT tx)

- **Anorectal disease**: azithro better than doxy

- **Pregnancy**: Amoxicillin moved to alternate list
 (b/c persistent organisms in vitro)
Gonorrhea—Percentage of Reported Cases by Sex and Selected Reporting Sources, United States, 2012

*HMO=health maintenance organization; HD=health department

NOTE: Of all cases, 11.7% had a missing or unknown reporting source. Among cases with a known reporting source, the categories presented represent 66.2% of cases; 33.8% were reported from sources other than those shown.
GISP: Percent of *Neisseria gonorrhoeae* isolates with resistance or intermediate resistance to ciprofloxacin, 1990–2005

Note: Resistant isolates have ciprofloxacin MICs ≥ 1 μg/ml. Isolates with intermediate resistance have ciprofloxacin MICs of 0.125 - 0.5 μg/ml. Susceptibility to ciprofloxacin was first measured in GISP in 1990.
Percentage of *Neisseria gonorrhoeae* Isolates with Elevated Cefixime Minimum Inhibitory Concentrations (MICs) ($\geq 0.25 \mu g/ml$), Gonococcal Isolate Surveillance Project (GISP), 2005 – 2012

NOTE: Isolates were not tested for cefixime susceptibility in 2007 and 2008.
Percentage of *Neisseria gonorrhoeae* Isolates with Elevated Azithromycin Minimum Inhibitory Concentrations (MICs) (≥2.0 μg/ml), Gonococcal Isolate Surveillance Project (GISP), 2005 – 2012
Penicillin, Tetracycline, and Ciprofloxacin Resistance Among Neisseria gonorrhoeae Isolates, Gonococcal Isolate Surveillance Project (GISP), 2012

NOTE: PenR = penicillinase producing Neisseria gonorrhoeae and chromosomally mediated penicillin-resistant N. gonorrhoeae; TetR = chromosomally and plasmid mediated tetracycline-resistant N. gonorrhoeae; and QRNG = quinolone-resistant N. gonorrhoeae.
Gonorrhea Treatment per Revised CDC Guidelines (2013 update of 2010 pub.)

- Ceftriaxone **250 mg** IM plus
 - Azithro (1 gm) or Doxy** (bid x 7 days)
- Cefixime: no longer 1st-line tx
 - If used: perform test-of-cure from site @ 1 wk
- Persistent infection: **culture w/ susceptibilities**
- 2nd line approaches:
 - If no ceftriaxone: Cefixime 400 mg + Azithro/Doxy
 - Severe cephalosporin allergy: Azithro 2 gm**
 - Perform **test-of-cure** 1 week (?) after treatment!
- Tx partner w/o office eval: cefixime/azithro
- Stay vigilant for cephalosporin tx failure (cx w/ suscept)
 see proposed 2014 changes
Antibiotics for *N. gonorrhea* in U.S.
(Kirkcaldy Sex Transm Inf 2013;89:iv5-iv10)
2014 CDC Proposals for *N. gonorrhoea* Tx
(document seeking public comment)

Ceftriaxone 250 mg IM + azithro 1 gm (std)

If cephalosporin allergy:
- Gent 240 mg IM/azithro 2 gm **or**
- Gemifloxacin 320 mg/azithro 2 gm (~8% vomited)

Doxycycline no longer a 2nd agent to ceph’s

Azithro: mono-tx no longer recommended

If dual tx used: test-of-cure if w/ pharyngeal dz only

Cefixime and azithro for partner tx
Take-home points

• Int’l travelers have risk of chikungunya; potential for wider US transmission
• We have conditions for endemic babesiosis
• Transfusion recipients have risk of babesiosis
• Recommendations for screening populations for STIs are changing
• Tx rec’s for common STI organisms are changing; causative organisms expanding