Clinical Pearls in Renal Medicine

• Joel A. Gordon MD
• Professor of Medicine
• Nephrology Division
• Staff Physician
• Kidney Disease and Blood Pressure Clinic

These materials provided for reference use at the 43rd Annual Family Medicine Refresher Course for the Family Physician. Permission from the author must be sought before reuse or redistribution.
Disclosures

• None of my financial holdings will have any influence on the topics I have chosen to present at today's Family Medicine CME conference. I do not own any equity positions in the any of the pharmaceutical companies that manufacture the drugs I am going to discuss.
Clinical Case # 1

A 54 year-old male with type 2 diabetes and early CKD stage 3 felt to be secondary to diabetic nephropathy comes to your office for follow up. BP's at home on losartan 50 mg/day and chlorthalidone 12.5 mg/day are 150/95 mm Hg. BP is 154/94 mm Hg and there is no edema. Creatinine is 1.5 mg/dL, e GFR is 52 ml/min, and urine P/C ratio is 0.8.
Clinical Case # 1: Question

Which of the following is the most appropriate next step to treat his hypertension and proteinuria in diabetic nephropathy?

- Double losartan to 100 mg/day
- Double chlorthalidone to 25 mg/day
- Add lisinopril 10 mg/day
- Add amlodipine 5 mg/day
- Add carvedilol 12.5 mg bid
Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy

Linda F. Fried, M.D., M.P.H., Nicholas Emanuele, M.D., Jane H. Zhang, Ph.D., Mary Brophy, M.D., Todd A. Conner, Pharm.D., William Duckworth, M.D., David J. Leehey, M.D., Peter A. McCullough, M.D., M.P.H., Theresa O’Connor, Ph.D., Paul M. Palevsky, M.D., Robert F. Reilly, M.D., Stephen L. Seliger, M.D., Stuart R. Warren, J.D., Pharm.D., Suzanne Watnick, M.D., Peter Peduzzi, Ph.D., and Peter Guarino, M.P.H., Ph.D., for the VA NEPHRON-D Investigators*

N ENGL J MED 369;20 NEJM.ORG NOVEMBER 14, 2013
Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy

• Purpose of the paper

• Designed to test the safety and efficacy of combination therapy ACE inhibitor and an ARB as compared with ARB mono therapy

• 1448 VA patients with type 2 DM and DN were randomized to losartan plus lisinopril vs losartan mono therapy for 48 months
Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy

• Primary end points
 • Decline in e GFR
 • ESRD
 • Death
Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy

- Secondary end points
- First occurrence of a decline in eGFR
- Tertiary end points
 - Cardiovascular events
 - Change the slope of the e GFR
 - Change in albuminuria in one year
Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy

• Adverse events and safety
• All cause mortality
• AKI
• Hyperkalemia
• $[K+] > 6.0$ meq/L
Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy

- Study terminated early in October of 2012
- Safety concerns over the following adverse events
 - AKI
 - Hyperkalemia
Figure 1A
Table 2
Table 3
Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy: Take home points

• Recommendation: Avoid combination therapy with ACE inhibitors and ARB's in patients with diabetic nephropathy
 • No benefit in outcomes in any parameters measured
 • Higher incidence of complications

• Unanswered questions:
 • Do these findings apply to other renal diseases and other populations other than patients with diabetic nephropathy?
 • Do these findings apply to combining ACE inhibitors or ARB's with aldosterone receptor antagonists such as spironolactone?
Clinical Case # 2

- A 51 year old Caucasian female with type 2 diabetes for 7 years and stage 3 CKD comes to your office for follow up. She is taking glyburide 5 mg/day, lisinopril 20 mg/day and chlorthalidone 12.5 mg every other day. Her BMI is 34, BP is 130/85 mm Hg, and there is no edema. Creatinine is 1.3 mg/dL with an e GFR of 46 ml/min. Hgb A1C is 8.1%.
Clinical Case # 2: Question

- Which of the following would you do to treat her diabetes and lower her Hgb A1C?
 - Double glyburide to 10 mg/day
 - Discontinue glyburide and start glipizide at 20 mg/day
 - Begin insulin therapy
 - Begin metformin at 500 mg/day and increase to 2000 mg/day to achieve target A1C
Review

Metformin in Patients With Type 2 Diabetes and Kidney Disease
A Systematic Review

Silvio E. Inzucchi, MD; Kasia J. Lipska, MD, MHS; Helen Mayo, MLS; Clifford J. Bailey, PhD; Darren K. McGuire, MD, MHSc

Metformin in Patients with Type 2 Diabetes and Kidney Disease: A Systematic Review

• Purpose of the Paper

• To review whether or not there is truly an increased incidence of metformin associated lactic acidosis (MALA) in patients with impaired kidney function
Metformin in Patients with Type 2 Diabetes and Kidney Disease: A Systematic Review

- 65 papers selected between 1950-2014 that were of the following categories:
 - Pharmacokinetic/metabolic investigations: 10
 - Case series: 20
 - Cross-sectional, observational, and pharmacosurveillance: 31
 - Meta analyses: 3
 - Clinical trial: 1
Metformin in Patients with Type 2 Diabetes and Kidney Disease: A Systematic Review

- Current labeling guidelines from the FDA

Box. Current US Food and Drug Administration Prescribing Guidelines for Metformin as Related to Kidney Function

- Metformin is contraindicated in "renal disease or renal dysfunction (e.g., as suggested by serum creatinine levels ≥1.5 mg/dL [males], ≥1.4 mg/dL [females]) or abnormal creatinine clearance (CrCl)."
- Metformin "should not be initiated in patients ≥80 years of age unless measurement of creatinine clearance demonstrates that renal function is not reduced."

Source: Metformin final printed labeling.²
Metformin in Patients with Type 2 Diabetes and Kidney Disease: A Systematic Review

- Although metformin clearance is decreased in CKD, drug levels remain within the therapeutic range when the e GFR is > 30 ml/min
- No consistent link between metformin and lactic acidosis has been found
- Incidence of lactic acidosis is rare
- Frequency of lactic acidosis in patients taking metformin is very low
Metformin in Patients with Type 2 Diabetes and Kidney Disease: A Systematic Review

• Conclusion from the data reviewed:

• As long as kidney function is stable and the patient is observed closely, metformin is unlikely to measurably increase the risk of lactic acidosis in those with mild to moderate CKD

• e GFR: 30-60 ml/min
Table 2

Expanded use of metformin in patients with CKD:
Take home points

- Drug levels and lactate levels in patients with stage 3 CKD generally remain within the therapeutic and normal range, respectively.

- The overall incidence of lactic acidosis in metformin users is indistinguishable for the background rate in the overall population with diabetes.

- Observational studies suggest a potential benefit from metformin on micro-vascular outcomes in patients with CKD.

- Caution: No benefit in macro-vascular complications when A1C is “Optimal” at 7.0%.

- Expansion of metformin use in patients with Stage 3 CKD seems appropriate given the potential benefit and over the implied risk.
Clinical Case # 3

- A 45 year old male with CKD stage 3 is seen in your office for a routine appointment. He is feeling well and has no complaints. Current medications include lisinopril, insulin, amlodipine, and spironolactone. PE reveals a BP of 131/80 mm Hg. There are no crackles and there is no edema. Labs reveal [K+] of 5.9 meq/L. Urine protein/creatinine ratio is 0.4 Creatinine is stable at 1.7 mg/dL.

- You counsel him on dietary K+ intake and prescribe chlorthalidone, 12.5 mg/day

- He returns 4 weeks later without any complaints and he states he has implemented the dietary and medication change(s) from the last visit

- [K+] in 5.6 meq/L
Clinical Case # 3:
Question

- Which of the following would you recommend next to treat his hyperkalemia?
 - Stop the lisinopril
 - Stop the spironolactone
 - Prescribe Sodium polystyrene sulfonate (Kayexalate)
 - Prescribe Patiromer 8.4 grams bid
 - Double the chlorthalidone to 25 mg/day
Patiromer in Patients with Kidney Disease and Hyperkalemia Receiving RAAS Inhibitors
Patiromer in Patients with Kidney Disease and Hyperkalemia Receiving RAAS Inhibitors

• Purpose of the paper

• To evaluate the safety and efficacy of patiromer in patients with chronic kidney disease who were receiving at least one RAAS inhibitor and who had hyperkalemia.
What is Patiromer?

- Patiromer
 - Non absorbed spherical bead that binds potassium in exchange for calcium
 - Works predominantly in the distal colon
 - FDA approved for the treatment of hyperkalemia in 2015
 - Very little of the drug is absorbed so little calcium is absorbed
Patiromer in Patients with Kidney Disease and Hyperkalemia Receiving RAAS Inhibitors

- Study design

- Single blind treatment phase for 4 weeks
 - 4.2 or 8.4 grams of Patiromer initially
 - Up to 21.4 grams needed to achieve goal [K+]

- Placebo controlled randomized withdrawal phase for 8 weeks
 - Patiromer or placebo
Figure 1
Figure 3
Patiromer in Patients with Kidney Disease and Hyperkalemia Receiving RAAS Inhibitors

• Safety and tolerability

• Monitoring of adverse events

 • Hypokalemia: 3.0%

 • GI side effects: Most common

 • Constipation: 11%

 • Diarrhea: 3%
New therapies for the treatment of hyperkalemia: Take home points

- New agent FDA approved in 2015: Patiromer
 - Allow patients to safely continue RAAS inhibitors that seem to benefit them the most
 - Poised to replace resin therapy as a safe long-term oral therapy for hyperkalemia

- Unanswered questions
 - Will this agent be useful in treating acute hyperkalemia?
 - Will the potassium lowering effect be maintained for greater than 28 days?

- Long Term Safety profile: Unknown
Learning Objectives

• At the conclusion of this activity, members of the audience will be able to

• Apply the principles of EBM to make decisions about the dual blockade of the RAAS in treating patients with hypertension or CKD with proteinuria

• Determine which patients with type 2 DM and CKD would benefit from the use of metformin without the risk of lactic acidosis

• Evaluate the safety and efficacy of a new oral medication approved for the treatment of hyperkalemia
Conclusion

• Combination angiotensin inhibition for the treatment of diabetic nephropathy has no proven benefit and increases the risk for AKI and hyperkalemia

• Expanded use of metformin in CKD stage 3 appears safe and awaiting FDA approval for expanded use in this patient population

• Newer therapies for long term treatment of hyperkalemia may allow for ongoing use of agents that block the RAAS that are often prescribed in CKD