Non-Insulin Pharmacotherapy for Type 2 Diabetes Mellitus

Kevin T. Schleich, Pharm.D., BCACP
Clinical Pharmacy Specialist, Department of Family Medicine
University of Iowa Hospitals and Clinics
Objectives

• Become more familiar with guideline recommendations for treatment of type 2 diabetes mellitus

• More fully understand the following aspects of different medications available for the treatment of type 2 diabetes mellitus:
 • Mechanism of action
 • Place in therapy
 • Expected efficacy
 • Potential adverse effects
 • Cost of therapy

• Get introduced to emerging therapies for the treatment of type 2 diabetes mellitus
ADA Treatment Algorithm

• ADA includes the following non-insulin medication options:
 • Metformin
 • Sulfonylureas
 • Thiazolidinedione
 • DPP-4 Inhibitors
 • SGLT-2 Inhibitors
 • GLP-1 Receptor Agonists
ADA Treatment Algorithm

Healthy eating, weight control, increased physical activity, and diabetes education

Mono-therapy
- Efficacy
- Hypoglycemia
- Weight
- Side effects
- Costs

Dual therapy
- Efficacy
- Hypoglycemia
- Weight
- Side effects
- Costs

Triple therapy

Combination injectable therapy

If A1C target not achieved after ~3 months of monotherapy, proceed to 2-drug combination (order not meant to denote any specific preference—choice dependent on a variety of patient and disease-specific factors):

<table>
<thead>
<tr>
<th>Drug 1</th>
<th>Drug 2</th>
<th>Drug 3</th>
<th>Drug 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin</td>
<td>Metformin</td>
<td>Metformin</td>
<td>Metformin</td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>Thiazolidinedione</td>
<td>DPP-4 inhibitor</td>
<td>SGLT2 inhibitor</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
<td>intermediate</td>
<td>intermediate</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>low risk</td>
<td>low risk</td>
</tr>
<tr>
<td>Weight gain</td>
<td>Weight loss</td>
<td>Hypoglycemia</td>
<td>Hypoglycemia</td>
</tr>
<tr>
<td>rare</td>
<td>rare</td>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>

If A1C target not achieved after ~3 months of dual therapy, proceed to 3-drug combination (order not meant to denote any specific preference—choices dependent on a variety of patient and disease-specific factors):

<table>
<thead>
<tr>
<th>Drug 1</th>
<th>Drug 2</th>
<th>Drug 3</th>
<th>Drug 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin</td>
<td>Metformin</td>
<td>Metformin</td>
<td>Metformin</td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>Thiazolidinedione</td>
<td>DPP-4 inhibitor</td>
<td>SGLT2 inhibitor</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
<td>intermediate</td>
<td>intermediate</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>low risk</td>
<td>low risk</td>
</tr>
<tr>
<td>Weight gain</td>
<td>Weight loss</td>
<td>Hypoglycemia</td>
<td>Hypoglycemia</td>
</tr>
<tr>
<td>rare</td>
<td>rare</td>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>

If A1C target not achieved after ~3 months of triple therapy and patient (1) on oral combination, move to injectables; (2) on GLP-1-RA, add basal insulin; or (3) on optimally titrated basal insulin, add GLP-1-RA or mealtime insulin. In refractory patients consider adding TZD or SGLT2i.

<table>
<thead>
<tr>
<th>Drug 1</th>
<th>Drug 2</th>
<th>Drug 3</th>
<th>Drug 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin</td>
<td>Metformin</td>
<td>Metformin</td>
<td>Metformin</td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>Thiazolidinedione</td>
<td>DPP-4 inhibitor</td>
<td>SGLT2 inhibitor</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
<td>intermediate</td>
<td>intermediate</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>low risk</td>
<td>low risk</td>
</tr>
<tr>
<td>Weight gain</td>
<td>Weight loss</td>
<td>Hypoglycemia</td>
<td>Hypoglycemia</td>
</tr>
<tr>
<td>rare</td>
<td>rare</td>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>

Permission from the author must be sought before reuse or redistribution.
AACE Treatment Algorithm

• AACE includes the following non-insulin medication options:
 • Metformin
 • GLP-1 Receptor Agonists
 • DPP-4 Inhibitors
 • Alpha-glucosidase Inhibitors
 • SGLT-2 Inhibitors
 • Thiazolidinediones
 • Sulfonylureas
 • Glinides
 • Bile Acid Sequestrants
 • Bromocriptine

Permission from the author must be sought before reuse or redistribution.
AACE Treatment Algorithm

LIFESTYLE THERAPY
(Including Medically Assisted Weight Loss)

Entry A1C < 7.5%

MONOTHERAPY*
- Metformin
- GLP-1 RA
- SGLT-2i
- DPP-4i
- TZD
- AGi
- SU/GLN

If not at goal in 3 months proceed to Dual Therapy

Entry A1C ≥ 7.5%

DUAL THERAPY*
- GLP-1 RA
- SGLT-2i
- DPP-4i
- TZD
- Basal Insulin
- Colesevelam
- Bromocriptine QR
- AGi
- SU/GLN

If not at goal in 3 months proceed to Triple Therapy

Entry A1C > 9.0%

SYMPTOMS
NO
- DUAL Therapy
OR
- TRIPLE Therapy
YES
- INSULIN ± Other Agents

MET or other 1st-line agent

TRIPLE THERAPY*
- GLP-1 RA
- SGLT-2i
- TZD
- Basal insulin
- Colesevelam
- DPP-4i
- SU/GLN

If not at goal in 3 months proceed to or Intensify insulin therapy

ADD OR INTENSIFY INSULIN
Refer to Insulin Algorithm

LEGEND
- Few adverse events and/or possible benefits
- Use with caution

PROGRESSION OF DISEASE

COPYRIGHT © 2016 AACE MAY NOT BE REPRODUCED IN ANY FORM WITHOUT EXPRESS WRITTEN PERMISSION FROM AACE.

These materials provided for reference use at the 43rd Annual Family Medicine Refresher Course for the Family Physician. Permission from the author must be sought before reuse or redistribution.
What Are All These Medications?
Metformin
(First-Line Unless Contraindicated)

• **Mechanism:**
 • Inhibits hepatic gluconeogenesis
 • Enhances insulin sensitivity in muscle and fat

• **Efficacy:** ↓ A1c by 1.0% to 1.5%

• **Adverse Effects:**
 • **Common:** nausea and GI upset (take with food, start at low dose)
 • **Severe:** lactic acidosis (SCr ♀ >1.4 m/gdL; ♂ >1.5 mg/dL)

• **Dose:** start at 500 mg daily, increase slowly to max 2550 mg/d
 • Max of 2000 mg/d of XR version

<table>
<thead>
<tr>
<th>Weight Effect</th>
<th>Hypoglycemia Risk</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral to ↓</td>
<td>Low to No risk</td>
<td>$(4 list)</td>
</tr>
</tbody>
</table>
Metformin

Use of Metformin in the Setting of Mild-to-Moderate Renal Insufficiency

Kasia J. Lipska, MD1
Clifford J. Bailey, PhD, FRCF2
Silvio E. Inzucchi, MD3

• Lactic acidosis extremely rare with metformin, compared to original biguanide phenformin

• Metformin-associated lactic acidosis \sim2 per 100,000 patient years

<table>
<thead>
<tr>
<th>Estimated GFR (mL/min)</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 45</td>
<td>No renal contraindication to metformin</td>
</tr>
<tr>
<td>30 – 45</td>
<td>Max dose of 1000 mg daily</td>
</tr>
<tr>
<td>< 30</td>
<td>Discontinue metformin</td>
</tr>
</tbody>
</table>

These materials provided for reference use at the 43rd Annual Family Medicine Refresher Course for the Family Physician. Permission from the author must be sought before reuse or redistribution.
Sulfonylureas

- **Mechanism:** stimulates the pancreas to secrete more insulin

- **Available Medications:**
 - **First Generation:** chlorpropamide, tolazamide, tolbutamide
 - **Second Generation:** glyburide, glipizide (40 mg/d max), glipizide XL (20 mg/d max), glimepiride (8 mg/d max)

- **Efficacy:** ↓ A1c by 1.0% to 1.5% (reduced efficacy over time)

- **Adverse Effects:** hypoglycemia, weight gain

<table>
<thead>
<tr>
<th>Weight Effect</th>
<th>Hypoglycemia Risk</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>Higher risk (glyburide)</td>
<td>$(4 list)</td>
</tr>
</tbody>
</table>
Now What??

- GLP-1 Agonists
- TZDs
- Glinides
- DPP-4 Inhibitors
- Bile Acid Sequestrant
- α-glucosidase Inhibitors
- SGLT-2 Inhibitors
- Bromocriptine
Incretin-Based Therapies

GLP-1 Agonists
- Exenatide (Byetta®)
- Exenatide ER (Bydureon®)
- Liraglutide (Victoza®)
- Albiglutide (Tanzeum®)
- Dulaglutide (Trulicity®)

DPP-4 Inhibitors
- Alogliptin (Nesina®)
- Linagliptin (Tradjenta®)
- Saxagliptin (Onglyza®)
- Sitagliptin (Januvia®)
GLP-1 Agonists
(Glucagon-like peptide-1 agonist)

• AKA: “incretin mimetics”

• Mechanism: Stimulates GLP-1 receptors (GLP = incretin hormone)
 • ↑ insulin production/secretion
 • ↓ glucagon release/glucose production
 • Slowing of gastric emptying
 • Increased satiety
GLP-1 Agonists

• All Subcutaneous **Injectables**

<table>
<thead>
<tr>
<th>Drug</th>
<th>Initial Dose</th>
<th>Max Dose</th>
<th>Supplied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exenatide (Byetta®)</td>
<td>5 mcg twice daily</td>
<td>10 mcg twice daily</td>
<td>Prefilled pen</td>
</tr>
<tr>
<td>Liraglutide (Victoza®)</td>
<td>0.6 mg daily x 1 week</td>
<td>1.8 mg daily</td>
<td>Prefilled pen</td>
</tr>
<tr>
<td></td>
<td>1.2 mg daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exenatide ER (Bydureon®)</td>
<td>2 mg weekly</td>
<td>2 mg weekly</td>
<td>Kit* or prefilled pen</td>
</tr>
<tr>
<td>Albiglutide (Tanzeum®)</td>
<td>30 mg weekly</td>
<td>50 mg weekly</td>
<td>Prefilled pen/kit*</td>
</tr>
<tr>
<td>Dulaglutide (Trulicity®)</td>
<td>0.75 mg weekly</td>
<td>1.5 mg weekly</td>
<td>Prefilled pen</td>
</tr>
</tbody>
</table>

* Kit can be difficult for patient to use as it requires a number of steps to draw up medication.

• **Efficacy:** ↓ A1c by 1.0% to 1.5%
• **Adverse Effects:** Headache, **nausea**, diarrhea, pancreatitis(?)
 • Nausea may be least pronounced with exenatide ER

<table>
<thead>
<tr>
<th>Weight Effect</th>
<th>Hypoglycemia Risk</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>Low Risk</td>
<td>$$$ (~$400/month)</td>
</tr>
</tbody>
</table>
GLP-1 Agonists
“3’s the Magic Number”

• **Helpful Tips**
 • **Exenatide** (IR and ER) should be avoided with CrCl < 30 mL/min

 • If patient omits > 3 doses of **liraglutide**, initial titration should be restarted to avoid GI upset

 • For weekly formulations, if > 3 days late, wait for next dose to administer

 • Can be used in combination with insulin
 • Basal insulin + GLP-1 agonist
 • Bolus insulin + GLP-1 agonist

www.google.com/images_tips
GLP-1 Agonists

Combined with Insulin

Basal

Bolus

Shown to decrease

- Fasting blood glucose
- Post-prandial blood glucose
- Hemoglobin A1c

Required insulin dose reduction ranged from 15%-63% in studies

Decrease basal dose by 10%

Decrease bolus dose by 35%

Required insulin dose reduction ranged from 30%-40% in studies
GLP-1 Agonists
(Glucagon-like peptide-1 agonist)

Black Box Warning

Thyroid C-cell tumors have been observed in animal studies with glucagon-like peptide-1 (GLP-1) receptor agonists at clinically relevant exposures. If it unknown if any of the commercially available GLP-1 agonists cause thyroid C-cell tumors in humans, including medullary thyroid carcinoma (MTC). These are contraindicated in patients with a personal or family history of MTC or in patients with multiple endocrine neoplasia syndrome type 2.
DPP-4 Inhibitors
(Dipeptidyl peptidase-4 inhibitor)

• AKA: “gliptins”

• Mechanism:
 • Inhibits the degradation of incretins (GLP-1 and GIP) into their inactive metabolites
DPP-4 Inhibitors
(Dipeptidyl peptidase-4 inhibitor)

- **Efficacy:** ↓ A1c by 0.5% to 1.0%

- **Adverse Effects:** pancreatitis(?)
 - Saxagliptin may worsen heart failure
 - Linagliptin: no dosage adjustment for renal impairment

<table>
<thead>
<tr>
<th>Drug</th>
<th>Initial & Max Dose</th>
<th>Combos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alogliptin (Nesina®)</td>
<td>25 mg PO daily</td>
<td>+ metformin: Kazano®, pioglitazone: Oseni®</td>
</tr>
<tr>
<td>Linagliptin (Tradjenta®)</td>
<td>5 mg PO daily</td>
<td>+ metformin: Jentadueto®</td>
</tr>
<tr>
<td>Saxagliptin (Onglyza®)</td>
<td>2.5 to 5 mg PO daily</td>
<td>+ metformin: Kombiglyze XR®</td>
</tr>
<tr>
<td>Sitagliptin (Januvia®)</td>
<td>100 mg PO daily</td>
<td>+ metformin: Janumet®, simvastatin: Juvisync®</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight Effect</th>
<th>Hypoglycemia Risk</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>Low Risk</td>
<td>$$ (~$300/month)</td>
</tr>
</tbody>
</table>

PL Detail-Document, Drugs for Type 2 Diabetes. Pharmacist’s Letter/Prescriber’s Letter. August 2013

These materials provided for reference use at the 43rd Annual Family Medicine Refresher Course for the Family Physician.
Permission from the author must be sought before reuse or redistribution.
GLP-1 Agonists/DPP-4 Inhibitors

http://living-with-pancreatitis.blogspot.com
Pancreatitis Risk

Systematic Review/Meta-analysis (n=59)

- 55 RCTs, 3 Cohorts, 1 Case-Control

<table>
<thead>
<tr>
<th>Study</th>
<th>No of events/total</th>
<th>Peto odds ratio fixed (95% CI)</th>
<th>Weight (%)</th>
<th>Peto odds ratio fixed (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araki 2013</td>
<td>0/319</td>
<td>0/242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barnett 2012</td>
<td>0/151</td>
<td>0/76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berger et al. 2010</td>
<td>0/326</td>
<td>2/165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buneck 2009</td>
<td>1/33</td>
<td>0/33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buse 2011</td>
<td>0/137</td>
<td>0/122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chacra 2011</td>
<td>0/501</td>
<td>0/267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamant 2010</td>
<td>1/233</td>
<td>0/223</td>
<td>2.9</td>
<td>7.08 (0.14 to 357.08)</td>
</tr>
<tr>
<td>Fonseca 2012</td>
<td>0/239</td>
<td>0/122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallwitz 2012a</td>
<td>1/76</td>
<td>0/775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallwitz 2012b</td>
<td>1/511</td>
<td>1/508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gather 2009</td>
<td>2/497</td>
<td>0/248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grunberger 2012</td>
<td>0/132</td>
<td>1/32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haak 2012</td>
<td>0/428</td>
<td>0/363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henry 2012</td>
<td>0/223</td>
<td>0/101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hollander 2011</td>
<td>1/381</td>
<td>0/184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hollander 2012</td>
<td>0/154</td>
<td>0/150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inagaki 2012</td>
<td>0/215</td>
<td>0/212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kadowaki 2009</td>
<td>0/111</td>
<td>0/40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaku 2010</td>
<td>0/176</td>
<td>0/88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kikuchi 2010</td>
<td>0/102</td>
<td>0/100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kothny 2012</td>
<td>0/216</td>
<td>0/153</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These materials provided for reference use at the 43rd Annual Family Medicine Refresher Course for the Family Physician. Permission from the author must be sought before reuse or redistribution.
Pancreatitis Risk

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>D</th>
<th>RR</th>
<th>CI 95%</th>
<th>Test for heterogeneity</th>
<th>Test for overall effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nauck 2009</td>
<td>0/248</td>
<td>0/49</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nauck 2013a</td>
<td>0/715</td>
<td>0/322</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00061818 2009</td>
<td>1/282</td>
<td>1/367</td>
<td>5.2</td>
<td>0.02 × 0.02 × 5.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00047700 2009</td>
<td>1/588</td>
<td>1/584</td>
<td>2.9</td>
<td>0.13 × 0.13 × 6.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00103857 2009</td>
<td>1/551</td>
<td>0/364</td>
<td>2.8</td>
<td>0.12 × 0.12 × 5.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00127915 2009</td>
<td>0/978</td>
<td>1/328</td>
<td>2.2</td>
<td>0.02 × 0.02 × 5.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00123877 2011</td>
<td>1/170</td>
<td>0/132</td>
<td>2.9</td>
<td>0.11 × 0.11 × 5.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00355551 2013</td>
<td>1/891</td>
<td>0/163</td>
<td>2.2</td>
<td>0.10 × 0.10 × 6.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00482799 2015</td>
<td>1/625</td>
<td>0/621</td>
<td>2.9</td>
<td>0.15 × 0.15 × 5.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00575389 2010</td>
<td>0/428</td>
<td>1/430</td>
<td>2.9</td>
<td>0.14 × 0.14 × 5.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00124939 2011</td>
<td>0/85</td>
<td>1/85</td>
<td>2.9</td>
<td>0.14 × 0.14 × 5.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00122371 2011</td>
<td>0/922</td>
<td>1/699</td>
<td>2.9</td>
<td>0.10 × 0.10 × 5.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00757389 2011</td>
<td>0/304</td>
<td>1/151</td>
<td>2.6</td>
<td>0.05 × 0.05 × 3.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00954447 2012</td>
<td>3/631</td>
<td>1/630</td>
<td>11.7</td>
<td>2.72 × 2.72 × 19.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT0012812 2013</td>
<td>0/179</td>
<td>1/177</td>
<td>2.9</td>
<td>0.11 × 0.11 × 6.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01204800 2012</td>
<td>0/228</td>
<td>0/124</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00128971 2013</td>
<td>0/252</td>
<td>1/253</td>
<td>2.9</td>
<td>0.14 × 0.14 × 6.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan 2012</td>
<td>0/284</td>
<td>0/284</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pradley 2013</td>
<td>1/894</td>
<td>0/257</td>
<td>2.6</td>
<td>0.07 × 0.07 × 20.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratner 2010</td>
<td>0/433</td>
<td>0/109</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raz 2012</td>
<td>0/245</td>
<td>0/123</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosenstock 2009a</td>
<td>0/305</td>
<td>0/51</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosenstock 2009b</td>
<td>2/260</td>
<td>1/129</td>
<td>5.2</td>
<td>4.43 × 0.24 × 5.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ross 2012</td>
<td>0/447</td>
<td>0/44</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russell-Jones 2009</td>
<td>0/230</td>
<td>0/346</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russell-Jones 2012</td>
<td>1/411</td>
<td>0/499</td>
<td>2.9</td>
<td>0.15 × 0.15 × 7.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selgo 2010</td>
<td>0/268</td>
<td>0/132</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selgo 2012a</td>
<td>0/188</td>
<td>0/100</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selgo 2012b</td>
<td>0/154</td>
<td>0/157</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unpelmez 2011</td>
<td>2/396</td>
<td>0/66</td>
<td>4.4</td>
<td>1.81 × 0.56 × 9.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang 2010</td>
<td>0/697</td>
<td>0/311</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinman 2009</td>
<td>0/356</td>
<td>0/177</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>23/201</td>
<td>14/130</td>
<td>1.11</td>
<td>0.57 × 2.17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 32.40, df = 27, P = 0.22, I^2 = 17\%$

Test for overall effect: $z = 0.31, P = 0.76$
Pancreatitis Risk

• “The available evidence suggests that the incidence of pancreatitis in patients taking incretin-therapy is low and that these drugs do not increase the risk of pancreatitis”

• “The current body of evidence is not definitive…”

• Prudent to avoid in patients with a history of pancreatitis

• Control risk factors known to contribute to pancreatitis
 • Moderation of EtOH
 • Low-fat diets
 • Weight management
Thiazolidinediones (TZDs)

- **Mechanism:** ↑insulin sensitivity in muscles by ↑glucose transporter expression

- **Efficacy:** ↓A1c by 1.0 to 1.5% (similar to sulfonylureas)

- **Available Medications:**
 - Pioglitazone (Actos®): initial dose of 15 mg daily (max 45 mg/day)
 - Rosiglitazone

- **Adverse Effects:** edema, heart failure, ↑fracture risk, URI
 - Linked to possibility of bladder cancer

<table>
<thead>
<tr>
<th>Weight Effect</th>
<th>Hypoglycemia Risk</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>Low Risk</td>
<td>$$$ (~$400/month)</td>
</tr>
</tbody>
</table>
Thiazolidinediones (TZDs)

Bladder Cancer

• Rosiglitazone implicated more than pioglitazone

• Pioglitazone has been associated with bladder cancer
• Duration of use is positively associated with increasing incidence

• "Pioglitazone: No Longer a Worry for Bladder Cancer?"
• “…no statistically significant increased risk of bladder cancer was demonstrated with pioglitazone use"
SGLT-2 Inhibitors
(Sodium-glucose Co-transporter 2 Inhibitor)

• Mechanism:

http://courses.washington.edu/conj/bess/polyuria/polyuria.htm
SGLT-2 Inhibitors

• **Efficacy:** ↓A1c by 0.7% to 1.0%

• **Available Medications**
 - Canagliflozin (Invokana®): 100 mg daily (up to 300 mg/day)
 - Dapagliflozin (Farxiga®): 5 mg daily (up to 10 mg/day)
 - Empagliflozin (Jardiance®): 10 mg daily (up to 25 mg/day)

• **Common Adverse Effects:** genital fungal infections, UTI, increased urination, hypotension

• **Renal dysfunction:**
 - GFR < 60 mL/min: avoid dapagliflozin
 - GFR < 45 mL/min: avoid canagliflozin, empagliflozin

<table>
<thead>
<tr>
<th>Weight Effect</th>
<th>Hypoglycemia Risk</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>Low Risk</td>
<td>$$$(~$300/month)</td>
</tr>
</tbody>
</table>
SGLT-2 Inhibitors

• **Positive Cardiovascular Effects?**

 • EMPA-REG OUTCOME® Trial
 • Empagliflozin patients had less
 • Heart failure hospitalizations
 • Cardiovascular events
 • Cardiovascular deaths
 • All-cause deaths

 • Effect was only seen early in the trial, and not sustained throughout

 • Positive effects have been argued to occur due to diuretic effect of SGLT-2 inhibitors
SGLT-2 Inhibitor ADEs

- **LDL Elevation**: dose-related increase
 - Canagliflozin 100 mg: ↑ LDL 2.9%
 - Canagliflozin 300 mg: ↑ LDL 7.1%

- **Stroke**
 - High number of CV events during the first 30 days of treatment with canagliflozin
 - Subsequent meta-analysis showed no further significant increase in cardiovascular adverse events during extended use

- **Cancer**
 - In a post-marketing surveillance program, a disproportionate amount of breast and bladder cancers were noted in patients receiving dapagliflozin
 - Neither types of cancer were previously identified as possible ADE’s in randomized trials

SGLT-2 Inhibitor ADEs

- **Diabetic Ketoacidosis**
 - May 2015, FDA issued a warning that treatment with SGLT2 inhibitors may increase the risk of ketoacidosis
 - > 20 cases reported as of June 2014
 - 3 proposed mechanisms
 1. When combined with insulin, often decrease insulin dose to avoid hypoglycemia. Lower dose of insulin may not fully suppress lipolysis and ketogenesis
 2. SGLT-2 is expressed in pancreatic α-cells; SGLT-2 inhibition may promote glucagon secretion
 3. Phlorizin, a nonselective inhibitor of SGLT family transporters decreases urinary excretion of ketone bodies

J Clin Endocrinol Metab. 2015 Aug;100(8):2849-52

These materials provided for reference use at the 43rd Annual Family Medicine Refresher Course for the Family Physician. Permission from the author must be sought before reuse or redistribution.
It’s Becoming a Stretch

http://www.cloudsidekick.com/blog/stretch-armstrong.html
Other Medications

<table>
<thead>
<tr>
<th>Class (Medications)</th>
<th>Mechanism</th>
<th>Efficacy (↓ A1c %)</th>
<th>Adverse Effects</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-glucosidase inh.</td>
<td>Inhibit breakdown of carbohydrates to glucose</td>
<td>0.5%-1.0%</td>
<td>Gas, bloating, diarrhea</td>
<td>Must treat hypoglycemia with simple sugar</td>
</tr>
<tr>
<td>Acarbose (Precose®)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miglitol (Glyset®)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glinides</td>
<td>Stimulates insulin secretion from pancreas</td>
<td>0.5%-1.0%</td>
<td>Hypoglycemia, increased uric acid</td>
<td>Fast acting with short half-life</td>
</tr>
<tr>
<td>Nateglinide (Starlix®)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repaglinide (Prandin®)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylin Analogs</td>
<td>Delays gastric emptying; increased early satiety</td>
<td>0.5%-1.0%</td>
<td>Nausea, hypoglycemia</td>
<td>Three times daily subQ injection prior to meals</td>
</tr>
<tr>
<td>Pramlintide (Symlin®)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bile Acid Sequestrant</td>
<td>↓ insulin resistance</td>
<td>0.5%-1.0%</td>
<td>Nausea, constipation, indigestion</td>
<td>Large pill burden; 6 tabs/day</td>
</tr>
<tr>
<td>Colesevelam (Welchol)</td>
<td>↓ glucose production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>↓ glucose absorption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromocriptine</td>
<td>Unknown</td>
<td>0.5%-1.0%</td>
<td>Hypotension, syncope</td>
<td>Same bromocriptine used for Parkinson’s disease</td>
</tr>
</tbody>
</table>
Is Diabetes Management Shifting?

Diagnosis

Lifestyle Intervention + Metformin

A1C≥7%

No

A1C≥7%

Yes*

Add Basal Insulin – Most effective

Add Sulfonylurea – Least expensive

Add Glitazone – No hypoglycemia

Intensify insulin

Add Glitazone

Add Basal Insulin

Add Sulfonylurea

Add Basal or Intensify Insulin

Intensive insulin + Metformin +/- Glitazone

Diabetes Care August 2006 vol. 29 no. 8 1963-1972

These materials provided for reference use at the 43rd Annual Family Medicine Refresher Course for the Family Physician. Permission from the author must be sought before reuse or redistribution.
My Algorithm for **MOST**

1st Line
Metformin

2nd Line
Sulfonylurea (not glyburide)

3rd Line
Basal Insulin

3rd Line
GLP-1 Agonists
TZDs
SGLT-2 Inhibitors

4th Line
GLP-1 Agonist

4th Line
Basal Insulin

5th Line
Bolus Insulin

3rd Line
DPP-4 Inhibitors
TZDs
SGLT-2 Inhibitors

4th Line
Basal insulin
GLP-1 agonist

5th Line
Bolus Insulin

These materials provided for reference use at the 43rd Annual Family Medicine Refresher Course for the Family Physician. Permission from the author must be sought before reuse or redistribution.
Candidates for “New Meds”

<table>
<thead>
<tr>
<th>Medication</th>
<th>Appropriate Candidate</th>
<th>Poor Candidate</th>
</tr>
</thead>
</table>
| GLP-1 Agonist | • A1c ≤ 9.0%
• Concerned about weight gain, and addressing with diet/exercise
• Dangerous occupation where hypoglycemia could be fatal
• Relatively newly diagnosed | • History of pancreatitis
• Compromised renal function (exenatide)
• History of severe GI disturbance
• Unwilling to utilize injectable medications
• Fixed income |
| DDP-4 Inhibitors | • A1c ≤ 8.0%
• Unwilling to utilize injectable medications
• Relatively newly diagnosed | • History of pancreatitis
• Compromised renal function (linagliptin does NOT require dosage adjustment)
• History of heart failure (saxagliptin)
• Fixed income |
| SGLT-2 Inhibitors | • A1c ≤ 8.0%
• May be helpful in patients with heart failure | • Stage 4 CKD or worse
• History of recurrent UTI
• Urinary incontinence/BPH
• Patients with very poorly controlled diabetes (see risk of DKA)
• History of hyperkalemia (canagliflozin)
• History of bladder cancer (dapagliflozin) |

www.google.com/images_angel&devil

These materials provided for reference use at the 43rd Annual Family Medicine Refresher Course for the Family Physician.
Permission from the author must be sought before reuse or redistribution.
Wrap-Up

• Many still largely turn to metformin and sulfonylureas as first and second line agents

• Consideration should be given to emerging agents when insurance allows and safety is considered

• No agent is the “miracle drug” that will cure diabetes
 • Dietary modifications and physical activity MUST be cornerstones of diabetic therapy
Questions/Discussion
Kevin T. Schleich, Pharm.D., BCACP
Clinical Pharmacy Specialist, Department of Family Medicine
University of Iowa Hospitals and Clinics

Thank you