2,4-Di-chloro-1-iodo-6-nitro-benzene

Xueshu Li
University of Iowa

Sean Parkin
University of Kentucky

Hans-Joachim Lehmler
University of Iowa

DOI: https://doi.org/10.1107/S1600536814008733

Copyright © Li et al. 2014

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Comments

This work was supported by grants ES05605, ES013661 and ES017425 from the National Institute of Environmental Health Sciences, National Institutes of Health (NIEHS/NIH).

Hosted by [Iowa Research Online](https://uiowa.lib.uiowa.edu). For more information please contact: lib-ir@uiowa.edu.
2,4-Dichloro-1-iodo-6-nitrobenzene

Xueshu Li, a Sean Parkin b and Hans-Joachim Lehmler a*

*The University of Iowa, Department of Occupational and Environmental Health, UI Research Park, Iowa City, IA 52242-5000, USA, and bUniversity of Kentucky, Department of Chemistry, Lexington, KY 40506-0055, USA
Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

Received 9 April 2014; accepted 17 April 2014

Key indicators: single-crystal X-ray study; T = 90 K; mean σ(C–Cl) = 0.009 Å; R factor = 0.037; wR factor = 0.098; data-to-parameter ratio = 12.1.

In the crystal structure of the title compound, C6H2Cl2INO2, there are weak C–H····Cl interactions and 1···O [3.387 (4) Å] close contacts. These interactions form sheets in the ac plane, with the closest contact between adjacent planes occurring between inversion-related nitro O atoms [3.025 (8) Å]. The molecule possesses mirror symmetry, with the halogen, N and C atoms all lying in the mirror plane. Hence, the dihedral angle between the benzene ring and the nitro group is 90°.

Related literature

For crystal structures of similar substituted nitrobenzenes, see: Li et al. (2012); Tahir et al. (2009). For information about polychlorinated biphenyls (PCBs) and their synthesis, see: Joshi et al. (2011); Lehmler et al. (2010); Lehmler & Robertson (2001). For the synthesis of the title compound, see: Sohn et al. (2003).

Experimental

Crystal data
C6H2Cl2INO2

Orthorhombic, Pnma
Z = 4

Cu Kα radiation
μ = 34.30 mm−1

T = 90 K
0.13 × 0.10 × 0.04 mm

Data collection
Bruker X8 Proteum diffractometer

Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)

Tmin = 0.052, Tmax = 0.216
I/σ(I) = 1.12

9625 measured reflections
862 independent reflections
827 reflections with I > 2σ(I)

Refinement

H-atom parameters constrained

Δρmax = 0.67 e Å−3

Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °).

D–H···A
D–H
H···A
D···A
D–H···A

C3–H3–C3′ 0.95 2.77 3.718 (7) 179

Symmetry code: (i) x − 1 2, y, −z + 1/2

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008a); molecular graphics: XP in SHELXTL (Sheldrick, 2008a); software used to prepare material for publication: SHELXTL and CIFFIX (Parkin, 2013).

This work was supported by grants ES05605, ES013661 and ES017425 from the National Institute of Environmental Health Sciences, National Institutes of Health (NIEHS/NIH).

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5698).

References

2,4-Dichloro-1-iodo-6-nitrobenzene

Xueshu Li, Sean Parkin and Hans-Joachim Lehmler

1. Comment

The title compound was synthesized as a precursor for the preparation of chiral polychlorinated biphenyl (PCB) derivatives (Lehmler et al., 2010) using the Suzuki-coupling reaction (Joshi et al., 2011; Lehmler & Robertson, 2001). There are C3—H3···Cl2 (x - 0.5, y, 0.5 - z) interactions [C3···Cl2 = 3.718 (7) Å] that link the molecules into flat ribbons along the a axis. Between adjacent ribbons there are close contacts between iodine atoms and the nitro group O atoms, with I···O distances of 3.387 (4) Å. Each iodine atom is the same distance from both oxygen atoms because they are equivalent by virtue of the mirror plane. The linking of adjacent ribbons in the crystal structure give sheets in the ac plane (since the mirror plane is perpendicular to b). The closest contact between adjacent planes occurs between inversion (1 - x, 1 - y, 1 - z) related nitro O atoms [3.025 (8) Å]. The distance between layers is simply half the b axis length. Viewed along the b axis, molecules appear to stack in an alternating fashion about a 2, screw (-x, 0.5 + y, -z), which places Cl1 of one molecule directly over the benzene ring of its screw-related counterpart.

As a result of the symmetrical interaction between the iodines and both nitro group O atoms, the molecular structure of the title compound displayed a 90° dihedral angle between the plane of the nitro group and the plane of the benzene ring (which lies on the mirror plane). Only a few solid state structures of structurally related molecules with a 1-iodo-2-nitrobenzene moiety have been reported previously. The molecular structures of 4-chloro-1-iodo-2-nitrobenzene, a structurally related halogenated nitrobenzene with one iodo substituent ortho to the nitro group, display smaller dihedral angles between benzene ring and nitro group [51.0 (3)° and 29.0 (2)°] in the solid state (Tahir et al., 2009). In contrast, 2,4-di-iodo-3-nitroanisole, a nitrobenzene with two iodo substituents ortho to the nitro group, displayed dihedral angle of 88.0 (3)° (Li et al., 2012), probably due to the steric demand of the two ortho iodo substituents. These differences demonstrate that packing effects can make significant contributions to the molecular structure (i.e. the dihedral angle between benzene ring and nitro group) in the solid state.

2. Experimental

The title compound was synthesized from 2,4-dichloro-6-nitroaniline by sequential diazotization and iodonization with NaNO2–HCl–KI system (Sohn et al., 2003). Crystals of the title compound suitable for crystal structure analysis were obtained by slow evaporation of a solution of the title compound in hexane-ethyl acetate (10:1).

3. Refinement

H atoms were found in difference Fourier maps, but subsequently included in the refinement using riding models, with constrained distances set to 0.95Å (Csp2H). Uiso(H) values were set to 1.2 Ueq of the attached atom.
Figure 1
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
Symmetry code: (A) x, -y+1/2, z.

2,4-Dichloro-1-iodo-6-nitrobenzene

Crystal data
\[\text{C}_6\text{H}_2\text{Cl}_2\text{INO}_2\]
\[M_r = 317.89\]
Orthorhombic, \(Pnma\)
\[a = 8.7760\ (5) \text{ Å}\]
\[b = 6.8989\ (4) \text{ Å}\]
\[c = 14.3518\ (8) \text{ Å}\]
\[V = 868.93\ (9) \text{ Å}^3\]
\[Z = 4\]
\[F(000) = 592\]

Data collection
Bruker X8 Proteum diffractometer
9625 measured reflections
862 independent reflections
827 reflections with \(I > 2\sigma(I)\)
\[R_{int} = 0.082\]
\[\theta_{\text{max}} = 68.0^\circ, \quad \theta_{\text{min}} = 5.9^\circ\]
\[h = -10\rightarrow7\]
\[k = -8\rightarrow8\]
\[l = -13\rightarrow17\]

\(D_0 = 2.430\ \text{Mg m}^{-3}\)
\(\lambda = 1.54178\ \text{Å}\)
\(\mu = 34.30 \text{ mm}^{-1}\)
\(T = 90\ \text{K}\)
Rounded block, pale yellow
\[0.13 \times 0.10 \times 0.04\ \text{mm}\]

Cell parameters from 6956 reflections
\[\theta = 5.9\rightarrow67.7^\circ\]
\[\mu = 34.30 \text{ mm}^{-1}\]
\[T = 90\ \text{K}\]
Rounded block, pale yellow
\[0.13 \times 0.10 \times 0.04\ \text{mm}\]
Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.037$
$wR(F^2) = 0.098$
$S = 1.12$
862 reflections
71 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H-atom parameters constrained

$w = 1/\sigma^2(F_o^2) + (0.0668P)^2 + 0.2013P$
$\Delta\rho_{\text{max}} = 0.67 \text{ e Å}^{-3}$
$\Delta\rho_{\text{min}} = -0.68 \text{ e Å}^{-3}$
Extinction correction: SHELXL2013 (Sheldrick, 2008a), $F_c^* = kF_c[1 + 0.001xF_c^2\lambda^3/sin(2\theta)]^{-1/4}$
Extinction coefficient: 0.0021 (4)

Special details

Experimental. Diffraction data were collected with the crystal at 90 K, which is standard practice in this laboratory for the majority of flash-cooled crystals.
A correction for radiation damage was included in the SADAB (Sheldrick, 2008b) run. This seems to have resulted in all the atomic displacement parameter ellipsoids looking more spherical than usual.

Geometry. All e.s.d.’s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.’s are taken into account individually in the estimation of e.s.d.’s in distances, angles and torsion angles; correlations between e.s.d.’s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.’s is used for estimating e.s.d.’s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{iso}/U_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>0.10397 (4)</td>
<td>0.2500</td>
<td>0.70325 (2)</td>
</tr>
<tr>
<td>C11</td>
<td>−0.18714 (15)</td>
<td>0.2500</td>
<td>0.54761 (10)</td>
</tr>
<tr>
<td>C12</td>
<td>0.16156 (18)</td>
<td>0.2500</td>
<td>0.24439 (10)</td>
</tr>
<tr>
<td>N1</td>
<td>0.4037 (5)</td>
<td>0.2500</td>
<td>0.5700 (4)</td>
</tr>
<tr>
<td>O1</td>
<td>0.4576 (4)</td>
<td>0.4066 (6)</td>
<td>0.5918 (2)</td>
</tr>
<tr>
<td>C1</td>
<td>0.1230 (7)</td>
<td>0.2500</td>
<td>0.5590 (5)</td>
</tr>
<tr>
<td>C2</td>
<td>−0.0053 (7)</td>
<td>0.2500</td>
<td>0.5003 (5)</td>
</tr>
<tr>
<td>C3</td>
<td>0.0065 (7)</td>
<td>0.2500</td>
<td>0.4060 (4)</td>
</tr>
<tr>
<td>H3</td>
<td>−0.0828</td>
<td>0.2500</td>
<td>0.3686</td>
</tr>
<tr>
<td>C4</td>
<td>0.1510 (8)</td>
<td>0.2500</td>
<td>0.3637 (5)</td>
</tr>
<tr>
<td>C5</td>
<td>0.2811 (7)</td>
<td>0.2500</td>
<td>0.4179 (5)</td>
</tr>
<tr>
<td>H5</td>
<td>0.3796</td>
<td>0.2500</td>
<td>0.3904</td>
</tr>
<tr>
<td>C6</td>
<td>0.2624 (7)</td>
<td>0.2500</td>
<td>0.5133 (4)</td>
</tr>
</tbody>
</table>

Atomic displacement parameters (Å²)

<table>
<thead>
<tr>
<th>U_1^{11}</th>
<th>U_2^{12}</th>
<th>U_3^{13}</th>
<th>U_1^{22}</th>
<th>U_2^{22}</th>
<th>U_3^{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>0.0812 (4)</td>
<td>0.0798 (4)</td>
<td>0.0718 (4)</td>
<td>0.000</td>
<td>0.00182 (13)</td>
</tr>
<tr>
<td>C11</td>
<td>0.0753 (8)</td>
<td>0.0786 (8)</td>
<td>0.0810 (8)</td>
<td>0.000</td>
<td>0.0026 (6)</td>
</tr>
<tr>
<td>C12</td>
<td>0.0828 (9)</td>
<td>0.0878 (9)</td>
<td>0.0715 (8)</td>
<td>0.000</td>
<td>0.0000 (6)</td>
</tr>
<tr>
<td>N1</td>
<td>0.079 (3)</td>
<td>0.091 (4)</td>
<td>0.070 (3)</td>
<td>0.000</td>
<td>0.003 (2)</td>
</tr>
<tr>
<td>O1</td>
<td>0.0929 (19)</td>
<td>0.097 (2)</td>
<td>0.0936 (18)</td>
<td>−0.0143 (17)</td>
<td>−0.0113 (16)</td>
</tr>
<tr>
<td>C1</td>
<td>0.081 (3)</td>
<td>0.071 (3)</td>
<td>0.069 (3)</td>
<td>0.000</td>
<td>−0.001 (2)</td>
</tr>
<tr>
<td>C2</td>
<td>0.074 (3)</td>
<td>0.067 (3)</td>
<td>0.084 (3)</td>
<td>0.000</td>
<td>0.002 (3)</td>
</tr>
</tbody>
</table>

Acta Cryst. (2014). E70, o607
C3 0.084 (3) 0.065 (3) 0.077 (3) 0.000 −0.004 (3) 0.000
C4 0.079 (3) 0.069 (3) 0.074 (3) 0.000 −0.004 (3) 0.000
C5 0.076 (3) 0.073 (3) 0.081 (3) 0.000 0.005 (3) 0.000
C6 0.076 (3) 0.073 (3) 0.078 (3) 0.000 −0.003 (3) 0.000

Geometric parameters (Å, °)

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1—C1</td>
<td>2.077 (7)</td>
</tr>
<tr>
<td>C1—C2</td>
<td>1.734 (7)</td>
</tr>
<tr>
<td>Cl1—C2</td>
<td>1.715 (7)</td>
</tr>
<tr>
<td>N1—O1</td>
<td>1.220 (4)</td>
</tr>
<tr>
<td>N1—O1i</td>
<td>1.220 (4)</td>
</tr>
<tr>
<td>C1—C6</td>
<td>1.388 (9)</td>
</tr>
<tr>
<td>N1—C6</td>
<td>1.484 (8)</td>
</tr>
<tr>
<td>C1—C6</td>
<td>1.388 (9)</td>
</tr>
<tr>
<td>O1—N1—O1i</td>
<td>124.6 (6)</td>
</tr>
<tr>
<td>O1—N1—C6</td>
<td>117.7 (3)</td>
</tr>
<tr>
<td>O1i—N1—C6</td>
<td>117.7 (3)</td>
</tr>
<tr>
<td>C6—C1—I1</td>
<td>122.9 (5)</td>
</tr>
<tr>
<td>C2—C1—I1</td>
<td>122.2 (5)</td>
</tr>
<tr>
<td>C3—C2—C1</td>
<td>122.4 (6)</td>
</tr>
<tr>
<td>C3—C2—Cl1</td>
<td>117.4 (5)</td>
</tr>
<tr>
<td>C1—C2—Cl1</td>
<td>120.2 (5)</td>
</tr>
<tr>
<td>C2—C3—C4</td>
<td>119.9 (6)</td>
</tr>
<tr>
<td>C2—C3—H3</td>
<td>120.0</td>
</tr>
<tr>
<td>C6—C1—C2—C3</td>
<td>0.000 (2)</td>
</tr>
<tr>
<td>I1—C1—C2—C3</td>
<td>180.000 (1)</td>
</tr>
<tr>
<td>C6—C1—C2—Cl1</td>
<td>180.000 (1)</td>
</tr>
<tr>
<td>I1—C1—C2—Cl1</td>
<td>0.000 (1)</td>
</tr>
<tr>
<td>C1—C2—C3—C4</td>
<td>0.000 (2)</td>
</tr>
<tr>
<td>Cl1—C2—C3—C4</td>
<td>180.000 (1)</td>
</tr>
<tr>
<td>C2—C3—C4—C5</td>
<td>0.000 (2)</td>
</tr>
<tr>
<td>C2—C3—C4—Cl2</td>
<td>180.000 (1)</td>
</tr>
<tr>
<td>C3—C4—C5—C6</td>
<td>0.000 (1)</td>
</tr>
<tr>
<td>Cl2—C4—C5—C6</td>
<td>180.000 (1)</td>
</tr>
</tbody>
</table>

Symmetry code: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3—H3···Cl2</td>
<td>0.95</td>
<td>2.77</td>
<td>3.718 (7)</td>
<td>179</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry code: (ii) x−1/2, y, −z+1/2.