TRANSGENIC PORCINE MODELS OF CYSTIC FIBROSIS

Inventors: Michael J. Welsh, Riverside, IA (US); Christopher S. Rogers, North Liberty, IA (US); Randall Prather, Rocheport, MO (US); John Engelhardt, Iowa City, IA (US); Ziyong Yan, Iowa City, IA (US)

Assignees: University of Iowa Research Foundation, Iowa City, IA (US); The Curators of the University of Missouri, Columbia, MO (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 12/283,980
Filed: Sep. 17, 2008

Prior Publication Data
US 2009/0241203 A1 Sep. 24, 2009

Related U.S. Application Data
Continuation-in-part of application No. 12/074,632, filed on Mar. 5, 2008, now Pat. No. 7,989,675.

Provisional application No. 60/966,971, filed on Aug. 30, 2007, provisional application No. 60/908,637, filed on Mar. 28, 2007.

Int. Cl.
A01K 67/027 (2006.01)
A01K 67/00 (2006.01)
A01K 67/033 (2006.01)
C12N 15/00 (2006.01)
C12N 5/00 (2006.01)

U.S. Cl.
USPC 800/17; 800/9; 800/21; 435/325

Field of Classification Search
USPC 800/8, 9, 17, 21; 435/325
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
6,503,698 B1 1/2003 Dobrinsky et al.

FOREIGN PATENT DOCUMENTS
WO 2008/0121199 10/2008

OTHER PUBLICATIONS
Welsh (Transactions of the Am. Clin. and Climatological Assoc., 2009, vol. 120, p. 149-162).*
Davidson (Nature Genetics, Apr. 1995, vol. 9, p. 351-357).*
MGI website description of Cfrtm1Rdb, 2012.*
MGI website description of Cfrtm1Rth, 2012.*
MGI website description of Cfrtm1Hgn, 2012.*
Lai (Science, 2002, vol. 295, No. 1089, p. 1089-1092).*

Primary Examiner — Michael C. Wilson
Attorney, Agent, or Firm — Clark & Elbing LLP

ABSTRACT
The present invention provides transgenic, large non-human animal models of diseases and conditions, as well as methods of making and using such animal models in the identification and characterization of therapies for the diseases and conditions.

11 Claims, 23 Drawing Sheets
(11 of 23 Drawing Sheet(s) Filed in Color)
References Cited

OTHER PUBLICATIONS

Rogers et al., University of Iowa, College of Medicine Research Week poster, Mar. 29, 2006 (also presented in substantially similar form on Feb. 23, 2006 at University of Iowa, Department of Internal Medicine Research Day, Feb. 23, 2006, with the exception of Figure 7).
Rogers et al., University of Iowa, Gene Therapy Center Retreat presentation, Apr. 26, 2006.
Written Opinion from International Application No. PCT/US2008/002886, dated Aug. 25, 2008 (date of completion of opinion) and Sep. 15, 2008 (date of mailing of opinion).

* cited by examiner
Figure 9

A. CFTR mRNA (%) Wt: +/- CFTR

B. CFTR

+/- +/ΔF

10 20 30 40 50 60 70 80 90 100

FC508 mRNA (%) Wt: +/- CFTR
Figure 12

<table>
<thead>
<tr>
<th>Pathology at birth</th>
<th>Clinical manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>−/−</td>
<td>male infertility</td>
</tr>
<tr>
<td>+</td>
<td>liver disease</td>
</tr>
<tr>
<td>−</td>
<td>respiratory disease</td>
</tr>
<tr>
<td>−</td>
<td>distal intestinal obstructive syndrome</td>
</tr>
<tr>
<td>+</td>
<td>pancreatic insufficiency</td>
</tr>
<tr>
<td>+</td>
<td>meconium ileus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Birth</th>
<th>1 day</th>
<th>1 week</th>
<th>1 month</th>
<th>2 months</th>
<th>3 months</th>
<th>1 year</th>
<th>2 years</th>
<th>5 years</th>
<th>10 years</th>
<th>30 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

B

Body weight (kg)

CFTR+/+

CFTR−/−

Time following birth (h)

C

CFTR+/+

CFTR−/−

D

CFTR+/+

CFTR−/−

Illeum

E

CFTR+/+

CFTR−/−

Spiral Colon
Figure 14

A

Lung

CFTR+/+

CFTR−/−

B

CFTR+/+

CFTR−/−

Bronchus
Figure 18
Figure 22
TRANSGENIC PORCINE MODELS OF CYSTIC FIBROSIS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of, and claims priority from, U.S. Ser. No. 12/074,632, filed Mar. 5, 2008, now U.S. Pat. No. 7,989,675, which claims the benefit of the filing date of U.S. Ser. No. 60/0908,637, filed Mar. 28, 2007, and U.S. Ser. No. 60/966,971, filed Aug. 30, 2007. The contents of each of the prior applications are incorporated herein by reference.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

This invention was made with government support under grant number HL51670 awarded by the National Heart Lung and Blood Institute, and grant number DK547759 awarded by the National Institute of Diabetes and Digestive and Kidney Diseases. The government has certain rights in this invention.

FIELD OF THE INVENTION

This invention relates to transgenic, non-human animal models of disease, cells that can be used to make such animals, and methods of making and using these animals and cells.

BACKGROUND OF THE INVENTION

Many human diseases and conditions are caused by gene mutations. Substantial effort has been directed towards the creation of transgenic animal models of such diseases and conditions, to facilitate the testing of approaches to treatment, as well as to gain a better understanding of disease pathologies. Early transgenic animal technology focused on the mouse, while more recent efforts, which have been bolstered by the development of somatic cell nuclear transfer technology, have included larger animals, including pigs, cows, and goats. This technology has resulted in the production of, for example, pigs in which the gene encoding α-1,3-galactosyltransferase has been knocked out, in efforts to generate organs that can be used in xenotransplantation (see, e.g., Lai et al., Science 295:1089-1092, 2002). Additional applications of this technology include the production of large quantities of human proteins (e.g., therapeutic antibodies; see, e.g., Grosse-Hovest et al., Proc. Natl. Acad. Sci. U.S.A. 101(18):6858-6863, 2004). Substantial benefits may be obtained by the use of somatic cell nuclear transfer technology in the production of large animal models of human disease.

An example of a disease caused by gene mutations is cystic fibrosis (CF), which is an inherited disease that affects many organs of the body, including the lungs, pancreas, sweat glands, liver, and organs of the reproductive tract. The disease is characterized by abnormalities in fluid secretion, which can lead to diverse physiological problems. For example, in the lungs of CF patients, secreted mucus is unusually heavy and sticky, and thus tends to clog small air passages, making it difficult for patients to breathe and leading to bacterial infection and inflammation. Repeated lung infections and blockages in CF patients can cause severe, permanent lung damage. Other features of CF arise from the clogging of ducts leading from the pancreas to the small intestine, which blocks the transport of critical digestive enzymes such as amylase, protease, and lipase. This can lead to problems including incomplete digestion, diarrhea, bowel blockage, and weight loss. Digestive complications of CF can also be caused by blockage of liver bile ducts. Due to these and other features of the disease, CF causes progressive disability in patients and ultimately leads to early death.

CF is caused by the presence of a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which is a chloride channel found in the membranes of epithelial cells lining passageways of the lungs, liver, pancreas, intestines, and digestive tract, and in the skin. The disease is autosomal recessive, and thus CF patients have mutations in both CFTR alleles, while asymptomatic CF carriers have mutations in only one allele. There are more than 1,200 different known mutations of the CFTR gene that can lead to cystic fibrosis in humans, with some mutations causing milder symptoms than others. However, about 70% of people with CF have the disease due to a particular gene mutation, a deletion of three nucleotides, leading to the loss of a phenylalanine that is normally present at position 508 of the CFTR protein. This form of the disease, often referred to as the DeltaF508 (CFTR-ΔF508, also called F508del-CFTR), is both the most common and the most severe form of the disease. The loss of phenylalanine at position 508 results in improper CFTR protein folding, which causes retention of the mutant protein in the ER and targets it for degradation before it even reaches the cell membrane. Additionally, this deletion alters channel gating, reducing the rate of channel opening.

There is no cure for CF. Current approaches to treatment include the use of mucous thinning drugs, digestive enzyme supplementation, bronchodilators, respiratory therapy, antibiotics, and lung transplantation. Even given the availability of these approaches to treatment, as the disease progresses, patients typically suffer from an increasingly poor quality of life. New approaches to treating diseases such as CF, which may be identified, for example, by the use of large animal models, are therefore needed for this and other devastating diseases.

SUMMARY OF THE INVENTION

The invention provides large, non-human animal models of human diseases or conditions, in which one or more genes associated with the diseases or conditions include one or more targeted mutations or are inactivated. The animals of the invention can be, for example, ungulates such as, e.g., pigs, cows, sheep, and goats. In one example, the disease or condition is cystic fibrosis and the gene including one or more mutations is a cystic fibrosis membrane transporter gene (CFTR).

The animal models of the invention can include the mutation(s) in one or both alleles of the gene in the genome of the transgenic animal, and the mutation(s) can result in full or partial inactivation of the gene(s). In one example, the mutation includes an insertion of an exogenous nucleic acid molecule and/or a transcription termination sequence. In another example, the mutation substantially eliminates expression of a functional gene product of the targeted gene in cells in which such expression normally takes place, absent the mutation. In the case of an animal with a mutation or mutations in both alleles of a gene, the mutation or mutations in each allele can be identical to one another or can be different.

The animal models of the invention may optionally include a homologous transgenic copy of a wild-type or mutated gene from a different animal. The animal models may thus include, for example, in addition to a mutation/inactivation of an endogenous gene, an inserted copy of a corresponding gene
from another species. Thus, for example, an animal (such as a pig) in which an endogenous CFTR gene is mutated or inactivated may be modified to include a CFTR gene from another animal (such as a human), which may be wild-type or may include a mutation (e.g., CFTR-D508). The invention therefore provides transgenic, large non-human animal models of human diseases and conditions (e.g., pigs), in which one or more endogenous genes associated with the diseases or conditions are knocked-out (i.e., genetically altered in such way as to inhibit the production or function of the product of the gene) and replaced with a homologous wild-type or mutated gene derived from a different animal (e.g., a human).

In one example, a pig with its endogenous porcine CFTR knocked-out expresses a human transgene encoding a CFTR gene, such as the CFTR-D508 gene.

Examples of CFTR mutations that can be included in the animals (and cells) of the invention include (i) class I mutations, which result in little or no mRNA production, and thus little or no protein production (e.g., nonsense mutation (e.g., G542X), a frameshift mutation (e.g., 394delT), a splice junction mutation (e.g., 1717-1 GtoA)), (ii) class II mutations, which result in a protein trafficking defect where CFTR is made, but fails to traffic to the cell membrane (e.g., F508del), (iii) class III mutations, which result in CFTR trafficking to the cell membrane, but failing to be properly regulated or responding to cAMP stimulation (e.g., G551D, which fails to respond to cAMP stimulation), (iv) class IV mutations, which result in a CFTR channel function defect (e.g., R117H), and (v) class V mutations, which cause CFTR synthesis defects, resulting in reduced synthesis or defective processing of normal CFTR (e.g., missense mutation (e.g., A455E), or a mutation introduced by alternative splicing (e.g., 3849+10 kbc—T). Additional mutations include 621+1→T, W1282X, R347P, S549N, R(A→C), R553X, and N1303K.

In the case of animals having CFTR mutations, the animals may be characterized by one or more (e.g., 2, 3, 4, 5, or 6) phenotypic characteristics, such as the phenotypic characteristics of the CFTR−/− pigs described below. Thus, for example, the animals may be characterized by one or more phenotypic characteristics selected from the group consisting of: (i) an electrophysiological phenotype similar to that of human cystic fibrosis, (ii) meconium ileus, (iii) exocrine pancreatic insufficiency or abnormalities, (iv) hepatic abnormalities, (v) gall bladder and/or bile duct abnormalities, and (vi) lack of abnormalities in vas deferens or lungs at birth.

The invention also provides isolated cells of transgenic, large non-human animal models of human diseases or conditions, in which one or more genes associated with the diseases or conditions include one or more targeted mutations. The animals can be, for example, ungulates, such as, e.g., pigs, cows, sheep, and goats. In one example, the disease or condition is cystic fibrosis and the gene including one or more mutations is a cystic fibrosis membrane transporter gene.

The cells of the invention can include the mutation(s) in one or both alleles of the genes in the genomes of the cells, and the mutation(s) can results in full or partial inactivation of the gene(s). In one example, the mutation includes an insertion of an exogenous nucleic acid molecule and/or a transcription termination sequence. In another example, the mutation substantially eliminates expression of a functional gene product of the targeted gene in cells in which such expression normally takes place, absent the mutation. In the case of a cell with a mutation or mutations in both alleles of a gene, the mutation or mutations in each allele can be identical to one another or can be different. In one example, the cells are fetal cells, such as fetal fibroblasts. The cells may include a homologous transgenic copy of a wild-type or mutated gene from a different animal, such as a human, as described above. Additional examples of cell types included in the invention are provided below.

The invention further provides methods of making transgenic, large non-human animal models of diseases or conditions, as described above and elsewhere herein. The methods can include the steps of: (i) introducing one or more mutations into an allele of one or more genes associated with a disease or condition in a cell (e.g., a fetal fibroblast) to generate a donor cell; (ii) introducing the nucleus of the donor cell into a recipient cell (e.g., an enucleated oocyte) to generate an embryo; and (iii) transferring the embryo into a surrogate female to generate the transgenic, large non-human animal model. The animals can be, for example, ungulates, such as, e.g., pigs, cows, sheep, and goats. In one example, the disease or condition is cystic fibrosis and the gene including one or more mutations is a cystic fibrosis membrane transporter gene. In a variation of these methods, the donor cell includes one or more mutations in one allele of a gene, and the method is carried out to introduce one or more mutations into the other allele. In another example, the donor cell includes a homologous transgenic copy of a wild-type or mutated gene from a different animal (e.g., a human), as described above. In a further example, the methods further involve breeding an animal that is born from the surrogate female to obtain a homozygous mutant.

The invention also includes methods of identifying therapeutic agents that can be used in the treatment of diseases or conditions (e.g., cystic fibrosis). These methods involve administering one or more candidate therapeutic agents to a transgenic animal, as described above, and monitoring the animal for one or more symptoms of the disease or condition (e.g., one or more phenotypic characteristics of CF models of the invention, as described herein). Detection of improvement in a symptom of the disease or condition indicates the identification of a compound that can be used in the treatment of the disease or condition.

The invention further provides methods of targeting the introduction of mutations into pig cells. These methods involve the steps of providing pig cells (e.g., fetal fibroblasts), using an adeno-associated viral vector to deliver a gene targeting construct to the isolated pig cells, in the absence of cell detachment and reattachment, and selecting gene-targeted clones. The cells are in culture for 30 days or less (e.g., 20 days or less; see below) during the targeting construct delivery and selection steps. These methods can be used, for example, for the introduction of a mutation into a cystic fibrosis transmembrane conductance regulator gene (e.g., the ∆F508 mutation) in the pig cell. Information concerning other examples of mutations that can be used in the invention, as well as the use of the present methods to inactivate or replace genes (e.g., to replace pig genes with human genes), is provided below.

By “donor cell” is meant a cell from which a nucleus or chromatin material is derived, for use in nuclear transfer. As is discussed elsewhere herein, nuclear transfer can involve transfer of a nucleus or chromatin only, as isolated from a donor cell, or transfer of an entire donor cell including such a nucleus or chromatin material.

By “genetic modification,” “mutation,” or “disruption” of a gene (e.g., a CFTR gene) is meant one or more alterations in gene sequences (including coding sequences and non-coding sequences, such as introns, promoter sequences, and 5’ and 3’- untranslated sequences) that alter the expression or activity of this gene by, for example, insertion (of, e.g., heterologous sequences, such as selectable markers, and/or termination
signals), deletion, frame shift mutation, silent mutation, nonsense mutation, missense mutation, point mutation, or combinations thereof. In one example, the amino acid sequence encoded by the nucleic acid sequence has at least one amino acid altered as compared to a naturally-occurring sequence. Examples of mutations include the insertion of a polynucleotide into a gene, the deletion of one or more nucleotides from a gene, and the introduction of one or more base substitutions into a gene. Preferred modifications of CFTR sequences are those that lead to one or more features of CF in transgenic animals including a mutation in, or disruption of, both CFTR alleles. As is discussed elsewhere herein, the modifications in the two CFTR alleles of such animals can be identical or different. Further, the modifications can result in a complete lack of functional CFTR production (as in the human ΔF508 mutation), or can result in diminished functional CFTR production, as may be characteristic of less severe forms of the disease.

Examples of such mutations include but are not limited to: i) class I mutations, which result in little or no mRNA production, and thus little or no protein production (e.g., nonsense mutations, G542X; frameshift mutations, 394delT; and splice junction mutations, 1717-1 GtoA), ii) class II mutations, which result in a protein trafficking defect where CFTR is made, but fails to traffic to the cell membrane (e.g., F508del), iii) class III mutations, which are those in which CFTR traffics to the cell membrane, but fails to be properly regulated (e.g., G55 TD, which fails to respond to cAMP stimulation), iv) class IV mutations, which result in a CFTR channel function defect (e.g., R117H), and v) class V mutations, which cause CFTR synthesis defects, resulting in reduced synthesis or defective processing of normal CFTR (e.g., missense mutations, A455E; alternative splicing, 3849+10 kbc T).

In one example, a mutation is introduced by the insertion of a polynucleotide (e.g., a positive selection marker, such as an antibiotic resistance gene (e.g., a neomycin resistance gene)) into an endogenous gene. Optionally, a mutation that is introduced into such an endogenous gene reduces the expression of the gene. If desired, the polynucleotide may also contain recombinesite sites flanking the positive selection marker, such as loxP sites, so that the positive selection marker may be removed by a recombinase (e.g., cre recombinase).

By “homologous” genes are meant a pair of genes from two animal species that encode proteins having similar functional and physical properties. The proteins encoded by homologous genes are often very similar in structure and function (although not always), and typically have a common evolutionary origin. The sequence identity is typically equal to or greater than 80% between two gene homologs. One example of a homologous gene pair is the porcine CFTR and human CFTR gene loci.

By “homozygous knock-out non-human mammal” is meant a mammal other than a human in which the two alleles of an endogenous gene (such as the CFTR gene) have been genetically targeted, resulting in a marked reduction or elimination of expression of a functional gene product, which is achieved by gene deletion or disruption. According to this invention, the genetic targeting event at both alleles may or may not be the same. Thus, a non-human mammal, in which the two alleles of an endogenous gene (such as a CFTR gene) have been genetically targeted by two different targeting vectors resulting in the null expression of the gene, would be considered as being a homozygous knock-out non-human mammal. An example of a “knock-in mutation” is one resulting in the insertion of a mutation into an endogenous gene, for example, introducing the ΔF508 or another CF mutation into a CFTR gene.

By animal “knock-out” is meant an animal (e.g., a pig or mouse; also see other animals described herein) having a genome in which the function of a gene has been disrupted, or “knocked-out.” A common method of producing disabled genes using recombinant DNA technology involves inserting an antibiotic resistance gene into the normal DNA sequence of a clone of the gene of interest by homologous recombination. This disrupts the action of the gene, thereby preventing it from leading to the production of an active protein product. A cell (or cell nucleus) in which this transfer is successful can be injected into a recipient cell (e.g., an enucleated oocyte) to generate a transgenic animal by nuclear transfer. In another approach, the cell is injected into an animal embryo, producing a chimeric animal. These animals are bred to yield a strain in which all of the cells contain the knocked-out gene.

By “recipient cell” is meant a cell into which a donor cell, a donor cell nucleus, or donor cell chromatin is introduced. Preferably, recipient cells are enucleated prior to nuclear transfer. Examples of recipient cells include oocytes, fertilized zygotes, and two-cell embryos.

By “transgenic, large non-human animal” is meant any non-human animal that includes a genetic modification, as defined herein. Examples of such animals include animals other than mice such as, for example, ungulates. Examples of ungulates that can be used in the invention include members of the orders Perissodactyla and Artiodactyla, such as any members of the family Suidae, and in particular any member of the genus Sus, such as Sus scrofa, which is also known as the domestic pig or a subspecies thereof (Sus scrofa domestica). In addition to porcine ungulates, additional ungulates that can be used in the invention include bovine, ovine, and caprine ungulates. Thus, for example, the invention can include the use of cows (e.g., Bos taurus or Bos indicus), sheep, goats, buffalos, antelopes, oxen, horses, donkeys, mule, deer, elk, caribou, water buffalo, camels, llama, alpaca, and elephants.

The invention provides several advantages, as it provides large, non-human animal models that can be used in the identification and characterization of therapies for genetic diseases. One example of such a disease is cystic fibrosis which, as discussed above, is a devastating disease, leading to increased levels of disability and, eventually, early death. Despite progress in understanding and treating CF, the pathogenesis of the disease is not well understood and therapies remain inadequate. A major impediment to answering questions is the lack of an animal model that shows disease similar to that in humans. Availability of a CF pig will allow investigators to address key problems that have persisted unresolved for years. As a result, it will be possible to develop new treatments, therapies, and preventions.

Further, given the close physiological relationship between humans and large animals, such as pigs, there is an increased likelihood that results obtained using the animal models of the invention can be applied to humans, relative to other animal models (e.g., mice, which do not develop the airway and pancreatic disease typical of human CF). Specifically with respect to pigs, it is noted that pigs and humans have anatomical, histological, biochemical, and physiologic similarities. Further, pigs and humans possess similar abundance of submucosal glands and glycoprotein synthesis/secretion. In addition, pigs and humans have similar respiratory immune systems and pulmonary inflammatory responses, making the pig be a particularly good model for CF disease of humans. Further, the use of human sequences in large animals such as
pigs, as in some examples of the invention, provides additional benefits of providing a system that is very similar to that of humans. Indeed, the data described below show the close similarities between human CF and the pig CFTR−/− model of the invention. The invention thus can be used to provide substantial benefits in the treatment of diseases and conditions caused by or associated with gene mutations, such as cystic fibrosis.

Other features and advantages of the invention will be apparent from the drawings, the detailed description, the experimental examples, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The application file contains drawings executed in color (Figs. 2, 7, 10, 12-17, 20, and 22). Copies of this patent or patent application with color drawings will be provided by the Office upon request and payment of the necessary fee.

Fig. 1 is a graph showing CFTR expression in pig fetal fibroblasts. Data are quantitative RT-PCR of pig CFTR mRNA relative to GAPDH in primary pig fetal fibroblasts, nasal epithelia, and rectal epithelia. Similar results were obtained on two other occasions.

Fig. 2 is a schematic representation of targeting constructs for homologous recombination for CFTR-null and CFTR-DΔ508. Exons 8-11 of pig CFTR are depicted in black boxes. NeoG contains a neomycin resistance cDNA driven by the PGK promoter and flanked by loxP sites. The engineered stop codon is indicated in the CFTR-null targeting vector. The positions of probes for NeoG and CFTR Southern blots are indicated. PCR screen primers are depicted as arrowheads.

Fig. 3 shows screening results from CFTR-null targeted pig fetal fibroblasts. A) Example of PCR results. Primers amplified a 2.0 kb product from the wild-type allele and 3.7 kb product from the CFTR-null allele. Lanes 5, 8, 9, 12, and 13 are examples of PCR-positive clones. B) Southern blot of the PCR gel using a NeoG-specific biotin-labeled oligonucleotide. This assay confirms that the 3.7 kb product contains the NeoG sequence. The weaker hybridization signal at 2.0 kb appears to be an artifact, with some of the targeted band co-migrating with the wild-type product. Note the differences in intensity of the two bands in panel A relative to panel B.

Fig. 4 is a genomic Southern blot of DNA from CFTR-null targeted pig fetal fibroblasts. A) BgIII-digested genomic DNA was hybridized with a probe that detects pig CFTR downstream of the targeting vector boundary. CFTR-null-targeted allele yields a 9.7 kb band and wild-type is 7.9 kb. These bands also allowed us to identify wells containing monoclonal colonies and those containing more than one type of G418R colony. For example, wells 5 and 11 appeared to have more intense signals in the wild-type band than the targeted band, indicating that those wells likely contained one targeted clone and one or more random integration events. B) The same digested DNAs were hybridized with a NeoG-specific probe. The CFTR-null-targeted band is at 9.7 kb. Note that the band in lane 6 likely represents a random integration event, and lane 1 may have two random integration events. Wells 4, 5, 7, 8, 10, 12-14, 16, and 17 are examples of cells that may be ideal nuclear donors for generating a heterozygote animal.

Fig. 5 shows screening results from CFTR-DΔ508 targeted pig fetal fibroblasts. A) Example of PCR results. Primers amplified a 2.0 kb product from the wild-type allele and a 3.7 kb product from the CFTR-DΔ508 allele. B) Southern blot of the PCR gel using a DΔ508 allele-specific biotin-labeled oligonucleotide. This assay confirms some of the 3.7 kb products contained the DΔ508 mutation. Note that lanes 1, 2, and 4 contain clones that underwent homologous recombination but failed to carry the DΔ508 mutation. On the right, wells contained either wild-type CFTR or CFTR-DΔ508 plasmid DNA. This control is included to ensure that the assay Southern blot is specific to DΔ508.

Fig. 6 is a Southern blot of amplified genomic DNA from CFTR-DΔ508 targeted pig fetal fibroblasts. In contrast to our experience with the CFTR-null targeting, the CFTR-DΔ508 targeted cells failed to proliferate after transfer to larger dishes. As a result, we were unable to obtain sufficient quantities of genomic DNA for a genomic Southern blot. Therefore, we used the relatively small amount of DNA for whole genome amplification. A) BgIII-digested amplified genomic DNA was hybridized with a probe that detects pig CFTR downstream of the targeting vector boundary. The CFTR-DΔ508-targeted allele yields a 9.7 kb band and the wild-type is 7.9 kb. B) Digested DNAs from similar clones were hybridized with a NeoG-specific probe. The CFTR-DΔ508-targeted band is at 9.7 kb. Note that all lanes in this Southern blot contain an intense band at 5 kb. This band was also present in non-infected fibroblast control DNA wells. This probe is possibly hybridizing to the endogenous PGK promoter sequence, because the probe includes some PGK promoter sequence. Consistent with this, the NeoG-probed blot in Fig. 4A also contains a faint band at 5 kb in all samples if markedly overexposed.

Fig. 7 is a photograph of the first CFTR+/− piglet taken at one day of age.

Fig. 8 is a Southern blot of genomic DNA from CFTR-targeted pigs. BgIII-digested genomic DNA was hybridized with a probe that detects pig CFTR downstream of the targeting vector boundary, shown in Fig. 2. CFTR-null and CFTR-DΔ508-targeted alleles produced a 9.7 kb band, and wild-type is 7.9 kb. A) CFTR-null. Lanes 1-11 contain DNA from individual cloned pigs. Note that pig 10 was wild-type. WT well contains DNA from a wild-type control. B) CFTR-DΔ508. Lanes 1-5 contain DNA from individual cloned pigs. Note that pig 4 was wild-type. WT well contains DNA from a wild-type control.

Fig. 9 shows CFTR mRNA expression in CFTR+/− and CFTR-DΔ508 pigs. A) Quantitative RT-PCR was used to measure wild-type CFTR mRNA levels in nasal epithelial samples from CFTR+/− and wild-type pigs. B) Quantitative RT-PCR was used to measure DΔ508-CFTR mRNA levels to wild-type mRNA levels in CFTR+/DΔ508 and wild-type pigs. Error bars represent S.D.

Fig. 10 shows that CFTR+/− piglets appear normal at birth. A) Upper panel depicts insertion into porcine CFTR exon 10 of a PGK promoter (yellow) driving a neomycin resistance cDNA (orange), and an engineered stop codon. Position of probe (green), PCR primers (arrowheads) and BgIII sites (B) are indicated. Second and third panels show genotyping by PCR and Southern blot of genomic DNA. Lanes C1, C2, and C3 contain controls of CFTR+/+, +/+ and −/− DNA. Fourth panel shows northern blot of ileal CFTR and GAPDH mRNA. Consistent with the northern blot, quantitative RT-PCR of exon 10, the targeted site, detected <0.1% of CFTR transcripts in CFTR+/− ileum relative to CFTR+/+ (n=6 and 4). Fifth panel shows immunoprecipitation and phosphorylation of CFTR plus recombinant CFTR in BHK cells. B) First litter containing piglets of all three genotypes. C) Birth weights. Mean±SD of weights: 1.31±0.24 kg for CFTR+/+, 1.35±0.28 kg CFTR−/−, and 1.31±0.23 kg CFTR−/−. D) Immunocytochemistry of CFTR in airway epithelia (top) and ileum (bottom). Figures are differential interference contrast with staining for ZO-1 (a component of tight junctions, red), CFTR (green), and nuclei (DAPI, blue). See
also FIG. 11. Bars, 10 \(\mu m \). E) Tracings of in vivo nasal voltage (VT) measured in newborn piglets. After baseline measurements, the following agents/solutions were sequentially added to the epithelial perfusate: amiloride (100 \(\mu M \)), CT-free solution, isoproterenol (10 \(\mu M \)), ATP (100 \(\mu M \)), and GlyH-101 (100 \(\mu M \)). F) Average nasal VT measurements as indicated in panel E. Data from 4 CFTR+/- and 4 CFTR-/- piglets were not statistically different and were combined and compared to data from 5 CFTR-/- piglets. Values of baseline nasal VT for CFTR-/- piglets differed from the controls, as did the changes in VT induced by adding amiloride, a CT-free solution, and GlyH-101 (all \(P<0.05 \)). Data are means±SEM. FIG. 11 is images showing staining for CFTR, ZO-1, and DAPI, plus differential interference contrast. Bars, 10 \(\mu m \).

FIG. 12 shows that CFTR-/- piglets develop meconium ileus. A) Schematic shows some clinical and histopathological findings at birth and their implications. The pathological abnormalities are present before clinical disease becomes apparent. B) Weight following birth. Animals were fed colostrum and milk-replacer. \(n=7 \) CFTR+/- and \(4 \) CFTR-/-. Data are means±SEM. *\(P<0.05 \). C) Gross appearance of gastrointestinal tract. Piglets were fed colostrum and milk-replacer for 30-40 \(h \) and then euthanized. Stomach (black *), small intestine (arrowheads), pancreas (white arrow), rectum (white *), and spiral colon (black arrow). Of 16 CFTR-/- piglets, the obstruction occurred in small intestine in 7 and spiral colon in 9. D, E) Microscopic appearance of the ileum (D) and colon (E). H&E stain. Bars, 1 mm. Images are representative of severe meconium ileus occurring in 16 of 16 CFTR-/- piglets.

FIG. 13 shows that CFTR-/- piglets have exocrine pancreatic destruction and liver and gallbladder abnormalities. A) Gross appearance of pancreas. Bar, 0.5 cm. B) Loss of parenchyma in the CFTR-/- pancreas. H&E stain. Bars, 500 \(\mu m \). C) Pancreatic ducts and islets of Langerhans (arrowheads). Bars, 100 \(\mu m \). D) CFTR-/- ductules and acini dilated by eosinophilic inspissated material that formed concentrically lamellar concretions (arrows and insert). H&E stain. Bars, 33 \(\mu m \). E) Ducts within the CFTR-/- pancreas. H&E stain, left; PAS stain, right. Bars, 50 \(\mu m \). F) Microscopic appearance of liver. H&E stain. Arrows indicate focal expansion of portal areas by chronic cellular inflammation. Bars, 100 \(\mu m \). G) Gross appearance of gallbladder. When the CFTR+/- gallbladder was sectioned, bile drained away rapidly with collapse of the mucosal wall. CFTR-/- bile was congealed (arrow) and retained in the lumen of a smaller gallbladder. Bar, 0.5 cm. H) Microscopic appearance of gallbladder. CFTR-/- gallbladders had congealed, inspissated bile with variable mucus production (arrows, H&E stain) highlighted as a magenta color in periodic acid-Schiff (PAS) stained tissue. Bars, 500 \(\mu m \). Images are representative of severe pancreatic lesions (15/15 CFTR-/- piglets), mild to moderate liver lesions (3/15), and mild to severe gall bladder/duct lesions (15/15).

FIG. 14 shows that the lungs of newborn CFTR-/- and CFTR+/- piglets appear normal. A) Microscopic appearance of lung from piglets <12 hours old. H&E staining. Bars, 1 mm (left) and 50 \(\mu m \) (right). B) Bronchial epithelia and submucosal glands. H&E staining. Bars, 50 \(\mu m \). Images are representative of lack of lesions in 15 of 15 CFTR-/-.

FIG. 15 shows results from bacterial culture of bronchoalveolar lavage fluid obtained from piglets between 6 and 12 hours after birth.

FIG. 16 shows results from bronchoalveolar lavage (BAL) on unfed piglets <12 hours old. Data are total numbers of cells in the lavage, percentages of macrophages and neutrophils, and levels of IL-8. Data are from 2 CFTR+/-, 2 CFTR-/-, and 5 CFTR-/- piglets. Values were not statistically different, \(P>0.1 \).

FIG. 17 is an amino acid sequence alignment of human, pig, and mouse CFTR. Transmembrane domains (TM), nucleotide-binding domains (NBD), and the R domain are boxed and labeled. Walker A and B motifs, signature motif (SM), and F508 are shaded. The alignment was generated using ClustalW. The NBD boundaries are based on the NBD1 crystal with the NBD2 boundaries based on amino acids counting up from Walker A and down from Walker B.

FIG. 18 shows that pig and mouse CFTR-\(\Delta F508 \) produce some mature band C protein. The images show immunoprecipitated and in vitro phosphorylated wild-type and \(\Delta F508 \) CFTR of human, pig, and mouse. A) Constructs were expressed for 24, 48, and 72 hours in COS7 cells. B and C. Constructs were expressed for 48 hours in NIH3T3 (B) and L.CPK1 (C) cell lines. H, human; P, pig; M, mouse. Bands B and C are indicated by arrows.

FIG. 19 shows that fully glycosylated pig and mouse \(\Delta F508 \) are not endoglycosidase H sensitive. The images show immunoprecipitated and in vitro phosphorylated human, pig, and mouse wild-type and \(\Delta F508 \) CFTR incubated in the presence (+) or absence (−) of 10 \(nM \) of endoglycosidase H. Human CFTR was from electroporated COS7 cells; we expressed pig and mouse CFTR using adenoviral vectors. The last 2 lanes are COS7 cells infected with Ad-GFP. Bands A, B, and C are indicated by arrows.

FIG. 20 shows that human, pig, and mouse wild-type CFTR and pig and mouse CFTR-\(\Delta F508 \) are expressed on the apical surface of differentiated airway epithelia. Immunostaining of differentiated human CF airway epithelia expressing human, pig, and mouse wild-type and \(\Delta F508 \) CFTR. Data are X-Y (A,B,E,F,I,J) and X-Z (C,D,G,H,K,L) confocal images. CFTR immunostaining is in green and ZO-1 (tight junction) in red. Apical membrane is shown by arrow and filter (at the basal membrane) is indicated by dotted line. In panel B, faint staining of CFTR-\(\Delta F508 \) is visible beneath the apical surface. Bar indicates 10 \(\mu m \).

FIG. 21A shows single-channel currents from human, pig, and mouse wild-type and \(\Delta F508 \) CFTR. Representative current traces from excised, inside-out patches of HeLa cells containing single channels of human, pig, and mouse wild-type and \(\Delta F508 \) CFTR. Holding voltages were human at –80 mV, pig at –100 mV, and mouse wild-type at –50 mV, and mouse \(\Delta F508 \) at –80 mV. Human tracings were from cells incubated at reduced temperature and then studied at 37° C and are taken from Teem et al. (Receptors Channels 4:63-72, 1996); pig and mouse channels were from cells incubated at 37° C and studied at –25° C. Expanded tracings on bottom show sub-conductance in mouse wild-type and \(\Delta F508 \) CFTR. FIG. 21B shows the properties of wild-type and \(\Delta F508 \) CFTR. Data are means±SEM for single-channel conductance (g), open state probability (\(P_o \)), burst duration (BD), and interburst interval (IBI). n = 4-5 membrane patches for each. Asterisks indicate *\(P<0.05 \) compared to wild-type CFTR using Mann-Whitney Rank Sum test. Note that values for human CFTR and CFTR-\(\Delta F508 \) were taken from Teem et al. (Receptors Channels 4:63-72, 1996).

FIG. 22 shows transepithelial currents in human CF airway epithelia expressing human, pig, and mouse CFTR and CFTR-\(\Delta F508 \). Examples of current traces of human, pig, and mouse wild-type CFTR and CFTR-\(\Delta F508 \) expressed in differentiated human CF airway. Agents were present during times indicated by bars.

FIG. 23 shows the bumetanide-sensitive cAMP-stimulated current in differentiated CF airway epithelia. A. Currents in
human and mouse airway epithelia expressing human, pig, and mouse wild-type CFTR and CFTR-ΔF508 CFTR after subtraction of currents from GFP-expressing control epithelia. B. Bumetanide-inhibited current in CF epithelia expressing CFTR-ΔF508 as a percentage of bumetanide-inhibited current in CF epithelia expressing wild-type CFTR of each species.

DETAILED DESCRIPTION OF THE INVENTION

The invention provides animal models of human diseases (e.g., cystic fibrosis (CF)) and conditions, which can be used in methods including the identification and characterization of approaches for treating the diseases and conditions. As is discussed further below, the animal models of the invention are large, non-human animals, such as pigs, which have been genetically modified to include one or more mutations in a gene associated with a particular disease or condition (e.g., the cystic fibrosis transmembrane regulator (CFTR) gene in CF). The genetic modifications can result in the animals having one or more symptoms characteristic of the disease or condition. Animals exhibiting such symptoms are particularly advantageous in the development of therapeutic approaches, as candidate drugs and other approaches to treatment can be evaluated for effects on the symptoms in such animals. Thus, in addition to the animal models themselves, the invention also provides methods of using the animals for identifying and characterizing treatments. Further, the invention includes methods of making transgenic, large non-human animal models and cells that can be used in these methods. The animal models systems, methods, and cells of the invention are described further below.

In addition to animals including knock-outs or mutations in endogenous genes, the invention also includes transgenic, large non-human animal models of human diseases and conditions (e.g., pigs), in which one or more endogenous genes associated with the diseases or conditions are knocked-out (i.e., genetically altered in such way as to inhibit the production or function of the products of these genes) and replaced with a comparable wild-type or mutated gene derived from a different animal (e.g., a human). In one example, a pig with its endogenous porcine CFTR knocked-out expresses a human transgene encoding a mutated CFTR protein, such as the CFTR-ΔF508 gene (i.e., a CFTR/ΔF508 pig). Alternatively, the human transgene may encode a normal, wild-type copy of a gene of interest (e.g., CFTR). These embodiments of the invention are especially useful for the generation of non-human animal models of human diseases and conditions that can be used to test existing and potential therapeutics that may only (or may preferentially) modulate or treat the disease when contacting, or being in the presence of, human copies of the disease gene or protein in question.

The invention is described herein in reference to animal models of CF, which are generated by mutation, deletion, or replacement of the CFTR gene. However, the methods of the invention are also applicable to the development of animal models of additional diseases and conditions, examples of which are provided below.

The transgenic animals of the invention can be made using the following general strategy. Briefly, the genome of a cell (e.g., a fetal fibroblast) from an animal of interest, such as a pig, is genetically modified or replaced by, for example, gene targeting by homologous recombination, to create a "donor cell." According to the methods of the invention, the genetic modification results in at least partial inactivation of an endogenous gene associated with a particular disease or condition (e.g., a CFTR gene in CF), as will be described in further detail below. The nucleus of such a genetically modified donor cell (or the entire donor cell, including the nucleus) is then transferred into a so-called "recipient cell," such as an enucleated oocyte. After activation and, typically, a brief period of in vitro culture, the resulting embryo is implanted into a surrogate female in which development of the embryo proceeds. Typically, the donor cell, oocyte, and surrogate female are of the same species, but the sources can be different species, as is known in the art.

The transgenic animals of the invention can be any non-human mammals, including, for example, ungulates. Examples of ungulates that can be used in the invention include members of the orders Perissodactyla and Artiodactyla, such as any members of the family Suidae, and in particular any member of the genus Sus, such as Sus scrofa, which is also known as the domestic pig or a subspecies thereof (Sus scrofa domestica). In one specific example, the animal is a miniature swine that is a descendent from the miniature swine described by Sachs et al., Transplantation 22:559, 1976. In addition to porcine ungulates, additional ungulates that can be used in the invention include bovine, ovine, and caprine ungulates. Thus, for example, the invention can include the use of cows (e.g., Bos taurus or Bos indicus), sheep, goats, buffalos, antelopes, oxen, horses, donkeys, mule, deer, elk, caribou, water buffalos, camels, llamas, alpacas, and elephants.

The invention includes animals in which only one allele of a targeted gene (e.g., CFTR) is disrupted, mutated, or replaced with the other allele remaining unaffected. These animals, which are referred to herein as "heterozygous" or "hemizygous" animals, can be used, for example, in breeding approaches to generate homozygous mutants, if desired, for example, in the case of diseases caused by homozygous recessive mutations. These animals can also be used as animal models themselves, in the case of diseases caused by autosomal dominant mutations.

Also included in the invention are homozygous mutant animals, in which both alleles of a target gene (e.g., CFTR) are disrupted or mutated, by the same or different mutations (or replaced with the same or different gene(s), optionally with the same or different mutations). In addition to being obtainable by breeding approaches involving hemizygous animals, homozygous mutant animals can also be obtained using an approach in which a cell (e.g., a fetal fibroblast) including a mutation in one allele, such as a cell obtained from an animal produced using the method summarized above, is subjected to gene targeting by homologous recombination to achieve modification of the remaining allele. The resulting donor cell can then be used as a source of a modified nucleus for nuclear transfer into a recipient cell, such as an
enucleated oocyte, leading to the formation of a homozygous mutant embryo which, when implanted into a surrogate female, develops into a homozygous mutant animal.

A target gene (e.g., a CFTR gene) can be subject to genetic modification in any appropriate cell type of a species for which it is desired to create an animal model of a disease associated with mutation of the gene, according to the invention. As is understood in the art, it is necessary to be able to culture and carry out homologous recombination in a cell that is to be used as a donor cell. A particular example of such a cell, which is described in more detail below in connection with pigs, is the fetal fibroblast. These cells can be obtained using, for example, the approach described in U.S. Patent Application Publication 2005/0120400 and other references cited herein.

The invention also includes the use of other cell types that may be used to prepare preparations obtained using the method described in U.S. Patent Application Publication 2005/0120400. Additional examples of cells that can be used as donor cells in making the transgenic animals of the invention include other fetal cells, placental cells, or adult cells. Specific examples of such cells for gene targeting include differentiated cells such as fibroblasts, epithelial cells, neural cells, epidermal cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, B-lymphocytes, T-lymphocytes, erythrocytes, macrophages, monocytes, placental, and muscle cells.

If a cell to be genetically altered is derived from an embryo or a fetus, the cell (e.g., a fetal cell or placental cell) can be isolated at any time during the gestation period until the birth of the animal, which may or may not be itself genetically altered. In the case of a pig, such cells can be obtained, for example, between 20 to 90 days of gestation, between 25 to 60 days of gestation, between 30 to 45 days of gestation, or between 35 to 40 (e.g., at 35 days) of gestation. The time periods for obtaining cells from other animals is known in the art (see, e.g., WO 2005/104835).

Gene targeting carried out to make the cells and animals of the invention can result in gene inactivation by disruption, removal, modification, or replacement of target gene sequences. For example, inactivation can take place by the insertion of a heterologous sequence and/or a stop codon into a target gene. A specific example of this type of inactivation, in the context of a CFTR gene, is described in the experimental examples, below. As is known in the art, inserted sequences can replace previously existing sequences in a gene or can be added to such sequences, depending on the design of the targeting construct. Also as is known in the art, the design of targeting constructs can be altered, depending upon whether it is desired to completely knock out the function of a gene or to maintain some level of reduced function. In the case of CFTR, for example, complete knock out of function is consistent with the most common form of CF (ΔF508; see above), but other, less dramatic changes may be desirable for the generation of models of disease maintaining some CFTR function. Such changes may be achieved by, for example, replacement with sequences that are identical to wild-type sequences, except for the presence of specific mutations giving rise to features of the target disease. In other approaches, coding sequences are not altered or are minimally altered and, rather, sequences impacting expression of a target gene, such as promoter sequences, are targeted. In any case, selectable marker insertion is often desirable to facilitate identification of cells in which targeting has occurred. If desired, such markers or other inserted sequences can later be removed by, e.g., cre-lox or similar systems.

A CFTR-Δ/Δ (i.e., knock-out) hCFTR-Δ508 pig can be made numerous ways, including, but not limited to: i) introducing a human CFTR-Δ508 cDNA, partial human CFTR-Δ508 gene, or entire human CFTR-Δ508 gene into pig CFTR-Δ/Δ cells, selecting for human CFTR-Δ508 expression, and using these cells as nuclear donors in somatic cell nuclear transfer, and ii) introducing a human CFTR-Δ508 cDNA, partial human CFTR-Δ508 gene, or entire human CFTR-Δ508 gene into pig CFTR-Δ/Δ into mature oocytes, fertilizing, then transferring to a recipient female. The human CFTR sequence is described, for example, by Riordan et al., Science 245(4922):1066-1073, 1989 (erratum in Science 245 (4925):1437, 1989). Human, pig, and mouse CFTR sequences are also provided in SEQ ID NOs: 1-6.

As is known in the art, targeted gene modification requires the use of nucleic acid molecule constructs having regions of homology with a targeted gene (or flanking regions), such that integration of the construct into the genome alters expression of the gene, either by changing the sequence of the gene and/or the levels of expression of the gene. Thus, to alter a gene, a targeting construct is generally designed to contain three main regions: (i) a first region that is homologous to the locus to be targeted (e.g., the CFTR gene or a flanking sequence), (ii) a second region that is a heterologous polynucleotide sequence (e.g., encoding a selectable marker, such as an antibiotic resistance protein) that is to specifically replace a portion of the targeted locus or is inserted into the targeted locus, and (iii) a third region that, like the first region, is homologous to the targeted locus, but typically is not contiguous with the first region of the genome. Homologous recombination between the targeting construct and the targeted wild-type locus results in deletion of any locus sequences between the two regions of homology represented in the targeting vector and replacement of that sequence with, or insertion into that sequence of, a heterologous sequence that, for example, encodes a selectable marker. In the case of targeting transcriptionally inactive genes, such as, for example, the CFTR gene in fibroblasts, or a gene having only very low levels of transcription, the constructs of the invention can include a promoter, such as a PGK promoter, which drives expression of the selectable marker (e.g., Neo). Use of such promoters may not be required in cases in which transcriptionally active genes are targeted, if the design of the construct results in the marker being transcribed as directed by an endogenous promoter. Exemplary constructs and vectors for carrying out such targeted modification are described herein. However, other vectors that can be used in such approaches are known in the art and can readily be adapted for use in the invention.

In order to facilitate homologous recombination, the first and third regions of the targeting vectors (see above) include sequences that exhibit substantial identity to the genes to be targeted (or flanking regions). By “substantially identical” is meant having a sequence that is at least 80%, 90%, 95%, 98%, or 100% identical to that of another sequence. Sequence identity is typically measured using BLAST® (Basic Local Alignment Search Tool) or BLAST® 2 with the default parameters specified therein (see, Altschul et al., J. Mol. Biol. 215:405-410, 1990; Tatiana et al., FEMS Microbiol. Lett. 174:247-250, 1999). These software programs match similar sequences by assigning degrees of homology to various subtractions, deletions, and other modifications. Thus, sequences having at least 80%, 90%, 98%, or 99%, or even 100% sequence identity with the targeted gene loci can be used in the invention to facilitate homologous recombination.

The total size of the two regions of homology (i.e., the first and third regions noted above) can be, for example, approxim-
mately 2-2.5 kilobases (e.g., 4-20, 5-15, or 6-10 kilobases), and the size of the second region that replaces a portion of the targeted locus can be, for example, approximately 0.5-5 kilobases (e.g., 1-4 or 3-4 kilobases). A specific example of such a construct is described below, in the experimental examples.

The targeting constructs can be included within any appropriate vectors, such as plasmid or viral vectors (e.g., adenovirus or adenovirus-associated virus vectors), which can be introduced into cells using standard methods including, for example, viral transduction, electroporation, or microinjection. One example employs an adenovirus-associated viral vector (AAV) (e.g., rAAV2, which can be made by standard methods using a AAV2 plasmid (A1CC 37216), rAAV1, and rAAV5).

The use of AAV to deliver the targeting construct offers many benefits. First, AAV1 (and other AAV serotypes) infects pig fetal fibroblasts with 95-100% efficiency. Second, AAV infection of pig fetal fibroblasts results in little or no cell toxicity. Third, AAV infection results in the delivery of a single-stranded gene targeting construct directly to the nucleus. Single-stranded gene targeting vectors are thought to yield more efficient gene targeting and result in a more favorable homologous recombination to non-homologous recombination ratio (Hendrie and Russell, Molecular Therapy 12(1):9-17, 2005).

The methods of the invention, employing AAV vectors, resulted in high levels of gene targeting efficiency in these somatic cells, as compared to prior methods. Central to the methods of the invention is the fact that the entire procedure was performed in a time-sensitive manner, because excessive cell culture time (more than 30 days) negatively impacts nuclear transfer efficiency (Lai et al., Cloning and Stem Cells 5(4):233-241, 2003). In one example, following fibroblast harvest from day 35 fetuses, the fetal fibroblast cells were frozen within 48 hours. The use of an AAV vector to deliver the gene targeting construct allowed targeting to begin 24 hours after thawing cells and required no cell detachment and re-attachment, which is required in other methods. Multiple cell detachment and re-attachment events (trypsinization) are thought to decrease the ability of a cell to serve as a nuclear donor in nuclear transfer. Further, G418 selection in 48 96-well plates prevents the need for the more conventional, time-consuming isolation of resistant clones with cloning rings. The screen for gene-targeted clones was designed such that all positive clones could be identified and frozen within a 3-5 day period. All clones were frozen by day 18, therefore the cells have been in culture approximately 20 days since being harvested from the fetus. This is an important aspect of the invention, because reduction of the time in culture increases the likelihood that cells used as nuclear donors are viable, normal, and euploid.

Accordingly, the invention provides a method of gene-targeting cells, such as pig cells (e.g., pig fetal fibroblasts), in which the number of days in culture (during which targeting and selection takes place) is less than 30 days, e.g., 25-29, 20-24, 19, 18, 17, 16, 15, or fewer days. To facilitate this method, the selection can take place in multi-well plates, as described further below. Further, the cells may be frozen shortly after harvest (e.g., within 24, 48, or 96 hours). After cell thawing (or after harvest, if the cells are not previously frozen), gene targeting with an AAV vector can be carried out within, for example, 12, 24, 36, or 48 hours, without the use of multiple detachment/re-attachment events, and selection can proceed in an expedited manner, such as by use of multi-well plates (e.g., 96-well plates), prior to freezing.

Other types of vectors, or more specifically other types of targeting construct delivery methods, are available, and were used during initial attempts to disrupt the pig CFTR gene.

Cell transfection methods, including calcium phosphate, lipofection, electroporation, and nuclear injection can be used to deliver the targeting construct, though the disadvantages of inefficient transfection efficiency, cell toxicity, requirement of a pure (clean) targeting construct DNA sample, and poor ratio of homologous recombination to non-homologous recombination far outweigh the benefit of ease. If the gene is transcriptionally active in the cell being used, then a promoterless selectable marker strategy can be employed, so that antibiotic resistance will only be found in cell that have had a recombination event within a transcribed unit.

Genetically targeted cells are typically identified using a selectable marker, such as neomycin. If a cell already contains a selectable marker, however, a new targeting construct containing a different selectable marker can be used. Alternatively, if the same selectable marker is employed, cells can be selected in the second targeting round by raising the drug concentration (for example, by doubling the drug concentration), as is known in the art. As is noted above, targeting constructs can include selectable markers flanked by sites facilitating excision of the marker sequences. In one example, constructs can include loxP sites to facilitate the efficient deletion of the marker using the cre/lox system. Use of such systems is well known in the art, and a specific example of use of this system is provided below, in the experimental examples.

Upon obtaining cells in which a target gene (e.g., a CFTR gene) has been targeted (one or both alleles, as described above), nuclear transfer can be carried out. Optionally, the genetically modified nuclear donor cells can be frozen prior to nuclear transfer. Recipient cells that can be used in the invention are typically oocytes, fertilized zygotes, or two-cell embryos, all of which may or may not have been enucleated.

Typically, the donor and the recipient cells are derived from the same species. However, it is possible to obtain development from embryos reconstructed using donor and recipient cells from different species.

Recipient oocytes can be obtained using methods that are known in the art or can be purchased from commercial sources (e.g., BioMed. Inc., Madison, Wis.). As is known in the art, the donor nucleus or the donor cell itself can be injected into the recipient cell or injected into the perivitelline space, adjacent to the oocyte membrane. The nuclear transfer complex formed in this manner can be activated by standard methods, which may involve electrical fusion/activation or electrical fusion/chemical activation, as is described further below. Further processing of the nuclear transfer complex, including implantation of the complexes into surrogate mothers, is described further below.

The transgenic animals of the invention can be used in the identification and characterization of drug and other treatment methods for the disease or condition associated with mutation of the gene targeted according to the invention. In these methods, for example, a candidate therapeutic agent can be administered to an animal and the impact of the agent on a feature of the disease exhibited by the animal can be monitored. Optionally, the methods can also involve exposure of the animals to environmental or other conditions known to contribute to or exacerbate the disease or condition. For example, in the case of CF animal models having impaired respiratory function, the effect of the drug on such function can be assessed by measurement of standard respiratory parameters. In another example, in the case of animals exhibiting impaired digestion, due to blockage of pancreatic and/or liver ducts, the effect of a treatment on digestion can be determined.
With the porcine model of the invention, it is possible to test hypotheses that lead to new treatments and to evaluate potential therapies for CF lung disease. The porcine model also makes it possible to assess electrolyte transport by porcine airway epithelia in vitro and in vivo, the volume of airway surface liquid in vitro and in vivo, the ion composition of airway surface liquid in vitro and in vivo, the airway surface liquid pH in the airway, and electrolyte transport in the small airways. It is also possible to measure respiratory mucociliary transport in vitro and in vivo. For assessing inflammation, several tests and assays can be carried out, including (but not limited to) assays of key markers of inflammation in amniotic fluid, fetal lung liquid, and bronchoalveolar lavage by using lung tissue histochemistry, large-scale gene expression profiling of pulmonary tissues, cytokine and cell assays, and proteomics. It is also possible to raise CF and non-CF piglets in isolators under completely germ-free conditions and to test for the development of pulmonary inflammation, and then selectively expose the piglets to inflammatory stimuli including bacteria and viruses. In addition, investigators can test how loss of CFTR function in airway epithelia results in altered NF-kB signaling, the function of secreted epithelial antimicrobials/host defense proteins, and the consequences of loss of CFTR function in macrophages or neutrophils. The availability of the porcine CF model allows tests of the early manifestations of the CF, an important question that remains unanswered. The natural history of pulmonary infections in CF pigs can also be monitored, leading to a determination of whether the airway epithelia of CF pigs can be colonized by CF or porcine pathogens and/or non-pathogenic opportunistic organisms.

Although lung disease is the current main cause of mortality, patients suffer from CF disease in many other organs. Availability of a CF model allows new investigations and tests of therapeutics in the pancreas, intestine, sweat gland, liver, vas deferens, kidney, and other organs affected primarily or secondarily by CF. The screening methods of the invention can be carried out to test the efficacy of new compounds, combinations of new and old compounds, non-pharmacological treatments, and combinations of pharmaceutical and non-pharmaceutical treatments.

As described further below, CFTR−/− pigs of the invention have been generated and extensively characterized with respect to genotypic and phenotypic characteristics. The CFTR−/− pigs have been found to share phenotypic characteristics with human CF, many of which are not also shared by murine CF models. These differences highlight the importance of the animal models of the invention in the development of therapeutics for human CF. Animal models of the invention thus include large non-human animals, such as pigs, having any one or more of the following clinical, electrophysiological, or pathological characteristics, relative to corresponding wild-type animals:

(i) electrophysiological features similar to CF humans including, e.g., any one or more of a hyperpolarized baseline Vt, (b) reduction of Vt by amiloride, and (c) no CFTR or other Cl− channel activity (as measured by, e.g., perfusion of apical surface with Cl−-free solution and addition of isoproteironol; perfusion with ATP to activate P2Y2 receptors and Ca2+-activated Cl− channels; and perfusion with the CFTR inhibitor Gly91-101);

(ii) meconium ileus, as characterized by, e.g., any one or more of (a) obstruction in the small intestine and/or colon (e.g., near the ileocecal junction), (b) the appearance of microcolon distal to the obstruction, (c) intestinal perforation and/or peritonitis, (d) failure to pass feces or gain weight, (e) failure to eat, (f) abdominal distension, (g) bile-stained emesis, (h) proximal dilation of the small intestine, (i) meconium distension of the intestine, (j) degenerated and atrophied villi adjacent to the meconium, (k) reduced luminal diameter distal to the meconium, (l) mucinous hyperplasia (including mucoid luminal plugs) distal to the meconium, and (m) distal intestinal obstruction syndrome (DIOS);

(iii) exocrine pancreatic insufficiency or abnormalities, as characterized by, e.g., one or more of (a) decreased size, (b) degenerative lobules with, e.g., increased loose adipose and myxomatous tissue, and scattered to moderate cellular inflammation, (c) diminished eosinophilic zymogen granules in residual acini, (d) variable dilution and obstruction of centroacinar spaces, ductules, and ducts with eosinophilic material plus infrequent neutrophils and macrophages mixed with cellular debris, (e) foci of mucinous metaplasia in ducts and ductules, and (f) increased redness;

(iv) hepatic abnormalities consistent with focal biliary cirrhosis, as characterized by, e.g., any one or more of (a) mild to moderate hepatic lesions, (b) chronic cellular inflammation, (c) ductular hyperplasia, and (d) mild fibrosis;

(v) gall bladder and/or bile duct abnormalities, as characterized by, e.g., any one or more of (a) gallstones, (b) reduced size, (c) congealed bile and mucus, and (d) epithelia with diffuse mucinous changes with folds extending into the lumen; and

(vi) lack of abnormalities in vas deferens and lungs at birth.

It is expected that CFTR−/− pigs will develop abnormalities in these features as they age, consistent with what is found in humans, in which case a comparison of these features in older animals can also be made.

The invention has been described above in reference to mutation of the CFTR gene to generate non-human animal models of cystic fibrosis. As is stated above, the invention can also be used in the generation of transgenic, non-human animal models of other diseases and conditions associated with gene mutations. There are innumerable examples of such diseases and conditions known in the art, which can be included in this invention. Some specific examples are listed in Table 1.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Gene</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huntington’s disease</td>
<td>huntingtin</td>
<td>Oudradalldottir and Astworth, Oncogene, 25(9): 5864-5874, 2006</td>
</tr>
<tr>
<td>Polycystic kidney disease</td>
<td>PKD1 and 2</td>
<td>Gattone V, Current Opinion in Pharmacology 5: 535-542, 2005</td>
</tr>
<tr>
<td>Ataxia-telangiectasia</td>
<td>ATM</td>
<td>Concannon and Gatti, Hum. Mutat. 10(2): 101-7, 1997</td>
</tr>
<tr>
<td>Retinoblastoma</td>
<td>RB1</td>
<td>Lohmann, Hum. Mutat. 14(4): 283-9, 1999</td>
</tr>
</tbody>
</table>

Possible mutations to these disease genes include knock-outs (by, e.g., insertion of a selection cassette), knock-ins (e.g., by point mutations that correspond to human disease mutations), and, in the case of Huntington’s disease (and any other nucleotide repeat expansion disorder family members), an expansion of the nucleotide repeat to pathogenic sizes.
The following Examples are meant to illustrate the invention and are not meant to limit the scope of the invention in any way.

EXPERIMENTAL EXAMPLES

Pigs with two different alterations in their CFTR gene, a null allele and the ΔF508 mutation will provide useful animal models for the study of CF. A null allele would lack any CFTR function and should therefore provide a valuable model for assessing the porcine CF phenotype, for comparing the consequences of other CF-associated mutations, for exploring pathogenesis, and for evaluating many therapeutic strategies. The ΔF508 mutation deletes Phe508 and is the most common CF-associated mutation, accounting for ~70% of CF alleles (Zielenski et al., Annu. Rev. Genet. 29:777-807, 1995). In humans, this mutation disrupts processing of the protein, so that nearly all CFTR-ΔF508 is retained in the endoplasmic reticulum (ER) and degraded, preventing maturation to the plasma membrane. In addition, this deletion reduces the activity of single CFTR channels and shortens their lifetime on the cell surface (Daleman et al., Nature 354:526-528, 1991; Teem et al., Receptors Channels 4:63-72, 1996; Skach, Kidney Int. 57:825-831, 2000). Earlier work showed that reducing the incubation temperature and other interventions allowed some of the mutant protein to escape the ER and traffic to the cell surface, where it retained significant activity (Denning et al., Nature 358:761-764, 1992). These findings and the prevalence of the ΔF508 mutation have driven efforts to correct the CFTR-ΔF508 defects (Lukacs et al., N. Engl. J. Med. 349:1401-1404, 2003; Verkman et al., Curr. Pharm. Des. 12:2235-2247, 2006). We have found that porcine CFTR-ΔF508 showed at least partial processing in vitro (Ostedgaard et al., Proc. Natl. Acad. Sci. U.S.A. 104:15370-15375, 2007; also see below). A pig with the ΔF508 mutation could be of value for understanding the mechanisms responsible for the CFTR-ΔF508 biosynthetic defects in vivo and for developing pharmacological agents to correct the CFTR-ΔF508 biosynthetic defects. To begin developing these porcine models of CF, we combined gene targeting and SCNT.

The following experimental examples describe the generation of cystic fibrosis pig models (CFTR-null and CFTR-ΔF508 alleles), an interspecies analysis of the ΔF508 mutation, and approaches to making pigs expressing human CFTR sequences (e.g., human ΔF508 CFTR).

I. Cystic Fibrosis Pig—Generation of CFTR-ΔF508 Heterozygote Results

Fetal Pig Fibroblasts Express Little CFTR

We worked with fetal fibroblasts from domestic pigs (Sus scrofa) since they have been used successfully for transgenic SCNT (Park et al., Animal Biotechnology 12(2):175-181, 2001). Because a promoter-trap strategy was previously used in porcine fibroblasts (Lai et al., Science 295:1089-1092, 2002), we asked if CFTR is expressed in fetal fibroblasts. We used quantitative RT-PCR and compared the results to transcript levels in nasal and rectal epithelia, which are known to express CFTR at low levels (Trapnell et al., Proc. Natl. Acad. Sci. U.S.A. 88:6565-6569, 1991). FIG. 1 shows that the primary fibroblasts produced very little CFTR mRNA. This result prevented the use of a promoter-trap strategy as was done for the only other gene targeted in pigs (Lai et al., Science 295:1089-1092, 2002; Dai et al., Nat. Biotechnol. 20:251-255, 2002).

Developing Vectors to Target the Pig CFTR Gene

We designed a "null" targeting construct to disrupt CFTR exon 10 with a neomycin resistance cassette (Neo+) (FIG. 2). Because CFTR can exhibit some alternative splicing, we chose to disrupt exon 10, which encodes a portion of nucleotide binding domain 1; this exon is required for CFTR function. We also included an engineered stop codon at position 508. Therefore, F508X would be expected to trigger nonsense-mediated mRNA decay as well as prematurely interrupt any translation of CFTR. The ΔF508 targeting vector was designed to delete residue Phe508 (FIG. 2). We also inserted a Neo+ in the intron downstream of exon 10 as a positive selection marker. In this vector, Neo+ was flanked by loxP sites so that it could be removed at a later time if it was found to markedly reduce the level of the CFTR-ΔF508 mRNA, a situation encountered in some attempts to make a CFTR-ΔF508 mouse (Collodige et al., Nat. Genet. 10:445-452, 1995; Zeiter et al., J. Clin. Invest. 96:2051-2064, 1995).

We initially used nuclear microinjection and then electroporation to deliver the null targeting vector to fetal fibroblasts. However, we recovered only homologous recombinants. We then investigated AAV-mediated gene targeting, which has been used to deliver targeting vectors to cell lines and primary cells (Inoue et al., J. Virol. 73:7376-7380, 1999; Hirata et al., Nat. Biotechnol. 20:735-738, 2002; Porteus et al., Mol. Cell. Biol. 23:3558-3565, 2003; Russell et al., Nat. Genet. 18:253-330, 1998). Using an AAV vector has the advantage that it delivers single-stranded DNA to the nucleus, the amount of DNA per cell is small, and it can infect many cell types (Hendrie et al., Mol. Ther. 12:9-17, 2005). To first determine which AAV serotypes can infect pig fetal fibroblasts, we infected them with eGFP-expressing AAV1, 2, and 5 (each with AAV2 ITRs). Each AAV infected the cells with at least 50-80% efficiency, however, AAV1 appeared to infect nearly 100% of cells. Because of AAV genome size constraints, the total length of the targeting vectors was limited to ~4.5 kb. Neo+ was centrally located in both vectors (FIG. 2).

AAV Vectors Introduced the CFTR-Null and CFTR-ΔF508 Alleles

We obtained fetal fibroblasts from males so that all of our clones would be male, which would allow us to more rapidly expand the number of animals. Primary cultures of pig fetal fibroblasts were infected with AAV1 carrying the null targeting vector. After 24 hours, cells were transferred to a series of 96-well plates. Approximately two weeks later, cells in each well of the 96-well plates were "replicated" by splitting among three plates: 96-well culture plates for cell expansion, 96-well culture plates for potential cryopreservation, and 96-well PCR plates for cell lysis.

We screened cell lysates by PCR to identify wells containing gene-targeted clones (FIG. 3A) and then hybridized with a Neo+-specific probe to test for inclusion of this marker (FIG. 3B). We then froze positive clones; by that time, cells had been in culture 15-17 days. We also passaged positive clones from the "cell expansion" plates to generate DNA for genotypedetermination. Southern blots with CFTR- and Neo+-specific probes identified clones with a targeted CFTR allele that were free of random integration (FIG. 4). On average, 75% of PCR-positive clones were also positive by Southern blot and were clonal.

We used identical procedures to introduce the CFTR-ΔF508 construct and screen for homologous recombinants. We identified numerous PCR-positive clones (FIG. 5A), that were confirmed by Southern blotting with a ΔF508 alelle-specific probe (FIG. 5B). Eighteen of 25 (72%) PCR-positive clones contained the ΔF508 deletion. The other 28% failed to contain ΔF508, suggesting that gene targeting had occurred, but crossing over was downstream of F508. Subsequent Southern blots revealed CFTR-ΔF508 targeted clones (FIGS. 6A and 6B).
Variability in Homologous Recombination Depended on the Donor

Over the course of these studies, we targeted the CFTR gene in fibroblasts derived from several fetuses. The fetuses were all siblings harvested from the same uterus at the same time. Yet, surprisingly, we saw a striking fetus-to-fetus variability in targeting frequency (Table 2, below). Even when fibroblasts from different fetuses were infected and screened at the same time, with the same reagents, and by the same people, pronounced differences occurred; an example is fetus 5 vs. fetus 7 in Table 2. These results suggest the difference was not due to experimental process.

<table>
<thead>
<tr>
<th>Donor</th>
<th>G418-resistant (%)</th>
<th>Targeted/G418-resistant (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0.13</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>0.09</td>
<td>10.95</td>
</tr>
<tr>
<td>7</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>2</td>
<td>0.17</td>
<td>7.29</td>
</tr>
<tr>
<td>3</td>
<td>0.18</td>
<td>7.22</td>
</tr>
<tr>
<td>4</td>
<td>0.15</td>
<td>0.027</td>
</tr>
</tbody>
</table>

CFTR targeting data from donor cells derived from multiple fetuses. “Donor” refers to the number of the donor for the fibroblasts. The percentage of G418-resistant cells was determined by dividing the number of G418-resistant clones by the number of AAV-infected cells * 100. Targeted clones are those that were PCR-positive for homologous recombination.

SCNT Produced Gene-Targeted Piglets

To produce heterozygous pigs, we used the CFTR-null targeted fetal fibroblasts as nuclear donors for transfer to enucleated oocytes. Then to each of eight surrogate females, we transferred between 94 and 144 SCNT embryos. At 117-118 days of gestation (full term), we delivered piglets by Cesarean section. Five surrogates produced ten males; three surrogates did not produce offspring. Fig. 7 shows the first CFTR+/– piglet. Southern blots revealed that none of the ten offspring were CFTR-null heterozygotes, and one was a wild-type (Fig. 8). The CFTR+/– males reached sexual maturity, and they sired numerous litters of heterozygous offspring, both males and females.

In addition, each of four surrogates received 103-185 CFTR-AF508 SCNT embryos. Five males were recovered from three surrogates on days 116-117. Southern blots revealed that four were CFTR-AF508 heterozygotes and one was a wild-type. The CFTR-AF508 males have not yet reached sexual maturity. All of the CFTR+/– and CFTR+/AF508 were phenotypically normal.

The AF508 Allele, but not the Null Allele, Generated mRNA

We asked whether the targeted alleles were transcriptionally active in an epithelium where CFTR is normally expressed. We biopsied rectal epithelia and measured CFTR mRNA using quantitative RT-PCR. In CFTR+/– animals, mRNA was present at ~50% of wild-type levels (Fig. 9A). We cannot be certain that the remaining mRNA arose from the non-targeted allele, however the result is consistent with disruption of one CFTR allele and nonsense-mediated mRNA decay.

To assess the influence of the NeoR cassette that resides in the intron downstream of exon 10, we used probes specific for wild-type CFTR and CFTR-AF508. CFTR-AF508 mRNA was present at 65-70% of wild-type levels (Fig. 9B). This expression level suggests that the retained NeoR cassette has only minimal effects on transcription. Moreover, this amount of transcript is likely sufficient to produce relatively normal amounts of CFTR-AF508 protein.

Materials and Methods

Fetal Fibroblasts

Fetal fibroblasts were isolated from day 35 fetuses as previously described (Lai et al., Cloning Stem Cells 5:233-241, 2003). Cells were grown at 39°C in F10 media (Invitrogen) containing 20% FCS and 30 µg/ml gentamicin. Fetal gender was determined by PCR amplification of the Y-chromosome-specific Sry gene (Pomp et al., J. Anim. Sci. 73:1408-1415, 1995).

Targeting Vector Construction

Genomic clone: Genomic DNA was isolated (Puregene, Gentra) from pig fetal fibroblasts. A 5868 bp PCR product including CFTR exon 10 and flanking intronic sequence was amplified from pig fetal fibroblast genomic DNA using primers GC1F and GC8R (for primer sequences see Table 3, below) and a high fidelity polymerase (Phusion, Stratagene). Primers were designed based on the human pig genomic sequence from the NHGIR Intramural Sequencing Center (NIH) Comparative Vertebrate Sequencing Project (Genbank: AC092478 and AC092497). This PCR product was subcloned into pCR-Blunt II-TOPO (Invitrogen), verified by sequencing (using primers GC1F-GC8R), and served as the template for PCR amplification of 5’ and 3’ targeting arms. This plasmid is referred to as pG16.

CFTR-KO construction: Using PCR, the 5’ and 3’ homologous recombination arms were amplified from pG16 and sequentially subcloned upstream and downstream of the NeoR cassette in pPK-K-Neo1 (a generous gift from Tim Ley, Washington University, Genbank Accession Number AF335419) such that the NeoR cassette is in the opposite orientation to the CFTR sequence. Primers: 5’ arm: G16-Neo5’F and G16-Neo5’R; 3’ arm: G16-Neo3’F and G16-Neo3’R. The NeoR cassette consists of a NeoR cDNA driven by the PGK promoter and is flanked by loxp sites. In the resulting construct, the NeoR cassette disrupts CFTR exon 10 immediately after an in-frame stop codon that was introduced to follow inosine 507. Thymidine 1531 is effectively deleted, becoming the first nucleotide of the stop codon. This targeting construct is referred to as pG16-Neo.

CFTR-AF508: Construction: The CFTR-AF508 targeting vector was constructed in a similar way using the following primers: 5’ arm: dR-NeоФ 5’T-Xhol and dR-NeоФ 5’T-EcoRV; 3’ arm: dR-NeоФ 3’T-BamHII and dR-NeоФ 3’T-HindIII. The nucleotides encoding F508 were subsequently deleted from exon 10 using PCR mutagenesis. This targeting construct is referred to as pD-F-Neo.

<table>
<thead>
<tr>
<th>Primers Name</th>
<th>Sequence (5’-3’)</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC1F</td>
<td>TTTCTCTTCGCTCGATTCTCC</td>
<td>(SEQ ID NO: 7)</td>
</tr>
<tr>
<td>GC1R</td>
<td>AGAAACACTGAAAGATGCTT</td>
<td>(SEQ ID NO: 8)</td>
</tr>
<tr>
<td>GC2F</td>
<td>GTGTCGAAATGTCCTGATGTTGA</td>
<td>(SEQ ID NO: 9)</td>
</tr>
<tr>
<td>GC2R</td>
<td>CCTCAGACTGACATCATCTCTCA</td>
<td>(SEQ ID NO: 10)</td>
</tr>
<tr>
<td>GC3F</td>
<td>GAGGACACTGCTGACACTGAA</td>
<td>(SEQ ID NO: 11)</td>
</tr>
<tr>
<td>GC3R</td>
<td>AGCGACGAAAGCATATGCAT</td>
<td>(SEQ ID NO: 12)</td>
</tr>
<tr>
<td>GC4F</td>
<td>ATCCATCTCATGATCATGAT</td>
<td>(SEQ ID NO: 13)</td>
</tr>
<tr>
<td>GC5F</td>
<td>ATACAGGAACAGAAGATGCTT</td>
<td>(SEQ ID NO: 14)</td>
</tr>
<tr>
<td>GC5R</td>
<td>ATAGAGTAAAGCTCCTGCTTGC</td>
<td>(SEQ ID NO: 15)</td>
</tr>
<tr>
<td>GC6F</td>
<td>TTCTCAAGAAGATTAGATTATA</td>
<td>(SEQ ID NO: 16)</td>
</tr>
<tr>
<td>GC6R</td>
<td>GCCTACACTCCCTACATCAA</td>
<td>(SEQ ID NO: 17)</td>
</tr>
<tr>
<td>GC7F</td>
<td>ACCCTAGAAGTTGAACACTCTA</td>
<td>(SEQ ID NO: 18)</td>
</tr>
</tbody>
</table>
TABLE 3—continued

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5'→3')</th>
<th>(SEQ ID NO:</th>
<th>(SEQ ID NO:</th>
<th>(SEQ ID NO:</th>
<th>(SEQ ID NO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3R</td>
<td>GAGAAGCCTTTACCTTTTCATCA</td>
<td>(19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFR</td>
<td>CACCAAGCTCAGACAACTT</td>
<td>(20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSR</td>
<td>AATTGGCAAACTCCATCTCATTA</td>
<td>(21)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex10a5F</td>
<td>AAATTTCTCAGGCTTGTTCACTTTAG</td>
<td>(22)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quantitative RT-PCR Primers and Probes

Pig CFTR and GAPDH expression in fetal fibroblasts, nasal and rectal tissue (FIG. 1) and CFTR expression in CFTR +/− pigs (FIG. 9A) CFTR primers and probe pCFTR-1819F (anneals within exon 18) AGTGGCTGTAAAACCTGTAGTGA (SEQ ID NO: 23)
pCFTR-1819R (anneals within exon 19) CTCCTGCGCCCGTACATAAAAT (SEQ ID NO: 24)
pCFTR-1819 probe (spanes exon 18/19 junction) FAM-ATCCACCATGTTACCTTCATC-NFQ (SEQ ID NO: 25)
GAPDH primers and probe pGAPDH-TM-F AAGCCTTATTTTCCGCTGCAAT (SEQ ID NO: 26)
pGAPDH-TM-R GGGGCTCAGTCGACAT (SEQ ID NO: 27)
pGAPDH-TM probe FAM-CTCCACGCTGGGTTCT-TPQ (SEQ ID NO: 28)

Pig CFTR and /1F508-CFTR expression in CFTR +/−AF508 pigs (FIG. 9B). Primers are the same for both, probes are allele specific. CFTR primers and probe pCFTR-TM-F TCATAGCGCGCCGCCATTTAA (SEQ ID NO: 29)
pCFTR-TM-R CGCTTGTGATGACCACTCTGTATT (SEQ ID NO: 30)
pCFTR-TM probe FAM-CAACCAAAAGATGTTGTTT-TPQ (SEQ ID NO: 31)
AF508 primers and probe delAF1-F:IG-Forward TCAATAGCGCGCCGCCATTTAA (SEQ ID NO: 32)
delAF1-TM:Reverese CGCTTGTGATGACCACTCTGTATT (SEQ ID NO: 33)
delAF1-TM probe FAM-CAACCAAAAGATGTTGTTT-TPQ (SEQ ID NO: 34)

PCR Primers and Probes. All DNA sequences are 5'-3'. FAM: 6-carboxyfluorescein; NFQ: Non Fluorescent quencher

AAV Production

The targeting vector sequences were amplified from pG16Ne and pdf-Neo by PCR to include flanking SfiI sites and were subcloned into the AAV2 proviral plasmid, pAAV (ATCC 37216). Because of AAV genome size constraints, the total length of the targeting vectors is ~4.5 kb with the NeoR cassettes centrally located (G16-Neo: 5' targeting arm=1510 bp; 3' targeting arm=1274 bp, NeoR cassette=1706 bp. de-Neo: 5' targeting arm=1475 bp; 3' targeting arm=1296 bp; NeoR cassette=1706 bp). pAAV-G16-Neo was grown in SureF cells (Stratagene) and purified via a CsCl method (Sambrook, Fritz, and Maniatis, Molecular Cloning: A Labor-

ory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, Plainview, N.Y., 1989). rAAV1 (with AAV2 ITRs) was prepared as previously described (Yan et al., J. Virol. 76:2045-2053, 2002). Helper-free virus stocks were treated with nuclease and purified by high-performance liquid chromatography. Physical titters of rAAV were determined by slot blot hybridization. These viruses are referred to as AAV-G16-Neo and AAV-df-Neo.

Infection and Selection

1.5×10⁶ fetal fibroblasts were thawed and plated on a 100 mm collagen-coated culture dish. 24 hours later, cells were infected with AAV-G16-Neo or AAV-df-Neo (200 μl, 2.5x 10¹² particles/ml). 24 hours later, cells were trypsinized and transferred to 48 96-well, collagen-coated plates (BD Biosciences). 48 hours later, G418 (100 μg/ml) was added to the cell media. 10 days later, each well was trypsinized (60 μl trypsin, 0.5% EDTA) and split among 3 different vessels. For cell freezing, ½ of the cells were transferred to 96-well collagen-coated culture dishes and returned to the incubator for growth. For cell propagation, ½ of the cells were transferred to 96-well collagen-coated culture dishes and returned to the incubator for growth. For PCR screening, ½ of the cells were transferred to 96-well PCR plates.

PCR Screen and PCR Southern Blot

Cells in the 96-well PCR plates were spun down and resuspended in lysis buffer (50 mM KCl, 1.5 mM MgCl₂, 10 mM Tris-Cl, pH 8.5, 0.5% Nonidet P40, 0.5% Tween, 400 μg/ml Proteinase K) (McCreath et al., Nature 405:1066-1069, 2000). Most wells (~70%) contained only dead cell debris following selection, but all wells were processed to minimize human error. The cells were lysed for 30 min at 65°C, followed by 10 min at 95°C. 1 μl of lysate was used in a 50 μl PCR reaction. PCR conditions: 2 min at 95°C, 30 cycles of 95°C for 20 sec, 56°C for 20 sec, and 68°C for 4 min, then 68°C for 5 min. Primers Ex10a5F and G3R2 are expected to amplify a 2.0 kb product from wild-type alleles and a 3.7 kb product from G16-Neo targeted alleles. PCR products were electrophoresed on 1.0% E-Gel 96 gel (Invitrogen). Positive PCR reactions were also electrophoresed on standard 1.0% agarose gels and transferred to a nylon membrane. The membranes were probed with biotin-labeled Neo-specific or ΔF508 allele-specific oligonucleotides and detected by chemiluminescence (NorthSouth, Pierce).

Processing Screen-Positive Cells

Following identification of PCR-positive clones, the corresponding cells from the “freezing” plate were grown to confluence (~10,000 cells). Cells were detached with 60 μl trypsin and 20 μl of detached cells were placed into each of 3 cryovials. Three hundred μl freezing media was added to each cryovial and the vials were transferred to an isopropanol cryo-freezing container at ~−70°C. After 24 hours, the vials were transferred to liquid nitrogen. The corresponding cells from the propagation plate were transferred to 24-well plates, and subsequently to 6-well and 100 mm culture dishes. The sequential transfer to increasingly larger culture dishes was carried out to achieve consistent cell growth and viability.

Southern Blotting

For CFTR-KO targeting, genomic DNA was isolated from 100 mm dishes (Genta) and 10 μg was digested with BglII overnight. For CFTR-ΔF508 targeting, genomic DNA was isolated from 24-well dishes. Ten ng was used for whole genome amplification (Repli-G, Qiagen) and 25 μg amplified DNA was digested with BglII overnight. Genomic digests were electrophoresed on a 0.7% agarose gel and transferred to a positively charged nylon membrane (Roche) by using an alkaline transfer procedure. Blots were pre-hybridized for 15 min at 65°C in Rapid-hyb buffer (Amersham). The blot was
then hybridized in Rapid-hyb buffer with a 32P labeled probe specific for a region of CFTR that is outside of the targeting vector boundaries. For Neo-specific probing, blots were either stripped, or, in most cases, the BglII digest and Southern blot procedure was repeated using a 32P-labeled Neo-specific probe.

Preparation of Donor Cells for SCNT

Frozen aliquots of CFTR-targeted cells were thawed at 37°
C. and pre-warmed in F-10 medium (Invitrogen) with 20% fetal calf serum (FCS). The cells were washed twice by centrifugation and cultured (F-10, Invitrogen; 20% FCS, Hyclone; gentamicin, 2.5 mg/ml G418, Invitrogen) for 1-2 days in 24-well collagen-coated plates (35-4408, Bio- coat cellware). Confluent cells were dispersed with 0.05% trypsin/EDTA for 3-5 min at 38.5°C and 500 μl F-10 with 20% FBS, followed by centrifugation twice at 3000 rpm for 5 min. The supernatant was removed, and the cells were resuspended in micromanipulation medium (25 mM HEPES, TCM199, Gibco; 0.3% BSA).

Oocyte Maturation and SCNT

Oocytes were received from BoMed, Inc (Madison, Wis.) ~24 hours after placing them into maturation medium, and were then transferred to a 4-well dish and cultured for a total maturation of 42-44 hours at 38.5°C in a humidified atmosphere of 5% CO2 in air. After 42-44 h of in vitro maturation, oocytes were stripped of their cumulus cells by gentle vortexing in 0.5 mg/ml hyaluronidase. After removal of the cumulus cells, oocytes with good morphology and a visible polar body (metaphase II) were selected and kept in micromanipulation medium at 38.5°C until SCNT.

SCNT was performed essentially as previously described (Lai et al., Science 295:1089-1092, 2002; Lai et al., Nat. Biotechnol. 24:435-436, 2006) in micromanipulation medium supplemented with 7.5 μg/ml cytochalasin B. The metaphase II chromosomes and the polar body were aspirated by inserting a micropipette through the zona Pellucida and aspirating the polar body and the adjacent cytoplasm into the pipette. Next a donor cell was aspirated into the same pipette, the pipette was inserted into the previously made hole in the zona Pellucida, and the cell deposited under the zona Pellucida. The nuclear transfer complex was fused in a medium with a low Ca++ concentration (0.3 M mannitol, 0.1 mM CaCl2, 21H2O, 0.1 mM MgCl2 6H2O and 0.5 mM HEPES), activated with 200 μM thimerosal for 10 min in the dark, and then rinsed and treated with 8 mM dithiothreitol (DTT) for 30 min. Finally the oocytes were rinsed to remove any traces of DTT (Lai et al., Nat. Biotechnol. 24:435-436, 2006). Following fusion/activation, oocytes were washed three times with PZM3 as previously described for 30 min (Im et al., Theriogenology 61:1125-1135, 2004). Those that had fused were cultured for 15-21 hours until surgical embryo transfer to a surrogate.

Surrogate Preparation and Embryo Transfer

The embryonic cleavage rate was examined before transferring the reconstructed embryos into recipients. The recipients were synchronized by administering 18-20 mg Regumate and hCG as previously described (Lai et al., Cloning Stem Cells 5:233-241, 2003). Twelve surrogates on the first day of estrus (designated day 0) or the first day after standing estrus were used. Embryo transfer was performed surgically as previously described (Lai et al., Cloning Stem Cells 5:233-241, 2003) and 94 to 185 embryos were inserted into one oviduct through the ovarian fimbria. Surrogates were checked for pregnancy by abdominal ultrasound examination after day 21 and then checked weekly throughout gestation, and were allowed to go to term. A cesarean section was performed to recover the piglets on day 116±18. After delivery the piglets were provided medical care, fed Colostrum, and initially raised on a commercial pig milk replacer until mature enough to be placed on standard pig diets.

Rectal Biopsy

Pigs were lightly anesthetized with ketamine (20 mg/kg) and xylazine (0.2 mg/kg). A 10 cm anoscope was partially inserted in the rectum and rectal tissue was collected using gastrointestinal biopsy forceps (2.2 mm). Tissue samples were immediately placed in RNAlater (Ambion). Recovery from anesthesia was monitored continuously until the pigs returned to normal activity (2-4 hours).

Quantitative RT-PCR

Quantitative RT-PCR using TaqMan chemistry and an ABI 7500 Fast Real-time PCR System was used to measure pig CFTR mRNA. Briefly, total RNA was isolated from fibroblasts or nasal and rectal biopsy tissue (RNaseasy, Qiagen). First-strand cDNA was synthesized with random primers (SuperScript III, Invitrogen). Sequence-specific primers and probes for pig CFTR and GAPDH were designed and ordered using Assays-by-design (Applied Biosystems). For measuring total CFTR mRNA primer/probe sets spanning exons 18 and 19 of CFTR and GAPDH were used in separate reactions. For measuring ΔE508 mRNA levels, one primer set and two probes (F508 and ΔF508) were used in separate reactions. Primer and probe sequences are included in Table 2. TaqMan Fast Universal PCR Master Mix was used for all reactions. The reaction volume was 20 μl (10 μl of 2× Master Mix without UNG, 1 μl of 20x target primer and probe, 8 μl of Nucllease-free water, and 1 μl of cDNA sample). The reaction plates were covered with optical film and centrifuged briefly.

The thermocycler conditions were as follows: 20 seconds at 95°C, 40 cycles of 95°C for 3 seconds and 60°C for 30 seconds. All experiments were run in triplicate. Because the efficiencies of CFTR and GAPDH amplification were not equal, the relative quantification of transcript levels was performed using the standard curve method.

II. Cystic Fibrosis Pig-Generation of CFTR+/- Homozygote

To develop a new CF model, we chose pigs because compared to mice their anatomy, biochemistry, physiology, size, lifespan, and genetics are more similar to those of humans (Ibrahim et al., Xenotransplantation 13:488, 2006; Rogers et al., Am. J. Physiol. Lung Cell Mol. Physiol. 295(2):L240-63, 2008). We used homologous recombination in fibroblasts of outbred domestic pigs to disrupt the CFTR gene and somatic cell nuclear transfer to generate CFTR+/- pigs (see above and Rogers et al., J. Clin. Invest. 118(4):1571, 2008).

At sexual maturity (~6-7 months), female CFTR+/- pigs were bred to CFTR+/- males. Six litters produced 64 piglets. Genotyping (FIG. 10A) revealed 18 CFTR+/-, 26 CFTR+/-, and 20 CFTR+/- animals, a ratio not significantly different from the expected 1:2:1 (see below). FIG. 10B shows the first litter. Birth weights varied, but did not segregate by genotype (FIG. 10C). Piglets looked normal at birth, and genotype could not be discerned by appearance. A normal appearance is consistent with findings in humans.

As in humans, we assessed CFTR function in vivo by measuring transepithelial voltage (Vt) across nasal epithelia (Standart et al., Pediatr. Pulmonol. 37:385, 2004) (FIG. 10E, F). Like humans with CF, baseline Vt was hyperpolarized in
CFTR−/− piglets. Amiloride, which inhibits ENaC Na⁺ channels, reduced Vt in all genotypes. To test for CFTR channel activity, we perfused the apical surface with a CT-free solution and added isoprotenerol to increase cellular levels of cAMP; these interventions hyperpolarized nasal Vt in wild-type and heterozygous, but not CFTR−/− animals. Perfusion with ATP to activate P2Y2 receptors and Ca²⁺-activated CF channels (Standaert et al., Pediatr. Pulmonol. 37:385, 2004) further hyperpolarized Vt, and the response did not differ significantly between genotypes. Perfusion with the CFTR inhibitor GlyH-101 (Muniprasat et al., J. Gen. Physiol. 124:125, 2004) depolarized Vt in controls, but not CFTR−/− piglets. These data reveal loss of CFTR Cl⁻ channel activity in newborn CFTR−/− pigs. While lack of data from newborn humans precludes direct comparison, the data qualitatively match those from adults and children with CF (Standaert et al., Pediatr. Pulmonol. 37:385, 2004).

Following birth, CFTR−/− piglets failed to pass feces or gain weight (Fig. 12B). By 24-40 hours, they stopped eating, developed abdominal distension, and had bile-stained emesis. These are clinical signs of intestinal obstruction. We examined histopathology between birth and 12 hours in piglets that had not eaten and between 24 and 40 hours in pigs fed colostrum and milk replacer. Except as noted, the pathologic changes refer to the early time period. After 30-40 hours, CFTR−/− piglets had stomachs containing small amounts of green, bile-stained milk (Fig. 12C). The proximal small intestine was dilated by small amounts of milk and abundant gas. The site of obstruction ranged from mid-distal small intestine to proximal spiral colon, the anatomical equivalent of the human ascending colon. Perforation and peritonitis occurred in some piglets. Dark green meconium distended the CFTR−/− intestines and adjacent villi showed degeneration and atrophy, whereas CFTR+/+ ileum had long villi (Fig. 12D). Distal to the meconium, luminal diameter was reduced with mild to severe mucinous hyperplasia including mucoid luminal "plugs" (Fig. 12E). These changes replicate those in humans with CF (Welsh et al., in The Metabolic and Molecular Basis of Inherited Disease, C. R. Scriver et al., Eds. (McGraw-Hill, New York, 2001) pp. 5121-5189). Therefore, three CFTR−/− piglets had a laparotomy to remove the obstructing meconium and to place an ileostomy for drainage. We performed an identical procedure in one CFTR+/+ piglet. Two CFTR−/− and one wild-type piglet were euthanized during the post-operative period because of technical problems in supportive care. One CFTR−/− piglet recovered. We fed him colostrum followed by milk replacer and then standard pig chow. He also received supplemental pancreatic enzymes and fat-soluble vitamins, but not the polyethylene glycol used to treat the intestinal disease in CF mice (Clark et al., Lab Anim. Sci. 46:612, 1996; Guilbaud et al., Am. J. Respir. Cell Mol. Biol. 36:1, 2007; Grubb et al., Physiol. Rev. 79:S193, 1999). When the intestine was examined before the onset of weight loss, it could appear similar in CFTR+/+ and CFTR−/− mice (Snowaert et al., Science 257:1083, 1992). In CF mice that developed an obstruction, the intestinal crypts were dilated, villi were atrophic and sometimes necrotic, and there was increased mucus. Thus, in pigs and mice, the intestine is susceptible to loss of CFTR, although the manifestations can differ.

Exocrine pancreatic insufficiency affects 90-95% of patients with CF (Andersen, Am. J. Dis. Child. 56:344, 1938; Quinton, Physiol. Rev. 79:S3, 1999; Welsh et al., in The Metabolic and Molecular Basis of Inherited Disease, C. R. Scriver et al., Eds. (McGraw-Hill, New York, 2001) pp. 5121-5189; Rowe et al., N. Engl. J. Med. 352:1992, 2005; Oppenheimer et al., Perspect. Pediatr. Pathol. 2:241, 1975; Imrie et al., Am. J. Pathol. 95:697, 1979; Blackman et al., Gastroenterology 131:1030, 2006). The porcine CFTR−/− pancreas was small (Fig. 13A). Microscopic examination revealed small, degenerative lobules with increased loose adipose and myxomatous tissue and scattered to moderate cellular inflammation (Fig. 13B-C). Residual acini had diminished amounts of eosinophilic zymogen granules (Fig. 13D). Centroacinar spaces, ductules, and ducts were variably dilated and obstructed by eosinophilic material plus infrequent neutrophils and macrophages mixed with cellular debris (Fig. 13E). Ducts and ductules had foci of mucinous metaplasia. Pancreatic endocrine tissue was spared (Fig. 13C). These changes reflect those originally described by Anderson and others (Andersen, Am. J. Dis. Child. 56:344, 1938; Oppenheimer et al., Perspect. Pediatr. Pathol. 2:241, 1975; Imrie et al., Am. J. Pathol. 95:697, 1979).

In humans with meconium ileus, surgery is often required to relieve intestinal obstruction (Welsh et al., in The Metabolic and Molecular Basis of Inherited Disease, C. R. Scriver et al., Eds. (McGraw-Hill, New York, 2001) pp. 5121-5189). Therefore, three CFTR−/− piglets had a laparotomy to remove the obstructing meconium and to place an ileostomy for drainage. We performed an identical procedure in one CFTR+/+ piglet. Two CFTR−/− and one wild-type piglet were euthanized during the post-operative period because of technical problems in supportive care. One CFTR−/− piglet recovered. We fed him colostrum followed by milk replacer and then standard pig chow. He also received supplemental pancreatic enzymes and fat-soluble vitamins, but not the polyethylene glycol used to treat the intestinal disease in CF mice (Clark et al., Lab Anim. Sci. 46:612, 1996; Guilbaud et al., Am. J. Respir. Cell Mol. Biol. 36:1, 2007). The ileostomy closed spontaneously, and he has grown well for eleven weeks. This is the same pattern observed in humans with CF, who once they recover from meconium ileus develop a pattern of disease like patients without meconium ileus (Welsh et al., in The Metabolic and Molecular Basis of Inherited Disease, C. R. Scriver et al., Eds. (McGraw-Hill, New York, 2001) pp. 5121-5189).
When we discontinued pancreatic enzymes for three days, the CFTR–/– piglet’s well-formed feces became soft, greasy and yellow like steatorrhea in humans with CF, and then reverted to a normal appearance with reinitiation of pancreatic enzymes. This result is consistent with the pancreatic histopathology and clinical pancreatic insufficiency. After ten weeks, he suddenly stopped eating, failed to pass feces, had an episode of vomiting, and the abdomen became distended. These signs resemble the “distal intestinal obstruction syndrome (DIOS)” observed in humans (Welsh et al., in The Metabolic and Molecular Basis of Inherited Disease, C. R. Scriver et al., Eds. (McGraw-Hill, New York, 2001) pp. 5121-5189; Dray et al., Clin. Gastroenterol. Hepatol. 2:498, 2004). Therefore, as is done in humans, we treated him with oral polyethylene glycol and performed a Gastrografin enema that revealed the obstruction and relieved it. He then resumed eating and normal behavior. These observations are remarkable in view to meconium ileus, pancreatic insufficiency, and DIOS in humans with CF.

Although these observations came from a single animal, the meconium ileus had a penetrance of 100%, and therefore the successful treatment with surgery is significant. The pig’s subsequent course, which has been identical to what we see in humans, further indicates that this CF pig may prove valuable for those interested in CF. It also suggests that it will be possible for the CFTR–/– animals to survive for additional studies focused on CF.

Focal biliary cirrhosis is the second most common cause of CF mortality (Welsh et al., in The Metabolic and Molecular Basis of Inherited Disease, C. R. Scriver et al., Eds. (McGraw-Hill, New York, 2001) pp. 5121-5189; Wilschanski et al., J. R. Soc. Med. 91 Suppl. 34:40, 1998; Oppenheimer et al., J. Pediatr. 86:683, 1975). The porcine CFTR–/– liver revealed infrequent, mild to moderate hepatic lesions (FIG. 13F). Chronic cellular inflammation, ductular hyperplasia, and mild fibrosis were typical of focal biliary cirrhosis. Gallbladder abnormalities, including gallstones, occur in 15-30% of patients, and a small gallbladder is a common autopsy finding (Welsh et al., in The Metabolic and Molecular Basis of Inherited Disease, C. R. Scriver et al., Eds. (McGraw-Hill, New York, 2001) pp. 5121-5189). Similarly, porcine CFTR–/– gallbladders were small and often filled with congealed bile and mucus (FIG. 13G,H). Epithelia showed diffuse mucinous changes with folds extending into the lumen. Approximately 97% of males with CF are infertile (Welsh et al., in The Metabolic and Molecular Basis of Inherited Disease, C. R. Scriver et al., Eds. (McGraw-Hill, New York, 2001) pp. 5121-5189); the vas deferens is often normal at birth, and obstruction is thought to cause progressive deterioration. Although patients are commonly said to have a “genetically determined” course of the vas deferens, the incidence of abnormal vas deferens is low in fetuses and young children, and mucinous obstruction is proposed to cause progressive degeneration (Oppenheimer et al., Perspect. Pediatr. Pathol. 2:241, 1975; Gaillard et al., J. Urol. 158:1549, 1997; Oppenheimer et al., J. Pediatr. 75:806, 1969).

In all piglets the vas deferens appeared intact. Paranasal sinus abnormalities occur in most children and adults with CF (Welsh et al., in The Metabolic and Molecular Basis of Inherited Disease, C. R. Scriver et al., Eds. (McGraw-Hill, New York, 2001) pp. 5121-5189). Although CFTR–/– porcine paranasal sinuses showed no abnormalities, this negative result is difficult to interpret because it is unclear when sinus disease develops in humans. Salivary glands, nasal cavity, esophagus, heart, diaphragm, spleen, adrenal gland, eyes, brain, skin, and a few eccrine sweat glands on the snout revealed no abnormalities in CFTR–/– piglets. In all tissues, we observed no differences between wild-type and CFTR+/– animals.

Lung disease is currently the major cause of CF morbidity and mortality (Quinton, Physiol. Rev. 79:83, 1999; Welsh et al., in The Metabolic and Molecular Basis of Inherited Disease, C. R. Scriver et al., Eds. (McGraw-Hill, New York, 2001) pp. 5121-5189; Rowe et al., N. Engl. J. Med. 352:1992, 2005). The onset of clinical respiratory manifestations varies with some patients developing symptoms a few months after birth and others after several years. Eventually, most patients develop chronic airway infection and inflammation that destroy the lung. The lungs of neonatal CFTR–/– piglets appeared the same as their littermates. CFTR–/– lungs lacked evidence of cellular inflammation in airways or parenchyma (FIG. 14A). Airway epithelia and submucosal glands appeared similar in all three genotypes, and we found no evidence of dilated or plugged submucosal gland ducts (FIG. 14B). Bronchoalveolar lavage 6-12 hours after birth showed no evidence of infection, and there were no significant differences between cell counts or levels of IL-8 across genotypes (FIGS. 15 and 16).

In neonates with CF, the lung parenchyma and airways appear histologically normal at birth. However, the submucosal glands have sometimes been reported to be abnormal in neonates with CF. A report from Oppenheimer (Hum Pathol. 12:36, 1981) studied samples from 90 infants and young children with CF and 90 age matched controls. She concluded that there was no difference in tracheobronchial submucosal glands. Two studies have investigated this issue quantitatively. Chow et al. (Eur. J. Ped. 139:240, 1982) examined autopsy material from 21 patients who died within the first 3 weeks of life from meconium ileus. They quantitatively measured submucosal gland size and acinar diameter, and found no difference between CF and non-CF glands. Sturgess and Imrie (Am. J. Pathol. 106:303, 1982) quantitatively examined submucosal glands from patients who had died between birth and 4 months of age. They found no difference between non-CF and CF in multiple measures of submucosal gland size and acinar diameter. However in CF, they reported an increase in the lumen fraction (lumen volume/acinar cell volume+lumen volume), an index of dilatation of acini. This increase could be attributed to patients who had lung infection. If only patients who had meconium ileus without obvious pulmonary infection were considered, then there was no difference between the groups. Thus, the evidence suggests a lack of difference between CF and non-CF lungs, including submucosal glands, at the time of birth. The “chicken and egg” conundrum about whether CF airway infection occurs before infection or whether infection precedes inflammation remains a persistent question. Studies of bronchoalveolar lavage in infants and young children have both supported and argued against the presence of inflammation (increased IL-8 and neutrophilia) without infection (Khan et al., Am. J. Respir. Crit. Care Med. 151: 1075, 1995; Armstrong et al., Pediatr. Pulmonol. 40:500, 2005). In vivo airway epithelial models have also given conflicting results (Steenko et al., Inflammation 25:145, 2001; Aldallal et al., Am. J. Respir. Crit. Care Med. 166, 1248, 2002). Studies of human fetal trachea transplanted into mice suggested inflammation might occur in developing CF airways (Tirouvanziam et al., Am. J. Respir. Cell Mol. Biol. 23, 121, 2000). While our data do not resolve this controversy, we had the advantage of studying lungs between birth and 12 hours, and we found no evidence of abnormal infection or inflammation. Tracking the lungs as CFTR–/– piglets are exposed to additional environmental challenges should
inform understanding of how respiratory disease develops during childhood and in young adults.

The clinical, electrophysiological, and pathological findings in newborn CFTR-/- pigs were remarkably similar to those in human neonates with CF (Table 4). Abdominal lesions dominate the initial presentation in both, with identical appearance of meconium ileus and exocrine pancreatic destruction. In addition, both have hepatic changes consistent with early focal biliary cirrhosis and abnormalities of the gallbladder and bile ducts. The lack of abnormalities in vas deferens and lungs at birth is another similarity. Finding that the phenotype of newborn CFTR-/- piglets copies that of human newborns with CF suggests this model should provide investigators with new opportunities to understand the disease and develop novel prevention and treatment strategies. In addition, there are many other human diseases in which knock-out and knock-in mice fail to reproduce typical human phenotypes and fail to predict responses to therapeutics. This development of a gene-targeted, mammalian disease model, other than a mouse, also suggests strategies to circumvent research bottlenecks presented by limitations of mice.

and were not fed. The other group was fed colostrum and milk replacer and studied between 24 and 40 hours.

Genotyping

Genotyping was performed using genomic DNA isolated from fresh umbilical cord. Tissue was lysed for 15 min at 55°C in lysis buffer (50 mM KCl, 1.5 mM MgCl₂, 10 mM Tris-Cl pH 8.5, 0.5% Noniod P40, 0.5% Tween, 400 μg/ml Proteinase K) (McCreath et al., Nature 405:1066, 2000). Two µl of lysate were used in each PCR (Platinum Taq HF, Invitrogen). PCR conditions: 2 minutes at 95°C, 30 cycles of 95°C for 20 seconds, 56°C for 20 seconds, and 68°C for 4 minutes, then 68°C for 5 minutes. Primers Ex10aSF (AGAAATTCTATTGCTTCAGT; SEQ ID NO:35) and GC7R (GAAGACCCCTTACCCTTTCTCTCA; SEQ ID NO:36) amplify a 2.0 kb product from wild-type CFTR alleles and a 3.7 kb product from gene-targeted CFTR alleles. PCR products were electrophoresed on a 1.0% agarose gel. For Southern blotting, 10 µg of genomic DNA was digested with BglII overnight. Genomic digests were electrophoresed

<table>
<thead>
<tr>
<th>Organ</th>
<th>Tissue</th>
<th>Lesions in newborn CFTR-/- piglets</th>
<th>Detectable in human neonates with CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreas</td>
<td>Parenchyma</td>
<td>Reduced amounts of exocrine tissue with increased adipose and connective tissue filling the void</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Ducts/ductules</td>
<td>PAS+ eosinophilic impregnated material and mucus filling lumen; ductular hyperplasia</td>
<td>Yes</td>
</tr>
<tr>
<td>Acini</td>
<td>Eosinophilic material with rare mucus; atrophic and degenerated acinar cells; reduced zymogen granules</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Inflammation</td>
<td>None to moderate lymphoid and eosinophilic infiltrate; scattered neutrophils and macrophages in dilated acini and ducts</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Intestine</td>
<td>Duodenum</td>
<td>Brunner glands dilated by impregnated mucus</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Ductal small intestine to proximal colon</td>
<td>Meconium ileus/obstruction</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Proximal to obstruction</td>
<td>Dilated intestine filled with sticky, viscous meconium</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Distal to obstruction</td>
<td>Small intestine/colon small, stenotic; variably filled with mucus</td>
<td>Yes</td>
</tr>
<tr>
<td>Liver</td>
<td>Portal region</td>
<td>In utero perforation, chronic peritonitis, atresia</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Biliary duct/ductules</td>
<td>Focal biliary cirrhosis; variable ductular hyperplasia, fibrosis, and inflammation</td>
<td>Yes</td>
</tr>
<tr>
<td>Gallbladder</td>
<td>Lumen</td>
<td>Small and variably filled with impregnated bile and mucus</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Cystic duct</td>
<td>Obstructed by mucus and eosinophilic material</td>
<td>Yes</td>
</tr>
<tr>
<td>Vas deferens</td>
<td>Duct</td>
<td>None</td>
<td>n</td>
</tr>
<tr>
<td>Lung</td>
<td>Parenchyma</td>
<td>None; no inflammation or infection</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Airways</td>
<td>None; no inflammation or infection</td>
<td>No</td>
</tr>
</tbody>
</table>

Materials and Methods

Animals

We previously reported production of CFTR+/- male and female pigs (Rogers et al., J. Clin. Invest. 118(4):1571, 2006). For this study, they were crossed and the progeny studied.

Standard procedures for animal husbandry were used throughout. The Institutional Animal Care and Use Committee of the University of Iowa and the University of Missouri approved all animal experiments. We studied two groups of animals. One group was studied between birth and 12 hours on a 0.7% agarose gel and transferred to a positively charged nylon membrane (Roche) using an alkaline transfer procedure. Blots were pre-hybridized for 15 min at 65°C in Rapid-hyb buffer (Amersham). The blot was then hybridized in Rapid-hyb buffer with a 32P-labeled probe specific for a region of CFTR that is outside of the targeting vector boundaries. The blot was washed once in 2xSSC/0.1% SDS for 20 minutes at room temperature followed by two washes in 0.1xSSC/0.1% SDS for 15 minutes at 65°C. Signal was detected using a phosphorimager. The CFTR probe hybridizes at 7.9 kb for wild-type CFTR alleles and 9.7 kb for gene-targeted CFTR alleles.
Northern Blot

Northern blot was performed using total RNA isolated from ileum (RNeasy, Qiagen). Total RNA was electrophoresed on a denaturing gel and transferred to a positively-charged membrane (NorthenMax, Ambion). The membrane was hybridized with 32P-labelled DNA probes corresponding to nucleotides 1-1000 of the porcine CFTR cDNA or 1-1002 of porcine GAPDH cDNA. Signal was detected using a Fuji FLA7000 phosphorimager. Porcine CFTR mRNA was detected at 6.5 kb and GAPDH mRNA at 1.5 kb.

Quantitative RT-PCR

Quantitative RT-PCR using TaqMan chemistry and an ABI 7500 Fast Real-time PCR System was used to measure porcine CFTR mRNA. Briefly, total RNA was isolated from ileum (RNeasy, Qiagen). First-strand cDNA was synthesized with oligo-dT primers (SuperScript II, Invitrogen). Sequence-specific primers and probes for porcine CFTR and GAPDH were designed and ordered using Assays-by-design (Applied Biosystems). For measuring CFTR mRNA, primer/probe sets annealing to exon 10 of CFTR and GAPDH were used in separate reactions (CFTR: Forward: TCA1TGC-45CGGCCACCATATAA; SEQ ID NO:37, Reverse: CGGCTTTGATGACACTCCTGTATCACTA; SEQ ID NO:38, Probe: FAM-ACACACAAAGATGATGTGTTC; SEQ ID NO:39; GAPDH: Forward: AACCTCAATTTCCCTGACACGAA; SEQ ID NO:40, Reverse: GGAGGCCCAGTGGAAGACCAA; SEQ ID NO:41, Probe: FAM-TCCACCCACCTGTTGC; SEQ ID NO:42). TaqMan Fast Universal PCR Master Mix was used for all reactions. The reaction volume was 20 μl (10 μl of 2x Master Mix without UNG, 1 μl of 20x target primer and probe, 8 μl of Nuclease-free water, and 1 μl of cDNA sample). The reaction plates were covered with optical film and centrifuged briefly. The thermocycler conditions were as follows: 20 seconds at 95°C, 40 cycles of 95°C for 3 seconds and 60°C for 30 seconds. All experiments were run in triplicate. Because the efficiencies of CFTR and GAPDH amplification were not equal, the relative quantification of transcript levels was performed using the standard curve method.

Immunoprecipitation and Phosphorylation

We used lysis buffer with 1% NP-40 and centrifugation as previously described (Ostedgaard et al., Proc. Natl. Acad. Sci. U.S.A. 104:15370, 2007) to prepare soluble protein from cultured airway epithelial cells. Equal amounts (750 μg) of soluble protein were immunoprecipitated with M3A7 antibody (Upstate Technology) and then in vitro phosphorylated as described previously (Ostedgaard et al., Proc. Natl. Acad. Sci. U.S.A. 104:15370, 2007). Immunoprecipitated, phosphorylated proteins were electrophoresed on 6% PAGE, the gels dried and then exposed to phosphoscreen before scanning on Fuji FLA7000 (Fuji Corp.). BHK cells stably expressing wild-type CFTR (a gift from Dr. Gergely Lukacs) were used as controls (7.5 μg) and were treated similarly.

Histopathology

Tissues were collected at necropsy and immediately placed in a bath of 10% neutral buffered formalin and gently agitated for a minimum of 72 hours. Tissues were then processed, paraffin-embedded, sectioned (4-5 μm) and stained with hematoxylin and eosin (H&E) or periodic acid-Schiff (PAS). Histopathological examination was performed by a veterinary pathologist blinded to pig genotype. This allowed for unbiased pathological assessment of tissues ranging from mild/moderate multifocal lesions (e.g., liver parenchyma) to severe lesions with 100% penetration (e.g., pancreas).

Measurement of Nasal Vt

The transepithelial voltage (Vt) across the nasal epithelium was measured using previously described methods (Zabner et al., J. Clin. Invest. 97:1504, 1996; Standaert et al., Pediatr. Pulmonol. 37:385, 2004) under propofol anesthesia with the animal spontaneously breathing. The reference electrode was a small Ringer's solution-filled catheter inserted into the leg muscle (25 g needle). The exploring electrode was a 6 French foley catheter filled with Ringer's solution (148 mM NaCl, 24 mM K1PO4, 0.4 mM K2PO4, 2.25 mM CaCl2, 1.2 mM MgCl2) inserted 4 cm into the nasal cavity, and the nasal mucosa was perfused at a rate of 5 ml/min using Ringer's solution to obtain baseline Vt. Subsequent perfusion solutions included: Ringer's solution containing 100 μM amiloride; CF-free Ringer's solution containing gluconate substituted for Cl- plus amiloride; CF-free Ringer's solution containing amiloride plus 10 μM isoproterenol; CF-free Ringer's solution containing amiloride, isoproterenol, plus 100 μM ATP; CF-free Ringer's solution containing amiloride, isoproterenol, ATP, plus 100 μM GlyH-101. Voltage was measured with a voltmeter connected to a strip chart recorder. Each solution was perfused for 3-5 minutes. Following completion of the measurements, the epithelium was disrupted by brushing and Vt measured again to determine the zero value of Vt.

Immunocytochemistry

Ileal and tracheal tissues were excised from newborn pigs, immediately placed in ice-cold 30% sucrose, and quick frozen in OCT. Tissues were cryosectioned at 7 μm thick onto polysulphone-coated microscope slides, fixed in 100% MeOH at −20°C for 15 min, permeabilized in 0.2% TX-100 (Thermo Scientific) in PBS, and blocked in Super-Block (Thermo Scientific) with 5% normal goat serum (Jackson ImmunoResearch). Tissue sections were incubated overnight at 4°C in anti-CFTR antibodies M3A4-3, M3A7 (Chemicon), and 24-1 (R&D Systems) and polyclonal antibody to ZO-1 (Zymed) (all at 1:100 dilution), followed by secondary antibodies (goat-anti-mouse A488 and goat anti-rabbit A568 (Molecular Probes) (1:1000 dilution). Sections were mounted with Vectashield containing DAPI (Vector Labs) to visualize nuclei. Images were acquired on an Olympus Fluoview FV1000 confocal microscope with a UPLSAPO 60X oil lens, 1.35 NA. Images were scanned sequentially at 2 μm/pixel. Images were processed identically using Fluoview FV10-ASW-1.6 confocal software. RGB images were converted to white images for green and red channels and overlayed on a single Z-section of DIC with DAPI for merged image.

Bronchoalveolar Lavage (BAL) Fluid Collection and Analysis

Animals were studied between 6 and 12 hours after birth. BAL was performed immediately following euthanasia. We instilled 5 ml of normal saline through an intratracheal catheter three times. The total number of recovered cells was quantified with a hemacytometer and morphologic differentiation of cells was performed on cytospin preparations that were stained with Diff-Quik Stain-kit (Baxter). BAL levels of IL-8 were determined on recovered supernatant after centrifugation (1600gs for 10 min). IL-8 levels were measured by antibody capture assay (Thermo Scientific). Standard quantitative microbiologic techniques were used to identify and quantify the bacteria in BAL.

Statistical Analysis

Data are presented as either mean±standard error of the mean (SEM) or individual data points. Statistically significant differences between genotype groups were determined using either the Student’s t-test or one-way ANOVA and the Student-Newman-Keuls test to determine group differences. Differences were considered statistically significant for P<0.05.
III. The ΔF508 Mutation—an Interspecies Analysis

The ΔF508 mutation confers at least three defects on human CFTR: it reduces channel activity, it impairs processing, and it reduces the protein’s stability at the cell surface. The ΔF508 mutation inhibits gating of CFTR channels from three species (i.e., mouse, pig, and human) studied by the same mechanism, a reduced opening rate. In contrast, the characteristic processing defect observed in human CFTR-ΔF508 is less severe in pig and mouse proteins. This conclusion is supported by our finding that the mouse and pig proteins showed complex glycosylation, were readily excised for patch-clamp experiments at 37°C, immunocytochemistry localized some of the protein to the apical membrane of airway epithelium, and corrected the Cl− transport defect in CF airway epithelia more than did human CFTR-ΔF508. This shows that there is a gradient in the severity of the ΔF508 processing defect, with human worse than pig, and pig somewhat worse than mouse. Additionally, this also shows that the processing defect and the functional defect in CFTR-ΔF508 arise from different causes.

V. Expression

Human, pig, and mouse CFTR cDNA (SEQ ID NOs: 1, 3, and 5) were amplified from Homo sapiens, domestic pig (Sus scrofa), and domestic mouse (Mus musculus). We subcloned all three CFTR cDNAs into pcDNA3.1 (Invitrogen) and recombinant adenoviruses. For recombinant adenovirus of mouse CFTR, we had to remove intron 11 which had been inserted previously to stabilize the vector.

For protein processing studies, COS7 cells were electroporated; 3T3 and LLC-PK1 cells were transfected with plasmid and Lipofectamine 2000. For deglycosylation studies, COS7 cells were electroporated with human CFTR or infected with adenovirus encoding pig or mouse CFTR. For patch-clamp studies, Hela cells were infected with adenovirus encoding mouse CFTR or transfected using a hybrid vaccinia virus system encoding pig CFTR. Expression in human and mouse airway epithelium was with recombinant adenoviruses. Murine tracheal epithelia were cultured from ΔF508/ΔF508 transgenic mice (CFTRΔlox/lox) or CFTR null mice expressing the intestinal FABP-CFTR (CFTRΔCre/Cre:CFTR). In the absence of gene transfer, there were no AAMP-stimulated Cl− currents in either mouse genotype.

Biochemical Studies

COS7 cells were solubilized in lysis buffer with 1% TX-100 and protease inhibitors. CFTR was immunoprecipitated with M3A7 antibody (Upstate Technology) and then in vitro phosphorylated as described previously. Note that the consensus phosphorylation sites and N-glycosylation sites are conserved in all three species (Fig. 17). Processing studies in NIH-3T3 and LLC-PK1 cells were carried out similarly to those in COS7 cells. For deglycosylation studies, membranes were isolated from COS7 cells and solubilized in LB plus 1% NP40 (Pierce). Supernatants were divided, immunoprecipitated, and resuspended with or without endoglycosidase H. Following incubation, precipitates were in vitro phosphorylated.

Immunocytochemistry

Three days following gene transfer, epithelium were fixed, permeabilized, and incubated with a mixture of anti-CFTR antibodies (M3A7, MM13-4 (Upstate Biotechnology) and 13-1 (R&D Systems) and anti-ZO-1 (Zymed) primary antibodies, followed by Alexa Fluor-conjugated secondary antibodies (Molecular Probes) and examined by confocal laser scanning microscopy.

Electrophysiology

For Ussing chamber studies, transepithelial Cl− current was measured 3 days following gene transfer using a Cl− concentration gradient as previously described. For patch-clamp studies CFTR currents were studied in excised, inside-out membrane patches of Hela cells as previously described. Channels were activated with the catalytic subunit of PKA and Mg-ATP; PKA was present in all cytosolic solutions that contained ATP. Holding voltage was −50 to −100 mV. Experiments were performed at 23–26°C. Data acquisition, processing, and analysis were performed as previously described. Data are mean±SEM unless otherwise stated. P<0.05 was considered statistically significant.

Sequence of Pig CFTR

We cloned the pig CFTR cDNA and used it to predict the amino acid sequence (Fig. 17). The pig CFTR amino acid sequence is nearly 93% identical to that of human CFTR. For comparison, mouse CFTR shows 78% identity to human CFTR. The region immediately surrounding F508 is highly conserved.

Glycosylation of Human, Pig, and Mouse CFTR-ΔF508

The pattern of human CFTR glycosylation changes as the protein migrates from the ER to the Golgi complex. The nascent protein lacking glycosylation is called "band A." In the ER, CFTR undergoes core glycosylation and migrates more slowly during electrophoresis as "band B." In the Golgi complex, more extensive glycosylation occurs, which further slows and broadens the electrophoretic migration of the "band C" form. Differences in glycosylation do not appear to affect function, but do provide a convenient way to assess the biosynthetic processing of CFTR. When we expressed wild-type human, pig, and mouse CFTR in the monkey kidney cell line COS7, we observed the typical appearance of bands B and C (Fig. 18A). Human CFTR-ΔF508 produced band B, but not band C, consistent with defective exit from the ER. This result agrees with many previous reports in several different cell lines. Surprisingly, in addition to band B, mouse CFTR-ΔF508 generated a significant proportion of band C protein. Pig CFTR-ΔF508 also produced a small amount of band C. These results suggested that some mouse and pig mutant protein may have trafficked to the Golgi complex.

To learn whether the differences between the three species of CFTR-ΔF508 depended on the primate COS7 cell line, we expressed the constructs in the mouse NIH-3T3 fibroblast line and the pig LLC-PK1 kidney cell line (Figs. 18B and C), as well as human HEK-293T cells (not shown). In each of these cell lines, human CFTR-ΔF508 generated only the band B form, whereas pig and mouse CFTR-ΔF508 produced both band B and some fully glycosylated protein, consistent with our studies in COS7 cells. We also noted that some of the wild-type and ΔF508 pig CFTR migrated slightly more rapidly than band B of either human or mouse.

To confirm that the high molecular mass C forms of pig and mouse CFTR-ΔF508 were due to complex glycosylation, we used endoglycosidase H digestion. Endoglycosidase H removes carbohydrate from proteins that contain only the sugar added in the ER, but it does not delete complex glycosylation added in the Golgi complex. Endoglycosidase H treatment shifted the migration of the band B form of all the proteins to the unglycosylated form (Fig. 19). However, like the band C form of the wild-type CFTRs, the fully glycosylated mouse and pig CFTR-ΔF508 were resistant to endoglycosidase H, confirming that these proteins were glycosylated in the Golgi complex.

Expression of Human, Pig, and Mouse CFTR-ΔF508 at the Cell Surface

To determine if the human, pig, and mouse CFTR-ΔF508 were localized at the apical membrane of airway, we expressed the proteins in well-differentiated human CF airway epithelia and examined them with confocal immuno-
Expressing wild-type human CFTR produced significant transepithelial Cl\(^-\) current (FIGS. 22 and 23), as previously described. The same was true for wild-type pig and mouse CFTR. As expected, human CFTR-Δ508 failed to generate much current. However, relative to the wild-type current of each species, both pig and mouse CFTR-Δ508 produced substantial transepithelial Cl\(^-\) currents (FIG. 23B). To determine if these results were limited to expression in human epithelia, we repeated the study using airway epithelia derived from CF mice; the results were qualitatively similar (FIGS. 23A and 23B). Thus, pig and mouse CFTR-Δ508 generated transepithelial Cl\(^-\) currents in CF airway epithelia from two different species. These results indicate that some pig and mouse CFTR-Δ508 was present and active in the apical membrane of airway epithelia.

IV. A Transgenic, Non-Human Animal Model of Cystic Fibrosis Using Transgenic Human CFTR-Δ508

The above-mentioned defects between mutant mouse, pig, and human CFTR illustrate the need for the generation of a transgenic non-human animal model of CF that contains a CFTR-Δ508 mutation that closely mimics the functional and processing characteristics of the human CFTR-Δ508. The generation of a large animal, such as a pig, in which the endogenous CFTR gene is knocked-out and a human CFTR-Δ508 transgene is introduced allows for the study of the causative factor of human CF without suffering from experimental artifacts introduced by the different physical and functional characteristics of the endogenous CFTR of the animal. Such models also facilitate the identification, characterization, and development of approaches (e.g., small molecule-based drugs) that can be used in CF therapy.

Generation of a CFTR-Δ508 Knock-Out, Human CFTR (hCFTR) Transgenic Pig

A yeast artificial chromosome (YAC) containing the entire ~230 kb human CFTR gene (wild-type or F508del) plus upstream and downstream sequences is introduced into pig CFTR-Δ508 fetal fibroblasts. One specific example is YAC37AB12 (Anand et al., Genomics 9(1):124-130, 1991). This YAC has been used to complement null CF mice (Manson et al., EMBO 16(14):4238-4249, 1997) and to express human CFTR in Chinese hamster ovary cells (Mogacz et al., Human Molecular Genetics 6(1):59-68, 1997). Any mutations, such as the CF F508del mutation, are introduced into the YAC by site-directed techniques that are well known in the art. YAC delivery is accomplished, for example, via nuclear microinjection, lipid-mediated transfection, or fusion of fibroblasts with yeast spheroplasts. Since the human CFTR expressing YAC contains an antibiotic selection marker (different from the marker used to make the CFTR-Δ508 cells), cells positive for YAC transgenesis are screened by antibiotic selection. Resistant cells are then screened by PCR, Southern blot, fluorescence in situ hybridization (FISH), and/or fiber-FISH to assess human CFTR integration, copy number, and integrity. These procedures are optimized to minimize the number of fibroblast doublings and time in culture. Cells deemed appropriate for nuclear transfer are then transferred to enucleated oocytes, fused, and electrically stimulated, and transferred to recipient females.

Alternatives to the YAC approach include the use of a minigene, which is a DNA sequence containing the human CFTR promoter and the entire cDNA (CDS and 5' and 3' UTRs) with the first one, two, or three introns still intact. This approach results in human CFTR that still has normal endogenous levels of expression without the large size of the entire gene (~40 kb vs. >300 kb). Additionally, human CF cDNA is introduced (i.e., no introns) with either a CFTR promoter, a promoter with CFTR-like tissue expression (e.g., cytokeratin...
OTHER EMBODIMENTS

All publications, patents, and other citations noted in this specification are incorporated herein by reference as if each individual publication, patent, or other citation were specifically and individually indicated to be incorporated by reference. Although the invention has been described above in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

Use in the claims and elsewhere herein of singular forms, such as “a” and “the,” does not exclude indication of the corresponding plural form, unless the context indicates to the contrary. Thus, for example, if a claim indicates the presence of “a” mutation in “a” gene, it can be interpreted as covering one or more mutations, in one or more genes, unless otherwise indicated. Further, the term “or” as used herein is intended to be interpreted as both optional (i.e., one or the other and not both of multiple options) and inclusive (i.e., and/or).

Other embodiments are within the following claims.
aacaatgaa aacattctaa tgggtgatgac gcctctttc ttcgtaattt tcctaatcatt
1440
ggtctccctg ctctgtaaga tataattccc aagatagaaaa gaggacagtt gttgcccggt
1500
gctggaatcc cttggacggcg caaactctca cttctaaagtg tctctggatgg aagaactgtag
1560
cctcacaaggt cttactaa gcacatgtgaa gagatctctgc tatcctgttca cttctgtccgt
1620
atattgtctg gccctcttta aagaataatt atctttggttg ttctccattg aagatataaga
1680	
tacgagagaaggt cttctgaacc aatgctctct gcgaggagag tttgagagactc
1740
gcagaataaac ttctctggaag aagttggtgag acagctcaagc tggggacggac
1800
tctttagcag gcagctttata cagagagctg gttgtgtttgt tttttttgta ctctttttgta
1860
tcccttaggt ttttaacaga aaaagaataa ttttagaaagct gtgtcgtgtaa actgtgtgct
1920
tccacaacta ggatttgggt cactctttaaa atagaaaaact taagaacagct taacagataa
1980
ttaatcttgc gtcagagtgaag cagcttttct tttgggccccttt cccaaacacttta cca}
2040
cagcccgatt tcgtctccaa aatcgaggttg ttgggattttgcc tctccagactg agagctctcct
2100
agagagatttg caataacattc tggagccttta acacggatct cctcaagactg agagctgctcct
2160
gtctctggtgt cagagctagca aaaaacaactct ttaaacaagcc tggggactgtgt tcccgagaag
2220
agagagatttg cttctcttca caaaccctca aacactctgc ttttccccat gtgggagagat
2280
acctctttaa aatgaatggct cttgctgaag tggcctgtgag agctccattata cggagaaggtg
2340
tctcttagac cagagtttctg gcggggagag gcgtctctgc gttgagcacg ccctgggcagc
2400
actggcccca gggctcaagc accaagggag cggctctgcc tgcagctctg gacacaactc
2460
gttacaacag gcagacataac tcaacggagag aacaacagct caacacagag tttggcagcagc
2520
gcccctcaggg caatagccgg tcagagctgtat atatttaacaag gagtttctat ttaagacagct
2580
gggagaattgc aagataagag gcagctctatg ccgtctctcg agcgtctcca ccctggccacaag
2640
atgagaggtg gtcaccagcat gactctatgg aacacacatt tctgctctcct aacacagtctc
2700
aatggagaattgc cttcggacaa ttttcttcttc gttgtaatgtt ttttgagatagt gttgtaatgtt
2760
tctcctgggtg ttttcttcttc gttgtaatgtt ttttgagatagt gttgtaatgtt
2820
catagtagac ttttgactctg tggagagcgt tggggagctgt tggagagcgt tggggagctgt
2880
tcatattacg tggggagctgt gacgcctttg gttgagagcgt tggggagctgt gacgcctttg
tgggagcgat tggggagctgt gacgcctttg gttgagagcgt tggggagctgt gacgcctttg
2940
tctgagcata cttacataacag cggctcaagca cttacataacag cggctcaagca cttacataacag
3000
tccaaagctg aagcctctcg cggctcaagca aatcataactcg ctctggagac gccgagctgt ctttagatttc
ttacagatattg ggtgctccct gttctgctcct gttctgctcct gttctgctcct gttctgctcct
ttcgtatatag gatcctctag cttttagctgt ttcctgttct ttcctgttct ttcctgttct
ttttcctgata tttggagtgg tgtcttgaga gggagtaactcg cttttagctgt ttcctgttct ttcctgttct
<210> SEQ ID NO 2
<211> LENGTH: 1480
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 2

Met Gln Arg Ser Pro Leu Glu Ala Ser Val Val Ser Lys Leu Phe 1
 5
 10
 15
Phe Ser Trp Thr Arg Pro Ile Leu Arg Lys Gly Tyr Arg Glu Arg Leu 20
 25
 30
Glu Leu Ser Asp Ile Tyr Gln Ile Pro Ser Val Asp Ser Ala Asp Asn 35
 40
 45
Leu Ser Glu Lys Leu Glu Glu Arg Glu Trp Asp Arg Glu Leu Ala Ser Lys 50
 55
 60
Lys Asn Pro Lys Leu Ile Asn Ala Leu Arg Arg Cys Phe Phe Trp Arg 65
 70
 75
 80
Phe Met Phe Tyr Gly Ile Phe Leu Tyr Leu Gly Glu Val Thr Lys Ala 85
 90
 95
Val Gln Pro Leu Leu Leu Gly Arg Ile Ile Ala Ser Tyr Asp Pro Asp 100
 105
 110
Asn Lys Glu Glu Arg Ser Asp Ala Ile Tyr Leu Gly Ile Gly Leu Cys 115
 120
 125
Leu Leu Phe Ile Val Arg Thr Leu Leu Leu His Pro Ala Ile Phe Gly 130
 135
 140
Leu His His Ile Gly Met Gln Met Arg Ile Ala Met Phe Ser Leu Ile 145
 150
 155
 160
Tyr Lys Tyr Thr Leu Lys Leu Ser Ser Arg Val Leu Asp Lys Ile Ser 165
 170
 175
Ile Gly Gln Leu Val Ser Leu Ser Asn Asn Leu Asn Lys Phe Asp 180
 185
 190
Glu Gly Leu Ala Leu Ala His Phe Val Thr Ile Ala Pro Leu Glu Val 195
 200
 205
Ala Leu Leu Met Gln Leu Ile Trp Glu Leu Glu Ala Ser Ala Phe 210
 215
 220
Cys Gly Leu Gly Phe Leu Ile Val Leu Ala Leu Phe Gln Ala Gly Leu 225
 230
 235
 240
Gly Arg Met Met Met Gln Tyr Arg Asp Gln Arg Ala Gly Lys Ile Ser 245
 250
 255
Glu Arg Leu Val Ile Thr Ser Glu Met Ile Glu Asn Ile Glu Ser Val 260
 265
 270
Lys Ala Tyr Cys Thr Glu Glu Ala Met Glu Lys Met Ile Glu Asn Leu 275
 280
 285
Arg Gln Thr Glu Leu Lys Leu Thr Arg Lys Ala Ala Tyr Val Arg Tyr 290
 295
 300
Phe Asn Ser Ser Ala Phe Phe Phe Ser Gly Phe Pro Val Val Phe Leu 305
 310
 315
 320
Ser Val Leu Pro Tyr Ala Leu Ile Lys Gly Ile Ile Leu Arg Lys Ile 325
 330
 335
Phe Thr Thr Tyr Ser Ile Phe Cys Ile Val Leu Arg Met Ala Val Thr Arg 340
 345
 350
Gln Phe Pro Trp Ala Val Gln Thr Trp Tyr Asp Ser Leu Gly Ala Ile 355
 360
 365
Asn Lys Ile Gln Asp Phe Leu Glu Gin Gin Glu Tyr Lys Thr Leu Glu 370
 375
 380
Tyr Asn Leu Thr Thr Thr Glu Val Val Met Glu Asn Val Thr Ala Phe
385 390 395 400
Trp Glu Glu Gly Phe Gly Glu Leu Phe Glu Lys Ala Lys Gln Asn Asn
405 410 415
Asn Asn Arg Lys Thr Ser Asn Gly Asp Asp Ser Leu Phe Phe Ser Asn
420 425 430
Phe Ser Leu Leu Gly Thr Pro Val Leu Lys Asp Ile Asn Phe Lys Ile
435 440 445
Glu Arg Gly Gln Leu Leu Ala Val Ala Gly Ser Thr Gly Ala Gly Lys
450 455 460
Thr Ser Leu Leu Met Met Ile Met Gly Glu Leu Glu Pro Ser Glu Gly
465 470 475 480
Lys Ile Lys His Ser Gly Arg Ile Ser Phe Cys Ser Gln Phe Ser Trp
485 490 495
Ile Met Pro Gly Thr Ile Lys Glu Asn Ile Ile Phe Gly Val Ser Tyr
500 505 510
Asp Glu Tyr Arg Tyr Arg Ser Val Ile Lys Ala Cys Glu Leu Glu Glu
515 520 525
Asp Ile Ser Lys Phe Ala Glu Lys Asp Asn Ile Val Leu Gly Gly Gly
530 535 540
Gly Ile Thr Leu Ser Gly Gly Glu Arg Ala Arg Ile Ser Leu Ala Arg
545 550 555 560
Ala Val Tyr Lys Asp Ala Asp Leu Tyr Leu Leu Asp Ser Pro Phe Gly
565 570 575
Tyr Leu Asp Val Leu Thr Glu Lys Ile Phe Glu Ser Cys Val Cys
580 585 590
Lys Leu Met Ala Asn Lys Thr Arg Ile Leu Val Thr Ser Lys Met Glu
595 600 605
His Leu Lys Lys Ala Asp Lys Ile Leu Ile Leu Asn Glu Gly Ser Ser
610 615 620
Tyr Phe Tyr Gly Thr Phe Ser Glu Leu Gln Asn Leu Gln Pro Asp Phe
625 630 635 640
Ser Ser Lys Leu Met Gly Cys Asp Ser Phe Asp Gln Phe Ser Ala Glu
645 650 655
Arg Arg Asn Ser Ile Leu Thr Glu Thr Leu His Arg Phe Ser Leu Glu
660 665 670
Gly Asp Ala Pro Val Ser Trp Thr Glu Thr Lys Gln Ser Phe Lys
675 680 685
Gln Thr Gly Glu Phe Gly Glu Lys Arg Lys Asn Ser Ile Leu Asn Pro
690 695 700
Ile Asn Ser Ile Arg Lys Phe Ser Ile Val Glu Lys Thr Pro Leu Gln
705 710 715 720
Met Asn Gly Ile Glu Glu Asp Ser Asp Glu Pro Leu Glu Arg Arg Leu
725 730 735
Ser Leu Val Pro Asp Ser Glu Gln Gly Glu Ala Ile Leu Pro Arg Ile
740 745 750
Ser Val Ile Ser Thr Gly Pro Thr Leu Gln Ala Arg Arg Arg Gln Ser
755 760 765
Val Leu Asn Leu Met Thr His Ser Val Asn Gln Gly Glu Asn Ile His
770 775 780
Arg Lys Thr Thr Ala Ser Thr Arg Lys Val Ser Leu Ala Pro Gln Ala
785 790 795 800
Asn Leu Thr Glu Leu Asp Ile Tyr Ser Arg Arg Leu Ser Gln Glu Thr
805 810 815
| Gly Leu Glu Ile Ser Glu Glu Ile Asn Glu Glu Asp Leu Lys Glu Cys |
|------------------|------------------|------------------|
| 820 | 825 | 830 |
| Leu Phe Asp Asp Met Glu Ser Ile Pro Ala Val Thr Thr Trp Asn Thr |
| 835 | 840 | 845 |
| Tyr Leu Arg Tyr Ile Thr Val His Lys Ser Leu Ile Phe Val Leu Ile |
| 850 | 855 | 860 |
| Trp Cys Leu Val Ile Phe Leu Ala Glu Val Ala Ala Ser Leu Val Val |
| 865 | 870 | 875 | 880 |
| Leu Trp Leu Leu Gly Asn Thr Pro Leu Gln Asp Lys Gly Asn Ser Thr |
| 885 | 890 | 895 |
| His Ser Arg Asn Asn Ser Tyr Ala Val Ile Ile Thr Ser Thr Ser Ser |
| 900 | 905 | 910 |
| Tyr Tyr Val Phe Tyr Ile Tyr Val Gly Val Ala Asp Thr Leu Leu Ala |
| 915 | 920 | 925 |
| Met Gly Phe Phe Arg Gly Leu Pro Leu Val His Thr Leu Ile Thr Val |
| 930 | 935 | 940 |
| Ser Lys Ile Leu His His Lys Met Leu His Ser Val Leu Gln Ala Pro |
| 945 | 950 | 955 | 960 |
| Met Ser Thr Leu Asn Thr Leu Ala Gly Gly Ile Leu Leu Arg Phe |
| 965 | 970 | 975 |
| Ser Lys Asp Ile Ala Ile Leu Asp Asp Leu Leu Pro Leu Thr Ile Phe |
| 980 | 985 | 990 |
| Asp Phe Ile Gln Leu Leu Leu Ile Val Ile Gly Ala Ala Ala Val Val |
| 995 | 1000 | 1005 |
| Ala Val Leu Gln Pro Tyr Ile Phe Val Ala Thr Val Pro Val Ile |
| 1010 | 1015 | 1020 |
| Val Ala Phe Ile Met Leu Arg Ala Tyr Phe Leu Gln Thr Ser Gln |
| 1025 | 1030 | 1035 |
| Gln Leu Lys Gln Leu Gln Ser Glu Gly Arg Ser Pro Ile Phe Thr |
| 1040 | 1045 | 1050 |
| His Leu Val Thr Ser Leu Lys Gly Leu Trp Thr Leu Arg Ala Phe |
| 1055 | 1060 | 1065 |
| Gly Arg Gln Pro Tyr Phe Glu Thr Leu Phe His Lys Ala Leu Asn |
| 1070 | 1075 | 1080 |
| Leu His Thr Ala Asn Trp Phe Leu Tyr Leu Ser Thr Leu Arg Trp |
| 1085 | 1090 | 1095 |
| Phe Gln Met Arg Ile Glu Met Ile Phe Val Ile Phe Phe Ile Ala |
| 1100 | 1105 | 1110 |
| Val Thr Phe Ile Ser Ile Leu Thr Thr Gly Glu Gly Glu Gly Arg |
| 1115 | 1120 | 1125 |
| Val Gly Ile Ile Leu Thr Leu Ala Met Asn Ile Met Ser Thr Leu |
| 1130 | 1135 | 1140 |
| Gln Trp Ala Val Asn Ser Ser Ile Asp Val Asp Ser Leu Met Arg |
| 1145 | 1150 | 1155 |
| Ser Val Ser Arg Val Phe Lys Phe Ile Asp Met Pro Thr Glu Gly |
| 1160 | 1165 | 1170 |
| Lys Pro Thr Lys Ser Thr Lys Pro Tyr Lys Asn Gly Gln Leu Ser |
| 1175 | 1180 | 1185 |
| Lys Val Met Ile Ile Glu Asn Ser His Val Lys Lys Asp Asp Ile |
| 1190 | 1195 | 1200 |
| Trp Pro Ser Gly Gly Gln Met Thr Val Lys Asp Leu Thr Ala Lys |
| 1205 | 1210 | 1215 |
| Tyr Thr Glu Gly Gly Asn Ala Ile Leu Glu Asn Ile Ser Phe Ser |
aattggaagc aatgtcagtc acctcaggtct tgaataaaaag ggacgagcga aaagcattga 60
cctgttcttg gatattcagta gtctcagttc aacctcagtt tagctgaaac acagcctcat 120
tgctcagga gacatctgac agaagttgac gtttgagaaaa gcaagctttta tctcacaact 180
ctttctcagc tgaccacacca caatttttgg aagagctgac acagcactc tggagtttgc 240
agacataac caagccctct ctgtgactttc agtgcactgc ctgctctgaaa aacctgagaag 300
agaatgggac agagaccaag ctttccaaaaa gactcccaag cttatcaccg cctctcggc 360
atgttctttgg tggagattc cttcttctgg aaccttgaaca taacctagggg aagccaccaaa 420
ggctgtttcct ctgtgactgtg ttaggaagat ctagctccac tggtttcagag gctctgcaagc 480
gaaagttcct atggtcattt acctttgcat aggttattgc cttctctccat gtgctcaaagc 540
actgtttcttt ccocgcgagta tttttgagct ctatgacatt ggatgtcaga tgagacagc 600
taggttagc tgtgattata agaagaacctt aagaattgca agcgcgcgccc tggataaaat
aagctatggga caacagtctct gttctttttt ctactaatccat gccacacttg aacaatctgg aaggaagact
agctctggca catttttatg ggttagcctcc tttcaaatgg aaggttctg atcgctttgctg
ctggggaccttg ttcagctgct cagcggcgctt tggtctttgc ttctggatataggtttctcttt
cttacagct tattcagccc gacatggatg tattgataat aatctttttt taaaataagtc
caagaaaaag gaaaaaagctt ccttcgtagt cattctatag caaggaaccttt gcacgagatg
ctcagcttcac tttccgagctg cttcagagat tttttgatattg ctttcagagagaatgtttctctctgttcttcttttctttttcttttttcaggtctttttcgggatagtggttgcttttttctt
tacgtgcggg atcagcaaac tggaaacagg tgggttctt actaagattt ccaagatcct ccaagatat 3060
tagcaatccct ggacatttca cggcttctta cttttttgaa tttatcaggt tggggtttctt 3120
ttgtaatcgg gcatccttta tttttttttc cttttttggt cttccattac cggctttttt cttccattac 3180
gcagagggtc gcctgtcttt ttttatcaag gggcattcga ctttcttata ctttcttata ctttcttata 3240
cacaagactg caagagagct gcaagagctg ccttctttttc ctttctttttc ctttctttttc ctttctttttc 3300
tagccctggg cttgcgtggg tcttgctttttc tcggctctttt gcgttgcgtg cggctttttt ctttctttttc 3360
tagctggttttttc tttttttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 3420
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 3480
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 3540
gacgtctggc caggtgtcag gaaaaagagcg caggtgtcag gaaaaagagcg caggtgtcag gaaaaagagcg 3600
acggagcagc ctcattttctt tttttttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc 3660
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 3720
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 3780
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 3840
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 3900
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 3960
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4020
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4080
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4140
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4200
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4260
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4320
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4380
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4440
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4500
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4560
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4620
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4680
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4740
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4800
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4860
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4920
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 4980
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 5040
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 5100
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 5160
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 5220
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 5280
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 5340
tttttttttt ttgtggtttttt cttttttttt ctttctttttc ctttctttttc ctttctttttc ctttctttttc 5400
cgcacatctg gtgatcagt acctcctcag gatcaggtct tgggaaattaa
5460
ggttaagacc actacctgctt acctttag tcgttagaag atccgagttt tctcttcta
5520
tgagaaaaa gaactggctc agtgcctgtaa ataaattctct ctgtagtgaa
5580
atggacacac ttatgttccg agaagccagc agatgtttgtc tggctcggaggt gccctcctg
5640
gttgtggtt gcgtgacccc ctgccggtt cgtgcccatg cggggctctg cgggggtgtt
gccttggac caattggctt ggtgtgtttg tagtgatgctt cttttttccg cttggagaatt
5700
6120
6240
6299
Cys Gly Leu Gly Leu Leu Ile Ile Leu Val Ile Phe Gln Ala Ile Leu
225 230 235 240
Gly Lys Met Met Val Lys Tyr Arg Asp Gin Arg Ala Ala Lys Ile Asn
245 250 255
Glu Arg Leu Val Ile Thr Ser Glu Ile Ile Asp Asn Ile Tyr Ser Val
260 265 270
Lys Ala Tyr Cys Trp Glu Ser Ala Met Gln Lys Met Ile Glu Asn Leu
275 280 285
Arg Glu Val Glu Leu Lys Met Thr Arg Lys Ala Ala Tyr Met Arg Phe
290 295 300
Phe Thr Ser Ser Ala Phe Phe Ser Gly Phe Val Val Phe Leu
305 310 315 320
Ser Val Leu Pro Tyr Thr Val Ile Asn Gly Ile Val Leu Arg Lys Ile
325 330 335
Phe Thr Thr Ile Ser Phe Cys Ile Val Leu Arg Met Ser Val Thr Arg
340 345 350
Gln Pro Thr Ala Val Gin Ile Trp Tyr Asp Ser Phe Gly Met Ile
355 360 365
Arg Lys Ile Gin Asp Phe Leu Gin Lys Gin Glu Tyr Lys Val Leu Glu
370 375 380
Tyr Asn Leu Met Thr Thr Gly Ile Ile Met Glu Asn Val Thr Ala Phe
385 390 395 400
Trp Glu Glu Gly Phe Gly Glu Leu Leu Gin Lys Ala Gin Gin Ser Asn
405 410 415
Gly Asp Arg Lys His Ser Ser Asp Gin Asn Asn Val Ser Phe Ser His
420 425 430
Leu Cys Leu Val Gly Asn Pro Val Leu Lys Asn Ile Asn Leu Asn Ile
435 440 445
Glu Lys Gly Glu Met Leu Ala Ile Thr Gly Ser Thr Gly Leu Gly Lys
450 455 460
Thr Ser Leu Leu Met Leu Ile Leu Gly Glu Leu Glu Ala Ser Glu Gly
465 470 475 480
Ile Ile Lys His Ser Gly Arg Val Ser Phe Cys Ser Gin Phe Ser Trp
485 490 495
Ile Met Pro Gly Thr Ile Lys Glu Asn Ile Ile Phe Gly Val Ser Tyr
500 505 510
Asp Glu Tyr Arg Tyr Lys Ser Val Val Lys Ala Cys Gin Leu Gin Gin
515 520 525
Asp Ile Thr Lys Phe Ala Glu Gin Asp Thr Val Leu Gly Glu Gly
530 535 540
Gly Val Thr Leu Ser Gly Gly Gin Arg Ala Arg Ile Ser Leu Ala Arg
545 550 555 560
Ala Val Tyr Lys Asp Ala Asp Leu Tyr Leu Leu Asp Ser Pro Phe Gly
565 570 575
Tyr Leu Asp Val Phe Thr Glu Gln Val Phe Glu Ser Cys Val Cys
580 585 590
Lys Leu Met Ala Asn Lys Thr Arg Ile Leu Val Thr Ser Lys Met Glu
595 600 605
His Leu Arg Lys Ala Asp Lys Ile Leu Ile Leu His Gin Gly Thr Ser
610 615 620
Tyr Phe Tyr Gly Thr Phe Ser Glu Leu Gin Ser Leu Arg Pro Ser Phe
625 630 635 640
Ser Ser Lys Leu Met Gly Tyr Asp Thr Phe Asp Gin Phe Thr Glu Glu
-continued

Phe Glu Thr Leu Phe His Lys Ala Leu Asn Leu His Thr Ala Asn 1070 1075 1080 1085

Trp Phe Met Tyr Leu Ala Thr Leu Arg Trp Phe Gln Met Arg Ile 1100 1105 1110 1115

Asp Met Ile Phe Val Leu Phe Phe Ile Val Val Thr Phe Ile Ser 1120 1125 1130 1135

Ile Leu Thr Thr Gly Glu Gly Glu Gly Thr Ala Gly Ile Ile Leu 1150 1155 1160 1165

Thr Leu Ala Met Asn Ile Met Ser Thr Leu Gln Trp Ala Val Asn 1180 1185 1190 1195

Ser Ser Ile Asp Thr Asp Ser Leu Met Arg Ser Val Ser Arg Val 1210 1215 1220 1225

Phe Lys Phe Ile Asp Ile Gln Thr Glu Glu Ser Met Tyr Thr Gln 1240 1245 1250 1255

Ile Ile Lys Glu Leu Pro Arg Glu Gly Ser Ser Asp Val Leu Val 1270 1275 1280 1285

Ile Lys Asn Glu His Val Lys Lys Ser Asp Ile Trp Pro Ser Gly 1300 1305 1310 1315

Gly Glu Met Val Val Lys Asp Leu Thr Val Lys Tyr Met Asp Asp 1330 1335 1340 1345

Gly Asn Ala Val Leu Glu Asn Ile Ser Phe Ser Ile Ser Pro Gly 1360 1365 1370 1375

Gln Arg Val Gly Leu Leu Gly Arg Thr Gly Ser Gly Lys Ser Thr 1390 1395 1400 1405

Leu Leu Ser Ala Phe Leu Arg Met Leu Asn Ile Lys Gly Asp Ile 1420 1425 1430 1435

Glu Ile Asp Gly Val Ser Trp Asn Ser Val Thr Leu Gln Glu Trp 1450 1455 1460 1465

Arg Lys Ala Phe Gly Val Ile Thr Gln Lys Val Phe Ile Phe Ser 1480 1485 1490 1495

Gly Thr Phe Arg Glu Asn Leu Asp Pro Asn Gly Lys Trp Lys Asp 1510 1515 1520 1525

Glu Glu Ile Trp Lys Val Ala Asp Glu Val Gly Leu Lys Ser Val 1540 1545 1550 1555

Ile Glu Gln Phe Pro Gly Glu Leu Asn Phe Thr Leu Val Asp Gly 1570 1575 1580 1585

Gly Tyr Val Leu Ser His Gly His Lys Gln Leu Met Cys Leu Ala 1600 1605 1610 1615

Arg Ser Val Leu Ser Lys Ala Lys Ile Ile Leu Leu Asp Glu Pro 1630 1635 1640 1645

Ser Ala His Leu Asp Pro Ile Thr Tyr Gln Val Ile Arg Arg Val 1660 1665 1670 1675

Leu Lys Gln Ala Phe Ala Gly Cys Thr Val Ile Leu Cys Glu His 1690 1695 1700 1705

Arg Ile Glu Ala Met Leu Asp Cys Gln Arg Phe Leu Val Ile Glu 1720 1725 1730 1735

Glu Ser Asn Val Trp Gln Tyr Asp Ser Leu Gln Ala Leu Leu Ser 1750 1755 1760 1765

Glu Lys Ser Ile Phe Gln Glu Ala Ile Ser Ser Ser Glu Lys Met 1780 1785 1790 1795

Arg Phe Phe Gln Gly Arg His Ser Ser Lys His Lys Pro Arg Thr 1810 1815 1820 1825

Gln Ile Thr Ala Leu Lys Glu Glu Thr Glu Glu Glu Val Glu Glu 1840 1845 1850 1855

Glu Ile Thr Ala Leu Lys Glu Glu Thr Glu Glu Glu Val Glu Glu
Thr Arg Leu 1475

<210> SEQ ID NO 5
<211> LENGTH: 4449
<212> TYPE: DNA
<213> ORGANISM: Sus scrofa

<400> SEQUENCE: 5

atgcagaaggt gcgcctcctgga aaagggcagc atccttctcca aactttttttt cagcttgga 60
agaccaatatt tgtgaaagaag atataagacag gcgcctggaat tgcgacacat atacacattc 120
ttcctatgtc tctcttgctga cactctgctt gaatataggg aagagaaatg ggaagagaga 180
tgtgcctcaca agagaattcc aaactcattt aagccctttt ggagtttttttttttttgagaa 240
tttatgtcct atcacgatac atatatgta ggcgaagtct ccaagacgct ccagcccttc 300
ttactggagaa gacatacag tcctctgtat cccagaatcaca agggcggaaag ctccattgag 360
attacacag ggtgtagttc atgccttcct tcctctgtga gcacccggtc ccctgcaacc 420
gcattttttcg gcxcccctca aactctcagt cagtcgagaa tagtcaggtt tagttgtgatt 480
tacaaaaagct ctttaaagct gtcaagggct gtctagataa aataattgtg tggacaaactt 540
gttatcttc tcctcttca cctgaaacag tttgatgaag gactctggctt ggagacgcctc 600
gttggtgcct tttctcctca cttgaaacag tttgatgaag gactctggctt ggagacgcctc 660
gtctgagctct tctcctcagct gcgagctgtc tgcgagtgggct tgcgagtgggct gtttgtggag 720
gttgtctgcc ttgcctctct gcgtgacagct gcgagctgtc tgcgagtgggct tgcgagtgggct 780
ataggaaaaggag tcctaaagct tcaacagaca aagagagcct aagagagcct cagagagggc 840
atgaaaaagct cattggaaaa ctaaacagaca aagagagcct aagagagcct cagagagggc 900
tagtgtgagatt ctctcatag tctgcgccttc ttctctctct gtctctctttttt gtttgtttttta 960
tctggtcttc cttgagccct gtcctggaac gttctggaac gttctggaac gttctggaac 1020
tccctctccag tgcctgctcc aagcgggact ctggggggct cttctgctggg cttgaaaaact 1080
tgcgttattg tctccttgag ataaacaaaa atacgagttc ttttagagaa gcacaataat 1140
aagacatcgg atataacactt aacatctcaa cagagatgtcg tggaggaaatg tgcgacccct 1200
tgggagaagct cattgggagaa attatcctgga aagaagggaa aaataataaa cagctggaaaa 1260
atttccacgat ggataacag gctcctctct cagatcctccc aacccctcctg caccctctgc 1320
tctgaaagata cctggcttcg aagcagatgtg ttgcgagtgtc tcggatcttc 1390
pgaagcccc aacaactacact tctcgagtag attatcctgga aagaagggaa aaataataaa cagctggaaaa 1440
aaaatcagc acgctgagaa aatctccttc ttgcctctgtg gttcctctgtg aactgggcggc 1500
accataaag aacaaactac atcctgtgctt tcggatcttc atgtagataga cagagatgtcg 1560
atcgaaggt gcgggacattt aagaggactga cctgagaaag tagtagatag aacacagcct 1620
tgtggagaaat gtggagggaag gtctcttgga ggaggagtgg cagaaatcttc ttcgcaaga 1680
gcagctatat ctaagatggta ttttgtatact gacgatcttc ttctgctgggt cttatactgtg 1740
ttacaagaga aagaaatcatt tcgggaaggt gttcagagat tggatggtgtc aaataactg 1800
atttttttttttgc ctctttctaa atggagaaaa ctgagatgttg cggagatgttg 1860
gaaagttggc agtctttctt gttggaggtt acctggctgtg caagaaacctac 1920
agttcagaaa atctggttgg CCCCTGAAA CTTGAAGCTGCTG 1980
atcataaagct gacgttctgcc gcctttctca ttagaacgagatgctcttgctgtg 2040
gaacaacaa acacactcttc taacagacct ggagagtgttg tgtgaaaaag gaagacttcc
2100
atctcacttt cactcaactc tataaggaaa ttctctattg tacaagaagc tcccttacaa
2160
atggaattgtg tgtgaagaaaca ttctggaag cagcttggagct ctaaggctaac cttgactttctt
2220
gattctgagc atgggagggc aatctcactct cagagcaacg tgaattgagc tggagccagct
2280
ttctcggagagc gacagagggc gctggtttcctg accttcgctgc cgcgcttctcct cgtggaacca
2340
ggtcataagca ttctccagaa gagacgcagct tcccaacgga aatgtcacta gtcgtctccaa
2400
gcaaacttca atgaaatagca tataatatcc agcagttgtag ccgaagacaa gccagccaa
2460
ataagttgaag aataatattga agagagttgt gttttgttgtga cgttgaggagc
2520
ataccatcagct gcaactactgtg gaaaactacaa ctcggatagtgt tcctggaga caagagcctta
2580
aatattgctg tggattctgg tgtttggttta ttctgtgtctg agttgtgcct ggggttgggt
2640
gttggtttgt tgtgtgctttttg cacaagcgcc cagcagcgcc caagagcgtc ttggtggtgc
2700
aatcagctg atcagctgta catacagcccc ccagcagctac aatgtggttct ttcctagcct
2760
gtgaggagtag cccgaggttgt gtggtgctt gaaccccaccc caagagctcata acttggtctgt
2820
acctcttcct caggtctccta aatgtctactg cggaaatatg tacacgtctg ttcagctgc
2880
cccttgctca cctcctcaccg atggagagcc ggtggtgtgg ttcataaggtt tccctcaggt
2940
ataccaggtt tggattctgg tgtttggttta ttctgtgtctg agttgtgcct ggggttgggt
3000
atttggttgg ttggtgttctatactacttg gtcttctcttc aatccatcctacc ctggtcttcct
3060
gtgcaagctg aagcgttctgt cttctcttttg agcgtcttctg tccctcaacag cctggtcttcct
3120
tccacacgg tgtgaaactg agaagaggtt ccaatttcaac cctctctctctc tccaagcctta
3180
aagagcactag ggctctctctg aagcctctctg cctgagcttct aatgtcactg cggaggctcc
3240
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
3300
caatgcagtaa tctatgtatt tttgctcctct tttcctctctg cccctctctctc ttttctctctt
3360
ctccttcacag gggagaggtg aggaggttgt ctttcttctttct ctttcttctttct ctttcttctttt
3420
atggtcatct tgtcaggtggt tacaactgtt gctgatactgt ctggtgtgtct cttcggtgtct
3480
gtagctgtg ccctattgctg aagcgttctg tccctcaggtt cgtctctctctg acgtctctctt
3540
tccacacgg tgtgaaactg agaagaggtt ccaatttcaac cctctctctctc tccaagcctta
3600
aagagcactag ggctctctctg aagcctctctg cctgagcttct aatgtcactg cggaggctcc
3660
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
3720
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
3780
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
3840
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
3900
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
3960
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
4020
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
4080
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
4140
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
4200
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
4260
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
4320
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
4380
agagcttctta atatcactac tgtccagttct tccctctctctg aggctttcctt cggaggctcc
4440
Tyr Asn Leu Thr Thr Thr Glu Val Val Met Glu Asn Val Thr Ala Phe
370 375 380
 Trp Glu Glu Gly Phe Gly Lys Leu Phe Glu Lys Ala Lys Gln Asn Asn
385 390 395
 Asn Ser Arg Lys Ile Ser Asn Gln Asp Asn Ser Leu Phe Asp Ser Asn
405 410 415
 Phe Ser Leu Leu Gly Thr Pro Val Leu Lys Asp Ile Ser Phe Lys Ile
420 425 430
 Glu Arg Gly Gln Leu Leu Ala Val Ala Gly Ser Thr Gly Ala Gly Lys
435 440 445
 Thr Ser Leu Met Met Ile Met Gly Glu Leu Glu Pro Ser Glu Gly
450 455 460
 Lys Ile Lys His Ser Gly Arg Ile Ser Phe Cys Ser Gln Phe Ser Trp
465 470 475 480
 Ile Met Pro Gly Thr Ile Lys Glu Asn Ile Ile Phe Gly Val Ser Tyr
485 490 495
 Asp Glu Tyr Arg Tyr Arg Ser Val Ile Lys Ala Cys Gln Leu Glu Glu
500 505 510
 Asp Ile Ser Lys Phe Ala Gly Lys Asp Asn Ile Val Leu Gly Glu Gly
515 520 525
 Gly Ile Thr Leu Ser Gly Gly Gln Arg Ala Arg Ile Ser Leu Ala Arg
530 535 540
 Ala Val Tyr Lys Asp Ala Asp Leu Tyr Leu Asp Ser Pro Phe Gly
545 550 555 560
 Tyr Leu Asp Val Leu Thr Glu Lys Glu Ile Phe Glu Ser Cys Val Cys
565 570 575
 Lys Leu Met Ala Asn Lys Thr Arg Ile Leu Val Thr Ser Lys Met Glu
580 585 590
 His Leu Lys Lys Ala Asp Lys Ile Leu Ile Leu His Glu Gly Ser Ser
595 600 605
 Tyr Phe Tyr Gly Thr Phe Ser Leu Gln Ser Gln Arg Pro Asp Phe
610 615 620
 Ser Ser Lys Leu Met Gly Tyr Asp Thr Phe Asp Gln Phe Thr Ala Glu
625 630 635 640
 Arg Arg Asn Ser Ile Ile Thr Glu Thr Leu Arg Asp Phe Ser Leu Glu
645 650 655 660
 Gly Asp Ala Ser Val Ser Trp Asn Glu Thr Lys Gln Ser Phe Lys
665 670
 Gln Thr Gly Glu Phe Gly Glu Lys Arg Asn Ser Ile Leu Asn Ser
680 685
 Ile Asn Ser Ile Arg Lys Phe Ser Ile Val Gin Lys Thr Pro Leu Gin
695 700
 Met Asn Gly Phe Glu Asp Ser Gly Glu Pro Leu Glu Arg Arg Leu
710 715 720
 Ser Leu Val Pro Asp Ser Glu His Gly Glu Ala Ile Pro Arg Ser
725 730 735
 Asn Val Ile Asn Ala Gly Pro Thr Phe Gin Gly Arg Arg Gln Ser
740 745 750
 Val Leu Asn Leu Met Thr Arg Ser Ser Val Asn Gin Gly Gin Ser Ile
755 760 765
 His Arg Lys Thr Ala Thr Ser Thr Arg Lys Met Ser Leu Val Pro Gin
770 775 780
 785 790 795
 800
Ala Asn Leu Thr Glu Ile Asp Ile Tyr Ser Arg Arg Leu Ser Ser Gln Asp 805 810 815
Thr Gly Leu Glu Ile Ser Glu Glu Ile Asn Glu Glu Asp Leu Arg Glu 820 825 830
Cys Phe Phe Asp Asp Val Glu Ser Ile Pro Thr Val Thr Thr Trp Asn 835 840 845
Thr Tyr Leu Arg Tyr Val Thr Val His Lys Ser Leu Ile Phe Val Leu 850 855 860
Ile Trp Cys Leu Val Val Phe Leu Ala Glu Val Ala Ala Cys Leu Val 865 870 875 880
Val Leu Cys Leu Leu Lys Lys Thr Ser Pro Gln Asp Lys Gly Asn Ser 885 890 895
Thr Lys Gly Ala Asn Asn Ser Tyr Ala Val Ile Ile Thr Ser Thr Thr Ser 900 905 910
Ala Tyr Tyr Val Phe Tyr Ile Tyr Val Gly Val Ala Asp Gly Leu Leu 915 920 925
Ala Leu Gly Leu Phe Arg Gly Leu Pro Leu Val His Thr Leu Ile Thr 930 935 940
Val Ser Lys Ile Leu His Arg Lys Met Leu His Ser Val Leu Gln Ala 945 950 955 960
Pro Met Ser Thr Leu Asn Thr Leu Lys Ala Gly Ile Leu Asn Arg 965 970 975
Phe Ser Lys Asp Ile Ala Val Leu Asp Asp Leu Leu Pro Leu Thr Ile 980 985 990
Phe Asp Phe Ile Gln Leu Leu Leu Ile Val Ile Gly Ala Val Ala Val 995 1000 1005
Val Ser Val Leu Lys Pro Tyr Ile Phe Leu Ala Thr Val Pro Val 1010 1015 1020
Ile Val Ala Phe Ile Leu Leu Arg Ala Tyr Phe Leu His Thr Ser 1025 1030 1035
Gln Gln Leu Lys Glu Leu Glu Ser Glu Gly Arg Ser Pro Ile Phe 1040 1045 1050
Thr His Leu Ile Thr Ser Leu Lys Gly Leu Trp Thr Leu Arg Ala 1055 1060 1065
Phe Gly Arg Gln Pro Tyr Phe Glu Thr Leu Phe His Lys Ala Leu 1070 1075 1080
Asn Leu His Thr Ala Asn Trp Phe Leu Tyr Leu Ser Thr Leu Arg 1085 1090 1095
Trp Phe Gln Met Arg Ile Glu Met Ile Phe Val Ile Phe Phe Ile 1100 1105 1110
Ala Val Thr Phe Ile Ser Ile Leu Thr Thr Gly Glu Gly Glu Gly 1115 1120 1125
Thr Val Gly Ile Ile Leu Thr Leu Ala Met Arg Ile Met Ser Thr 1130 1135 1140
Leu Gln Trp Ala Val Asn Ser Ser Ile Asp Val Asp Ser Leu Met 1145 1150 1155
Arg Ser Val Ser Arg Val Phe Lys Phe Ile Asp Met Pro Ala Glu 1160 1165 1170
Gly Asp Gln Pro Arg Ser Phe Lys Pro Ser Lys Asp Gly Gln 1175 1180 1185
Leu Ser Lys Val Met Ile Ile Glu Asn Gln His Val Lys Lys Asp 1190 1195 1200
Asp Ile Trp Pro Ser Gly Gly Gln Met Thr Val Lys Asp Leu Thr 1205 1210 1215
<table>
<thead>
<tr>
<th>Ala</th>
<th>Lys</th>
<th>Tyr</th>
<th>Val</th>
<th>Asp</th>
<th>Gly</th>
<th>Gly</th>
<th>Asn</th>
<th>Ala</th>
<th>Val</th>
<th>Leu</th>
<th>Glu</th>
<th>Asn</th>
<th>Ile</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td>1220</td>
<td>1225</td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Ile</td>
<td>Ser</td>
<td>Pro</td>
<td>Gly</td>
<td>Gln</td>
<td>Arg</td>
<td>Val</td>
<td>Gly</td>
<td>Leu</td>
<td>Leu</td>
<td>Gly</td>
<td>Arg</td>
<td>Thr</td>
</tr>
<tr>
<td>1235</td>
<td>1240</td>
<td>1245</td>
</tr>
<tr>
<td>Gly</td>
<td>Ser</td>
<td>Gly</td>
<td>Lys</td>
<td>Ser</td>
<td>Thr</td>
<td>Leu</td>
<td>Leu</td>
<td>Leu</td>
<td>Ala</td>
<td>Phe</td>
<td>Leu</td>
<td>Arg</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>1250</td>
<td>1255</td>
<td>1260</td>
</tr>
<tr>
<td>Asn</td>
<td>Thr</td>
<td>Glu</td>
<td>Gly</td>
<td>Glu</td>
<td>Ile</td>
<td>Gln</td>
<td>Val</td>
<td>Asp</td>
<td>Gly</td>
<td>Val</td>
<td>Ser</td>
<td>Trp</td>
<td>Asp</td>
<td>Ser</td>
</tr>
<tr>
<td>1265</td>
<td>1270</td>
<td>1275</td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Leu</td>
<td>Gln</td>
<td>Gln</td>
<td>Trp</td>
<td>Arg</td>
<td>Lys</td>
<td>Ala</td>
<td>Phe</td>
<td>Gly</td>
<td>Val</td>
<td>Ile</td>
<td>Pro</td>
<td>Gln</td>
</tr>
<tr>
<td>1280</td>
<td>1285</td>
<td>1290</td>
</tr>
<tr>
<td>Lys</td>
<td>Val</td>
<td>Phe</td>
<td>Ile</td>
<td>Phe</td>
<td>Ser</td>
<td>Gly</td>
<td>Thr</td>
<td>Phe</td>
<td>Arg</td>
<td>Lys</td>
<td>Asn</td>
<td>Leu</td>
<td>Asp</td>
<td>Pro</td>
</tr>
<tr>
<td>1295</td>
<td>1300</td>
<td>1305</td>
</tr>
<tr>
<td>Tyr</td>
<td>Gly</td>
<td>Glu</td>
<td>Trp</td>
<td>Asn</td>
<td>Asp</td>
<td>Gln</td>
<td>Glu</td>
<td>Ile</td>
<td>Trp</td>
<td>Lys</td>
<td>Val</td>
<td>Ala</td>
<td>Glu</td>
<td>Glu</td>
</tr>
<tr>
<td>1310</td>
<td>1315</td>
<td>1320</td>
</tr>
<tr>
<td>Val</td>
<td>Gly</td>
<td>Leu</td>
<td>Arg</td>
<td>Ser</td>
<td>Val</td>
<td>Ile</td>
<td>Glu</td>
<td>Gln</td>
<td>Phe</td>
<td>Pro</td>
<td>Gly</td>
<td>Lys</td>
<td>Leu</td>
<td>Asp</td>
</tr>
<tr>
<td>1325</td>
<td>1330</td>
<td>1335</td>
</tr>
<tr>
<td>Phe</td>
<td>Val</td>
<td>Leu</td>
<td>Val</td>
<td>Asp</td>
<td>Gly</td>
<td>Gly</td>
<td>Cys</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>His</td>
<td>Gly</td>
<td>His</td>
<td>Lys</td>
</tr>
<tr>
<td>1340</td>
<td>1345</td>
<td>1350</td>
</tr>
<tr>
<td>Gln</td>
<td>Leu</td>
<td>Met</td>
<td>Cys</td>
<td>Leu</td>
<td>Ala</td>
<td>Arg</td>
<td>Ser</td>
<td>Val</td>
<td>Leu</td>
<td>Gly</td>
<td>Lys</td>
<td>Ala</td>
<td>Lys</td>
<td>Ile</td>
</tr>
<tr>
<td>1355</td>
<td>1360</td>
<td>1365</td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Leu</td>
<td>Asp</td>
<td>Glu</td>
<td>Pro</td>
<td>Ser</td>
<td>Ala</td>
<td>His</td>
<td>Leu</td>
<td>Asp</td>
<td>Pro</td>
<td>Ile</td>
<td>Thr</td>
<td>Tyr</td>
</tr>
<tr>
<td>1370</td>
<td>1375</td>
<td>1380</td>
</tr>
<tr>
<td>Gln</td>
<td>Ile</td>
<td>Ile</td>
<td>Arg</td>
<td>Arg</td>
<td>Thr</td>
<td>Leu</td>
<td>Lys</td>
<td>Gln</td>
<td>Ala</td>
<td>Phe</td>
<td>Ala</td>
<td>Asp</td>
<td>Cys</td>
<td>Thr</td>
</tr>
<tr>
<td>1385</td>
<td>1390</td>
<td>1395</td>
</tr>
<tr>
<td>Val</td>
<td>Ile</td>
<td>Leu</td>
<td>Ser</td>
<td>Glu</td>
<td>His</td>
<td>Arg</td>
<td>Ile</td>
<td>Glu</td>
<td>Ala</td>
<td>Met</td>
<td>Leu</td>
<td>Glu</td>
<td>Cys</td>
<td>Gln</td>
</tr>
<tr>
<td>1400</td>
<td>1405</td>
<td>1410</td>
</tr>
<tr>
<td>Arg</td>
<td>Phe</td>
<td>Leu</td>
<td>Val</td>
<td>Ile</td>
<td>Glu</td>
<td>Glu</td>
<td>Asn</td>
<td>Lys</td>
<td>Val</td>
<td>Arg</td>
<td>Gln</td>
<td>Tyr</td>
<td>Asp</td>
<td>Ser</td>
</tr>
<tr>
<td>1415</td>
<td>1420</td>
<td>1425</td>
</tr>
<tr>
<td>Ile</td>
<td>Gln</td>
<td>Arg</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Glu</td>
<td>Lys</td>
<td>Ser</td>
<td>Leu</td>
<td>Phe</td>
<td>Arg</td>
<td>Gln</td>
<td>Ala</td>
<td>Ile</td>
</tr>
<tr>
<td>1430</td>
<td>1435</td>
<td>1440</td>
</tr>
<tr>
<td>Ser</td>
<td>Pro</td>
<td>Leu</td>
<td>Asp</td>
<td>Arg</td>
<td>Leu</td>
<td>Lys</td>
<td>Leu</td>
<td>Leu</td>
<td>Pro</td>
<td>His</td>
<td>Arg</td>
<td>Asn</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>1445</td>
<td>1450</td>
<td>1455</td>
</tr>
<tr>
<td>Lys</td>
<td>Gln</td>
<td>Arg</td>
<td>Ser</td>
<td>Arg</td>
<td>Ser</td>
<td>Lys</td>
<td>Ile</td>
<td>Ala</td>
<td>Leu</td>
<td>Lys</td>
<td>Glu</td>
<td>Glu</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>1460</td>
<td>1465</td>
<td>1470</td>
</tr>
<tr>
<td>Glu</td>
<td>Glu</td>
<td>Glu</td>
<td>Val</td>
<td>Gln</td>
<td>Glu</td>
<td>Thr</td>
<td>Arg</td>
<td>Leu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1475</td>
<td>1480</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 7
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 7

```
tttcttcttt gccatatccc c
```

21

<210> SEQ ID NO 8
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 8

```
agaaaaacct gaagggatgcc t
```

21
<210> SEQ ID NO 9
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 9

gtttcaata gttacctcag tttga

<210> SEQ ID NO 10
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 10

cctcaactg acactaactct tctca

<210> SEQ ID NO 11
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 11

gtagagctgt cacgaagta a

<210> SEQ ID NO 12
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 12

aagccacaga agctatgca t

<210> SEQ ID NO 13
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 13

aatcaacacg aggatgcaca t

<210> SEQ ID NO 14
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 14

atctcagag caggaagtgc t

<210> SEQ ID NO 15
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 15
atacataaag cttcactgtg c

<210> SEQ ID NO 16
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 16
tgctcagaga gaattagaga tta

<210> SEQ ID NO 17
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 17
gcactactca cctacatoca

<210> SEQ ID NO 18
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 18
acctggaagt tggacacact a

<210> SEQ ID NO 19
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 19
gaagacccct tacctcctcc ta

<210> SEQ ID NO 20
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 20
catccagctg caacaacacat t

<210> SEQ ID NO 21
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 21
aatattgtca aacctcactct tat

<210> SEQ ID NO 22
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 22

agaaattcatt tcgtgctcag gt

SEQ ID NO 23
LENGTH: 25
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 23

agtgggctgt aasctcaggt ataga

SEQ ID NO 24
LENGTH: 25
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 24

cctcttgccg gcatacagc aaact

SEQ ID NO 25
LENGTH: 17
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 25

atcgcaatcag gcatacgg

SEQ ID NO 26
LENGTH: 24
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 26

aagctctattt ccctgtagca cast

SEQ ID NO 27
LENGTH: 18
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 27

ggagggcatt gggaccat

SEQ ID NO 28
LENGTH: 17
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 28

tcaacacccct tgtgtcct
<210> SEQ ID NO 29
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 29

tcatgcggg caccattaaa

<210> SEQ ID NO 30
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 30

cgctcttgatg acacctcttgt atctta

<210> SEQ ID NO 31
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 31

acaccaaga tgaatgttccc

<210> SEQ ID NO 32
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 32

tcatgcggg caccattaaa

<210> SEQ ID NO 33
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 33

cgctcttgatg acacctcttgt atctta

<210> SEQ ID NO 34
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 34

gasacacca tgaatgttccc

<210> SEQ ID NO 35
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 35

gacacacca tgaatgttccc
agaatttcat tacgctotca 22
gaacccctt tacctotttc 22

tcatgcggg caccattaaa 20
gottttgat acaactotgt atctat 25

acacaaaga tgaatgtttttc 20

acacaaaga tgaatgtttttc 20

agaacatttt cctcgtacga 24

ggggctcgtg tggaccat 18

agaacatttt cctcgtacga 24

ggggctcgtg tggaccat 18
What is claimed is:

1. A transgenic pig whose genome comprises a homozygous disruption of a cystic fibrosis membrane transporter (CFTR) gene, wherein the pig does not express functional CFTR, and wherein the pig has a symptom of cystic fibrosis in its pancreas, intestine, liver, or gallbladder.

2. The transgenic pig of claim 1, wherein the disruption comprises an insertion of an exogenous nucleic acid molecule and/or a transcription termination sequence.

3. A cell isolated from the transgenic pig of claim 1.

4. A method of making the transgenic pig of claim 1 comprising:
 i) disrupting a CFTR gene in a fetal pig fibroblast;
 ii) introducing the nucleus of the fetal pig fibroblast into an enucleated pig oocyte to generate a pig embryo;
 iii) transferring the pig embryo into a recipient female such that a transgenic pig whose genome comprises a heterozygous disruption of the CFTR gene is obtained; and
 iv) breeding the pig obtained in iii) such that the transgenic pig of claim 1 is obtained.

5. The transgenic pig of claim 1, wherein the pig has a symptom of cystic fibrosis in its pancreas.

6. The transgenic pig of claim 5, wherein the pig has a symptom of cystic fibrosis in its pancreas comprising exocrine pancreatic insufficiency.

7. The transgenic pig of claim 1, wherein the pig has a symptom of cystic fibrosis in its intestine.

8. The transgenic pig of claim 7, wherein the pig has a symptom of cystic fibrosis in its intestine comprising meconium ileus or intestinal obstruction.

9. The transgenic pig of claim 1, wherein the pig has a symptom of cystic fibrosis in its liver.

10. The transgenic pig of claim 9, wherein the pig has a symptom of cystic fibrosis in its liver comprising focal biliary cirrhosis.

11. The transgenic pig of claim 1, wherein the pig has a symptom of cystic fibrosis in its gallbladder.

* * * * *
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

Please replace the paragraph under STATEMENT AS TO FEDERALLY SPONSORED RESEARCH, at column 1, lines 18-22, with the following:

--This invention was made with government support under grant number HL51670 and grant number DK547759 awarded by National Institutes of Health. The Government has certain rights in the invention.--

Signed and Sealed this
Twenty-ninth Day of July, 2014

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office