Document Type


Date of Degree

Summer 2011

Degree Name

PhD (Doctor of Philosophy)

Degree In


First Advisor

MacGillivray, Leonard R.

First Committee Member

Margulis, Claudio J.

Second Committee Member

Pigge, Chris

Third Committee Member

Quinn, Daniel M.

Fourth Committee Member

Rice, Kevin G.


This thesis describes applications in co-crystal reactivity, structure determination, and mechanochemical preparation. We also investigate the solution-phase reactivities of products derived from a template-directed synthesis. Specifically, we described the acid treatment of an achiral molecular ladder of C2h symmetry composed of five edge-sharing cyclobutane rings, or a [5]-ladderane, with acid results in cis- to trans- isomerization and/or oxidation of end pyridyl groups. Solution NMR spectroscopy and quantum chemical calculations support the isomerization to generate two diastereomers; namely, an achiral and a unique chiral ladderane. The NMR data, however, could not lead to unambiguous configurational assignments of the two isomers. Single-crystal X-ray diffraction was employed to determine each configuration. One isomer readily crystallized as a pure form and X-ray diffraction revealed the molecule as being achiral based on Ci symmetry. The second isomer resisted crystallization under a variety of conditions. Consequently, a strategy based on a co-crystallization was developed to generate single crystals of the second isomer. Co-crystallization of the isomer with a carboxylic acid readily afforded single crystals that confirmed a chiral ladderane based on C2 symmetry. We also demonstrate how the stereochemistry can be retained upon treatment with acid. It will be shown how a monocyclobutane can be used as a model system when investigating the reactivity of the [5]-ladderane.

While investigating the reactivity of a diene diacid we determined that a bicyclobutyl that bears six carboxylic acid groups results from a trimerization of the solid in pure form in the solid state. Powder X-ray diffraction and a co-crystallization are used to solve the structure of the diene and elucidate the stereochemistry of the bicyclobutyl, respectively. Having established the reactivity of the diene diacid we used hydrogen-bond-acceptor (HBA) templates to assemble the diacid in the solid state in a photoactive solid for an intermolecular [2 + 2] photocycloaddition as well as a photostable solid. To enhance strategies to generate stereocontrolled products derived from reactive co-crystals mechanochemical methods were applied to eliminate or reduce the solvent used to prepare the co-crystal solids. In particular, we show how supermolecules with olefins organized by hydrogen-bond donor and acceptor templates that react in the solid state rapidly form co-crystals via solvent-free and liquid-assisted grinding.


co-crystal, isomerization, ladderanes, mechanochemistry, oxidation, supramolecular


xix, 188 pages


Includes bibliographical references (pages 156-168).


Copyright 2011 Manza Battle Joshua Atkinson

Included in

Chemistry Commons