Document Type


Date of Degree

Summer 2013

Degree Name

PhD (Doctor of Philosophy)

Degree In


First Advisor

Messerle, Louis

First Committee Member

Quinn, Daniel M

Second Committee Member

Gloer, James B

Third Committee Member

Gillan, Edward G

Fourth Committee Member

Teesch, Lynn M


The syntheses of a new class of polycyclic TriAmino DiCarbenes (TADCs), based on 3,9-diazajulolidine, and their precursors and adducts are described.

Starting with 2,6-dimethyl-nitrobenzene, 2,6-bis ((alkylamino)methyl)anilines (alkyl = isopropyl, mesityl, and tert-butyl) were synthesized in 40% yield over five steps. These triamines were then di-cyclized stepwise to diformamidinium dications or formamidinium/2-methoxyformaminals using oxonium salts and trialkyl orthoformates. A diformamidinium dication was characterized by single-crystal X-ray diffractometry. Treatment with various bases, particularly lithium hexamethyldisilylazide, led to the novel TADCs and monocarbenes, two of which were isolated and characterized by 1H and 13C NMR spectroscopies. In both cases, treatment with elemental sulfur trapped the TADCs as dithiobiurets. No TADC-transition metal complexes were successfully isolated from reactions of the diformamidinium dications or LiHMDS TADC complex with a number of transition metal complexes.

With the exception of these two cases, all other TADCs were not isolated because they rapidly reacted to form dimers, trimers, and tetramers. One of these dimers was isolated and its structure determined using 1D and 2D NMR spectroscopies, along with high-resolution electrospray ionization mass spectrometry. This revealed that the TADC had dimerized to form an ene-triamine, likely via 1,3-shift of a benzylic proton.

Novel N-heterocyclic Carbene (NHC) complexes of molybdenum were also synthesized and characterized. Reaction of Cp2Mo2(CO)4 (Cp = C5H5) with dimesityl-imidazol-2-ylidenes (IMes) or dimesityl-imidazolidin-2-ylidenes (SIMes) yielded the molybdoradicals CpMo(CO)2(NHC) (NHC = IMes or SIMes). The carbonyl infrared stretching frequencies and the relative metal-to-NHC π-backbonding for IMes and SIMes complexes are compared. Reaction of the less bulky dimethyl-imidazol-2-ylidene (IMe) with Cp2Mo2(CO)4 yielded the Mo-Mo triple bond complex Cp2Mo2(CO)3(IMe) by CO substitution. This is the first example of an NHC-ligated metal-metal multiply bonded complex. Single crystal X-ray diffractometry of these new organomolybdenum and organodimolybdenum complexes is discussed.


Metal-Metal multiple bonds, Molybdenum, N-Heterocyclic carbene


xiii, 202 pages


Includes bibliographical references (pages 102-107).


This thesis has been optimized for improved web viewing. If you require the original version, contact the University Archives at the University of Iowa:


Copyright © 2013 Ross D. Bemowski

Included in

Chemistry Commons