Document Type


Date of Degree

Summer 2014

Degree Name

PhD (Doctor of Philosophy)

Degree In


First Advisor

Smolikove, Sarit

First Committee Member

Wallrath, Lori

Second Committee Member

Tootle, Tina

Third Committee Member

Malone, Robert

Fourth Committee Member

Neiman, Maurine

Fifth Committee Member

Sparks, Amy


Defects in meiotic prophase I events, resulting in aneuploidy, are a leading cause of birth defects in humans; however, these are difficult to study in mammalian systems due to their occurrence very early in development. The nematode, Caenorhabditis elegans, is an excellent model for prophase I studies as its gonad is temporally and spatially organized around these meiotic events. Homolog pairing, synapsis, meiotic recombination and crossover formation are essential to the proper segregation of chromosomes into the respective gametes, either the egg or sperm. Disturbances in these events leads to missegregation of chromosomes in the gametes in the meiotic divisions. Synapsis is especially critical in meiosis as it precedes and is required for meiotic recombination in C. elegans. The formation of the synaptonemal complex (SC) is fundamental to chromosomal synapsis, yet the molecular mechanisms of synaptonemal complex morphogenesis are largely unknown. The investigations described in this thesis were undertaken to better understand the molecular contributions to synaptonemal complex morphogenesis. Chapter One reviews knowledge of morphogenesis and its relationship to the events of meiotic prophase I. Recent studies in our laboratory have implicated AKIRIN, a nuclear protein with multiple biological functions, as having a role in synaptonemal complex disassembly, specifically preventing the aggregation of synaptonemal proteins (Clemons et al., 2013). As a result of our efforts to discern the mechanism by which AKIRIN regulates disassembly, we found that the highly conserved CSN/COP9 signalosome has a role in SC assembly, leading to defects in prophase I events and in MAPK signaling , leading to the arrest of nuclei in the later stages of meiosis. While the CSN/COP9 signalosome has been implicated in general fertility in C. elegans (Pintard et al., 2003), no role had been defined in earlier meiotic stages until this study. Chapter Two describes an RNAi enhancer/suppressor screen undertaken in the akir-1 mutant background. Several RNAi clones were selected for future study based on a reduction in brood size; one of which, csn-5/, is the focus of the analysis presented in Chapter 3.

Chapter Three describes the phenotypic characterization of two CSN/COP9 signalosome subunits, csn-2 and csn-5. Alleles of both genes display synaptonemal complex protein aggregation and defects in mitotic cell proliferation, homologous chromosome pairing, meiotic recombination and crossover formation, leading to an increase in apoptosis. Oocyte maturation is also disrupted by a lack of MAPK signaling, resulting in a lack of viable oocytes, which renders the csnmutant homozygotes sterile. These findings support a model suggesting the CSN/COP9 signalosome has an essential role in regulating meiotic prophase I events and oocyte maturation.

Chapter 4 describes the methodology used in this study.

Chapter 5 provides a summary of the thesis findings and examines the future directions to extend this work.


C elegans, CSN/COP9 signalosome, Gametogenesis, Meiosis, Reproductive Biology


xiii, 220 pages


Includes bibliographical references (pages 196-220).


This thesis has been optimized for improved web viewing. If you require the original version, contact the University Archives at the University of Iowa:


Copyright © 2014 Heather Marie Brockway

Included in

Genetics Commons