Document Type


Date of Degree

Spring 2013

Degree Name

PhD (Doctor of Philosophy)

Degree In

Civil and Environmental Engineering

First Advisor

Weber, Larry

Second Advisor

Buchholz, James

First Committee Member

Constantinescu, George

Second Committee Member

Papanicolaou, Thanos

Third Committee Member

Lin, Ching-Long


The effects of shape and relative submergence (the ratio of flow depth to obstacle height, d/H) were investigated on the wakes around four different low-aspect-ratio wall-mounted obstacles: semi-ellipsoids with the major axes of the base ellipses aligned in the streamwise and transverse directions, two cylinders with aspect ratios matching the ellipsoids. Wake structure of a fully submerged, spherical obstacle was also investigated in the same flow conditions to provide insight into the flow obstacle interaction with ramification to sediment transport. A low-aspect-ratio semi-ellipsoid was chosen as broad representative of a freshwater mussel projecting from a river bed, and a sphere was employed as representative of a boulder. Two cylinders were used due to their similarity to geometries investigated in other studies. Digital Particle Image Velocimetry and thermal anemometry were used to interrogate the flow. For ellipsoids and cylinders, streamwise features observed in the mean wake included counter-rotating distributions of vorticity inducing downwash (tip structures), upwash (base structures), and horseshoe vortices. In particular, the relatively subtle change in geometry produced by the rotation of the ellipsoid from the streamwise to the transverse orientation resulted in a striking modification of the mean streamwise vorticity distribution in the wake. Tip structures were dominant in the former case while base structures were dominant in the latter. A vortex skeleton model of the wake is proposed in which arch vortex structures, shed from the obstacle, are deformed by the competing mechanisms of Biot-Savart self-induction and the external shear flow. An inverse relationship was observed between the relative submergence and the strength of the base structures for the ellipsoids, with a dominant base structure observed for d/H = 1 in both cases. The wake of the sphere is more complex than ellipsoidal geometries. Streamwise features observed in the mean wake including tip, horseshoe structures, and weak upwash. The shedding characteristics and dynamics of the wake were examined. Weak symmetric shedding was observed in the wakes of streamwise and transverse ellipsoids at d/H = 3.9 while cross-spectral measurements confirmed downstream and upstream tilting of arch structures shed by the transverse and streamwise ellipsoids, respectively. Much weaker peaks in the power spectrum were observed for low- and high-aspect-ratio cylinders. While the dominant Strouhal number remained constant as the relative submergence was reduced to d/H = 2.5 for the ellipsoids, it increased abruptly at d/H = 1 and transitioned to an antisymmetric mode. For sphere geometry at d/H = 3.9, a weak dominant frequency was observed close to obstacle junction and the cross-correlation function for symmetric measurements in the wake indicates symmetric shedding. These results demonstrate a means by which to achieve significant modifications to flow structure and transport mechanisms in the flow.


bluff body, flow structure, low aspect ratio, shedding behavior, streamwise vorticity, wake


xvii,182 pages


Includes bibliographical references (pages 175-182).


Copyright 2013 Seyed Mohammad Hajimirzaie