Document Type


Date of Degree

Summer 2009

Degree Name

PhD (Doctor of Philosophy)

Degree In


First Advisor

Bhattacharya, Debashish

First Committee Member

Comeron, Josep M

Second Committee Member

Braun, Terry A

Third Committee Member

Dupuy, Adam J

Fourth Committee Member

Xing, Yi

Fifth Committee Member

Brochu, Christopher A


My dissertation focuses on genome and functional evolution of photosynthetic eukaryotes and the design and implementation of computational methods and tools to enable genome-wide studies to investigate these taxa. The work described here is grouped into two major topics, 1) endosymbiosis and genome evolution, and 2) harmful algal blooms. I discuss my work related to endosymbiosis and genome evolution in chapters 2-4. Chapters 5-6 cover the work related to harmful algal blooms. In chapter 1, I introduce the state-of-art of what is known about the history of plastids and evolution of photosynthesis in eukaryotes, an overview of marine harmful algae, and the specific aims of my dissertation.

In chapter 2, I describe the design and implementation of the phylogenetic sorting tool, PhyloSort and the assembly of a high-throughput phylogenomic pipeline. Together, PhyloSort and the pipeline has become a key tool for multiple subsequent studies. chapter 2 also presents a case study using these tools in which we provide an estimate of the number of cyanobacterial genes that have been transferred to the nuclear genome of Plantae through primary endosymbiotic gene transfer; I use the model unicellular green alga Chlamydomonas reinhardtii for this purpose.

In chapter 3, I discuss another case of prokaryotic contribution to the nucleus of photosynthetic eukaryotes. Here, the intriguing relationship of Chlamydiae-like bacteria and plants and algae is examined in a large-scale analysis, in which we scanned all available genomes of the primary photosynthetic organisms for genes of potential Chlamydiae origin. Surprisingly, we identified more than fifty Chlamydiae-derived genes in plants and algae. Here, we propose a model for the role that a Chlamydiae-like symbiont might have played in the establishment of the primary plastid in the common ancestor of Plantae.

In chapter 4, I describe a study in which we explored the complete protein models of two diatom organisms as representative for photosynthetic chromalveolates and looked for genes that might have been acquired through endosymbiotic (secondary) or horizontal transfers from red or green algae. In contradiction of the “chromalveolate hypothesis” which states that photosynthesis in chromalveolates originated via the engulfment of a red alga symbiont, our study shows an unexpected green algal contribution that is fourfold greater than that of the canonical red algal symbiont. Our data suggest that the chromalveolate history includes a previously unrecognized green algal endosymbiont that was captured and lost prior to the more recent establishment of the red alga plastid, which is widespread in extant photosynthetic chromalveolates.

In chapter 5, I discuss the identification of the phylogenetic origin of the genes involved in the biosynthetic pathway of saxitoxin in cyanobacteria. Here, we used a pyrosequencing approach to sequence de novo genomes of two strains of Anabaena circinalis, one of which is saxitoxin-producing and the other is non-toxic. Using comparative and phylogenetic analyses, I show that, within the saxitoxin gene cluster, genes that encode the key and unique enzymes in the pathway are of foreign origin that originated via horizontal transfer from non-cyanobacterial sources. These genes introduced the ability to produce saxitoxin in the ancestor of the toxic cyanobacterial clade.

In chapter 6, I describe a gene expression study in which we used massively parallel signature sequencing (MPSS) to investigate RNA abundance patterns in the toxic dinoflagellate Alexandrium tamarense. This work provides the first clear evidence for the utilization by dinoflagellates of transcriptional to regulation. Moreover, using MPSS, we provide an estimate of the number of the distinct genes in Alexandrium tamarense; i.e., remarkably 40,000 loci. Taken together, our data indicate that dinoflagellates possess a great metabolic flexibility that allows them to efficiently toggle between photoautotrophy and heterotrophy based on the environmental conditions.


Chromalveolates, Diatoms, Dinoflagellates, Endosymbiosis, Photosynthesis, Phylogenomics


xiv, 142 pages


Includes bibliographical references (pages 126-142).


Copyright 2009 Ahmed Moustafa

Included in

Genetics Commons