Document Type


Date of Degree

Summer 2012

Degree Name

MS (Master of Science)

Degree In

Electrical and Computer Engineering

First Advisor

Mudumbai, Raghuraman

First Committee Member

Dasgupta, Soura

Second Committee Member

Kusiak, Andrew


Access to reliable electric power is considered by the developed world to be a minimum requirement for a reasonable standard of living. In addition to meeting a fluctuating demand, the modern electricity industry must now integrate intermittent generation sources like wind into the grid. Reserve margin allocation (RMA) for an acceptable loss of load expectation (LOLE) allows traditional generators to maintain grid reliability in the presence of small penetrations of wind energy. However, traditional RMA over-allocates the reserve capacity in the presence of short-term intermittency mitigation techniques like energy storage and demand response. For economic operation of the modern, grid better characterization techniques are needed for reserve margin reduction behavior in the presence of wind energy. This thesis addresses this challenge with a quantitative RMA analysis using real-world and simulated wind data for three different grid scenarios, with and without intermittency mitigation. The research is novel in its first-principles approach and its investigation into the practical validity of the analogy between demand response and energy response.


demand response, energy storage, loss of load expectation, reserve margin allocation, wind power modeling, wind statistics


x, 78 pages


Includes bibliographical references (pages 76-78).


Copyright 2012 Josiah Caleb McClurg