Document Type


Date of Degree

Summer 2012

Degree Name

PhD (Doctor of Philosophy)

Degree In


First Advisor

Wohlgenannt, Markus

First Committee Member

Bowden, Ned

Second Committee Member

Kleiber, Paul

Third Committee Member

Prineas, John

Fourth Committee Member

Pryor, Craig


The focus of this thesis is a recently discovered organic magnetoresistance (OMAR) whose underlying mechanism remains much debated. As an introduction, the field of organic electronic is briefly discussed focusing mainly on organic light emitting diodes, the devices in which OMAR was first discovered. Important findings related to OMAR from prior work are highlighted and several proposed models for the underlying mechanism are discussed.

The frequency dependence of OMAR along with capacitance spectroscopy are studied to help distinguish between proposed models. The limit frequency for OMAR devices is obtained. Magnetic field dependent time-of-flight spectroscopy is used to determine whether applied magnetic fields modify the photocarrier generation efficiency in OMAR devices, their mobility, or both. These results are used to compare the bipolaron model and the triplet-polaron scattering mechanism.

As it is generally agreed that OMAR is a spintronic effect, the role of spin-orbit coupling in polymers was studied to help understand its importance in the spin-transport of organic semiconductors. The possibility of spin-orbit induced spin precession is examined and a phonon assisted spin-flip process is proposed.

We show OMAR may be enhanced by exposure to x-ray radiation. This is shown to be related to the production of traps. The effect on other device characteristics including turn-voltage and quantum efficiency is also examined. The role of trap production in enhancing OMAR is explained using the biopolaron model.


ix, 112 pages


Includes bibliographical references (pages 105-112).


Copyright 2012 James Edward Rybicki

Included in

Physics Commons