Document Type


Date of Degree

Spring 2014

Degree Name

PhD (Doctor of Philosophy)

Degree In


First Advisor

Hien M. Nguyen


Chiral quaternary centers possessing a bond to nitrogen are an important class of amine compounds, however, methods for their enantioselective preparation remain sparse. The focus of my graduate research described herein has been the development of a novel rhodium-catalyzed regio- and enantioselective allylic aryl amination of tertiary trichloroacetimidates for the synthesis of amine-bearing quaternary centers (also termed α,α-disubstituted amines). Prior to our work, allylic carbonates and acetates had been successfully utilized in transition-metal catalyzed substitution reactions with anilines for the asymmetric synthesis of tertiary centers. In contrast, these electrophiles have not proven useful in dynamic kinetic asymmetric transformations (DYKAT) that yield enantioenriched amine products, and no reports describing the asymmetric preparation of α,α-disubstituted allylic aryl amines via allylic substitution are noted.

Many of the ideas for development of our rhodium-catalyzed amination method were based upon the findings of Overman where linear allylic trichloroacetimidates are utilized in [3,3]-sigmatropic rearrangements and substitution reactions by oxygen nucleophiles under palladium (II) catalysis. Our method diverges from this previous work by application of branched allylic trichloroacetimidates where the olefin component is mono-substituted, and the use of a transition-metal complex capable of facile oxidative addition to an intermediate organometallic complex. We hypothesized that bidentate chelation of these substrates at the imidate nitrogen and the relatively unimpeded olefin by a rhodium (I) complex would lead to rapid ionization to an activated complex and competent electrophile for substitution by neutral aniline nucleophiles. This premise was supported by many control studies and resulted in the development of a highly regioselective amination of branched allylic trichloroacetimidates for the operationally simple synthesis of α-substituted and α,α-disubstituted allylic aryl amines. Work followed utilizing chiral diene ligands that rendered the reaction enantioselective for preparation of enantioenriched tertiary and quaternary amine-containing centers. A highlight of these studies is the first example of DYKAT using a tertiary electrophile and an aryl amine nucleophile. The reaction is of broad substrate scope, is tolerant of varied functionality and substitution patterns on the nucleophilic partner, and solves regioselectivity issues often encountered with some substrate and aniline classes. I end by showing the synthetic utility of our rhodium-catalyzed reaction by applying this method to the synthesis of enantioenriched amino acids and construction of 7-membered nitrogen-containing heterocycles by a 2-step DYKAT amination and olefin hydroacylation sequence.


Allylic Substitution, Amination, Anilines, Asymmetric Synthesis, Nitrogen Heterocycles, Rhodium-catalysis


xxxi, 798 pages


Includes bibliographical references (pages 789-798).


This thesis has been optimized for improved web viewing. If you require the original version, contact the University Archives at the University of Iowa:


Copyright 2014 Jeffrey Scott Arnold

Included in

Chemistry Commons