Document Type


Date of Degree

Spring 2014

Degree Name

MS (Master of Science)

Degree In

Biomedical Engineering

First Advisor

Anderson, Donald D

First Committee Member

Goetz, Jessica E

Second Committee Member

Hettrich, Carolyn M

Third Committee Member

Grosland, Nicole M

Fourth Committee Member

Brown, Thomas D


Though the literature contains many computational models studying RSA, very few utilize finite element analysis to study stresses in the implant and the surrounding bone. The introductions section shows that many parameters (center of rotation lateralization, center of rotation superior or inferior position, tilt of the cut glenoid surface, glenosphere shape design, glenosphere size, humeral design, notch severity, etc.) have been studied independently utilizing many different methods (finite element modeling and non-FE computational modeling). However, the introduction section also detailed the current limitations in modern modeling as well as many examples of the heights to which finite element modeling can be taken to study RSA. Using these limitations as guidelines, the goal of this project is to create a robust FE model of RSA to study the effect of lateralization on scapular notching and shoulder function.

In the following chapters, the development of the model is detailed. In addition, results produced by the incrementally advanced models are shown. In Chapter 2, the initial finite element model encompassing scapular and RSA hardware geometry is described. Chapter 3 contains description of incremental changes to the model including humeral geometry and muscle element incorporation. An anatomically realistic configuration of the finite element model with increased functionality is detailed in Chapter 4. Finally, Chapter 5 discusses the assets and limitations of the current model as a platform for future research. In addition, a proposed validation protocol is presented.


Finite Element Analysis, Orthopaedics, Reverse Shoulder Arthroplasty


x, 95 pages


Includes bibliographical references (pages 89-95).


Copyright 2014 Vijay Niels Permeswaran