Document Type


Date of Degree

Summer 2015

Degree Name

PhD (Doctor of Philosophy)

Degree In


First Advisor

Mohapatra, Durga Prasad

First Committee Member

Benson, Christopher

Second Committee Member

Lee, Amy

Third Committee Member

Strack, Stefan

Fourth Committee Member

Usachev, Yuriy


The endogenous neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) exerts various neuromodulatory functions in mammalian brain. Enhancement of synaptic activity, mediation of chronic inflammatory and neuropathic pain, and neuroprotection in cerebral ischemia reperfusion injury constitute some of the exemplary functions of PACAP. However, it remains unclear whether PACAP signaling can directly influence the function of critical voltage-gated ion channels, which could profoundly alter the excitability of neurons. Voltage-gated K+ (Kv) channels are critical regulators of neuronal excitability. The major Kv channel in the dendrites of mammalian neurons, Kv4.2, contributes most of the fast-activating and rapidly-inactivating K+ currents (IA), and is a key regulator of dendritic excitability, as well as modulation of synaptic inputs. In addition, the major somatic Kv channel Kv2.1 that contributes the bulk of slow-activating and non-inactivating K+ currents (IK), acts as an integrator of neuronal inputs and limits high frequency firing in neurons. As such, it provides homeostatic control of excitability under hyperexcitable and ischemic conditions. Both these Kv channels are known to undergo extensive post-translational modifications mainly by phosphorylation that alters their localization and biophysical properties. PACAP can activate its specific receptor PAC1 that could result in downstream activation of various kinases including protein kinase A (PKA), protein kinase C (PKC), extracellular signal-regulated kinase (ERK1/2). Therefore, I hypothesize that PACAP activation of PAC1 receptor can cause phosphorylation-dependent modulation of somatodendritic Kv4.2 and Kv2.1 channels, resulting in altered neuronal excitability.

First, I identified the various PAC1 receptor isoforms expressed in rat and mouse brain and elucidated that their activation by PACAP caused downstream PKA- and PKC-dependent signaling pathways, ultimately converging on ERK1/2 activation. Further, PACAP caused reduction in IA that was mediated by phosphorylation-dependent internalization of the channel protein from the plasma membrane. These effects were mediated by direct phosphorylation of the channel by ERK1/2 at the cytoplasmic C-terminus of the channel. Although PACAP did not significantly alter the voltage-dependence of Kv4.2 channel activation/inactivation, I observed distinct ERK1/2- and PKA-dependent changes in the extent and kinetics of channel inactivation.

Next, I observed that PACAP induced dephosphorylation of the Kv2.1 channel in CHN that was mediated by protein phosphatase 2A (PP2A), and was dependent on PKC activation but was independent of the effects of PACAP on Kv4.2 currents. Rapid but reversible dephosphorylation of Kv2.1 was also observed following induction of ischemia in neurons by oxygen-glucose deprivation (OGD). PACAP prolonged the dephosphorylation of Kv2.1 following in vitro ischemia-reperfusion and also reduced neuronal death. My results therefore suggest a novel PACAP/PAC1-PKC-PP2A-Kv2.1 signaling axis that provides neuroprotection during ischemia reperfusion injury.

In summary, my results suggest that PACAP can induce direct phosphorylation-dependent modulation of the Kv4.2 and Kv2.1 channel localization and function in mammalian brain neurons. The effect of PACAP on these two critical somatodendritic ion channels occurs via distinct signaling - convergent PKA-PKC-ERK-mediated phosphorylation of Kv4.2 channel, and PKC-PP2A-mediated dephosphorylation of the Kv2.1 channel. Such distinct modulations of these ion channels are presumably responsible for the multifarious roles of PACAP in the central nervous system.


G-protein coupled receptor, Hyperexcitability, Ion channels, Kinase, Neuroprotection, Phosphorylation


xix, 163 pages


Includes bibliographical references (pages 137-163).


Copyright © 2015 Raeesa Prashant Gupte

Included in

Pharmacology Commons