Document Type


Date of Degree

Fall 2017

Degree Name

PhD (Doctor of Philosophy)

Degree In


First Advisor

Cheatum, Christopher M.

First Committee Member

Jacob, Mathews

Second Committee Member

Arnold, Mark

Third Committee Member

Tivanski, Alexei

Fourth Committee Member

Larsen, Sarah


Two-dimensional infrared spectroscopy (2D IR) is a powerful tool to investigate molecular structures and dynamics on femtosecond to picosecond time scales and is applied to diverse systems. Current technologies allow for the acquisition of a single 2D IR spectrum in a few hundreds of milliseconds using a pulse shaper and an array detector, but demanding applications require spectra for many waiting times and involve considerable signal averaging, resulting in data acquisition times that can be many days of laboratory measurement time.

Compressive sampling is an emerging signal processing technique to reduce data acquisition time in diverse fields by requiring only a fraction of the traditional number of measurements while yielding much of the same information as the fully-sampled data.

Here we combine cutting-edge 2D IR methodology with a novel compressive sampling reconstruction algorithm to reduce the data acquisition time of 2D IR spectroscopy without distorting lineshapes. We introduce the Generic Iteratively Reweighted Annihilating Filter (GIRAF) algorithm re-engineered to the specific problem of 2D IR reconstruction and show its effectiveness applied to various systems, including those with low signal, with multiple peaks, and with differing amounts of frequency shifting.

Additionally, we lay the groundwork for 2D IR microscopic imaging using compressive sampling in the spatial image domain. The first instance of a single-pixel camera in the infrared is introduced.


2D IR Spectroscopy, Compressive Sampling, Image Processing, Microscopy


x, 105 pages


Includes bibliographical references (pages 103-105).


This thesis has been optimized for improved web viewing. If you require the original version, contact the University Archives at the University of Iowa:


Copyright © 2017 Jonathan James Humston

Included in

Chemistry Commons