DOI

10.17077/etd.pfccpbt2

Document Type

Dissertation

Date of Degree

Spring 2016

Degree Name

PhD (Doctor of Philosophy)

Degree In

Microbiology

First Advisor

Varga, Steven M.

First Committee Member

Legge, Kevin L.

Second Committee Member

Perlman, Stanley

Third Committee Member

Maury, Wendy J.

Fourth Committee Member

Waldschmidt, Thomas J.

Abstract

A balanced immune response is required to mediate clearance of a virus infection without immune-mediated disease. CD4 and CD8 T cells are capable of both exerting antiviral effector functions and regulating the immune response. The regulatory T cell (Treg) subset of CD4 T cells helps to modulate immune activation and inflammation. During respiratory syncytial virus (RSV) infection in mice, conventional CD4 T-cell-mediated cytokine production has been shown to contribute to immune-mediated pathology. I demonstrate that Tregs are critical to control immunopathology during RSV infection. This was demonstrated through diphtheria toxin (DT)-mediated Treg elimination in a mouse strain expressing the DT receptor (DTR) under the control of the Foxp3 promoter. However, these mice were unable to maintain extended Treg depletion limiting the effectiveness of this model. In addition, DT-treated wild-type (WT) mice were found to be a necessary control for adverse DT-induced disease. In humans, I have shown that activated Tregs are reduced in the peripheral blood of RSV-infected infants compared to controls. RSV-infected infants also exhibited an increased proinflammatory cytokine response in nasal aspirates. However, the alarmin cytokine IL-33, which has been shown to mediate Treg homeostasis, was the only cytokine that exhibited reduced protein levels in RSV-infected infants compared to controls. Thus, severe RSV infection in infants may be due to lack of proper Treg-mediated immune regulation.

Similar to RSV, regulation of the T cell response during chronic viral infection with lymphocytic choriomeningitis virus (LCMV) is vital to prevent immune-mediated pathology. During LCMV and human chronic viral infections, CD4 and CD8 T cells exhibit T cell exhaustion where they lose the ability to exert effector functions. However, a functional CD4 and CD8 T cell response is required for viral clearance. During human chronic viral infection, an association between increased CD4 and CD8 T cell function and enhanced viral control has been identified that can be influenced by genetic factors. I aimed to identify the contribution of the host genetic factors that contribute to enhanced CD8 T cell function and viral control using the LCMV model. I found that increasing the major histocompatibility complex (MHC) diversity resulted in enhanced viral control in both a C57BL and BALB genetic background. Thus, induction of a broader T cell response was associated with enhanced viral control. However, mice expressing a heterozygous MHC on the C57BL background also exhibited mortality following chronic viral infection. Both CD4 and CD8 T cells were shown to contribute to this mortality and exhibited reduced T cell exhaustion during LCMV infection in these mice. Heterozygous MHC expression on the C57BL mouse background was also associated with an increased T helper (Th)-1 skewed CD4 T cell response compared to mice on the BALB background. Furthermore, CD4 T-cell-mediated IFN-γ production contributed to both CD8 T cell effector activity and mortality during chronic LCMV infection. Thus, both T cell epitope diversity and host genetics contribute to LCMV-induced mortality. Collectively, my data highlight both the need for effective immune-meditated viral control and regulation of T-cell-mediated pathology during both acute and chronic viral infections.

Keywords

Immune regulation, Infection, T cell exhaustion, T cells, Tregs

Pages

xv, 149 pages

Bibliography

Includes bibliographical references (pages 121-149).

Comments

This thesis has been optimized for improved web viewing. If you require the original version, contact the University Archives at the University of Iowa: http://www.lib.uiowa.edu/sc/contact/

Copyright

Copyright © 2016 Allison Fae Christiaansen

Included in

Microbiology Commons

Share

COinS