DOI
10.17077/etd.erohf2xj
Document Type
Dissertation
Date of Degree
Spring 2010
Degree Name
PhD (Doctor of Philosophy)
Degree In
Mathematics
First Advisor
Wang, Lihe
Second Advisor
Jorgensen, Palle
First Committee Member
Wang, Lihe
Second Committee Member
Jorgensen, Palle
Third Committee Member
Frohman, Charles
Fourth Committee Member
Li, Yi
Fifth Committee Member
Polyzou, Wayne
Abstract
First, we consider the group integrals where integrands are the monomials of matrix elements of irreducible representations of classical groups. These group integrals are invariants under the group action. Based on analysis on Young tableaux, we investigate some related duality theorems and compute the asymptotics of the
group integrals for fixed signatures, as the rank of the classical groups go to infinity. We also obtain the Viraosoro constraints for some partition functions, which are power series of the group integrals. Second, we show that the proof of Witten's conjecture can be simplified by using the fermion-boson correspondence, i.e., the KdV hierarchy and Virasoro constraints of the partition function in Witten's conjecture can be achieved naturally. Third, we consider the partition function involving the invariants that are intersection numbers of the moduli spaces of holomorphic maps in nonlinear sigma model. We compute the commutator of the representation of
Virasoro algebra and give a fat graph(ribbon graph) interpretation for each term in the diferential operators.
Keywords
fat graph, group integral, irreducible representation, random matrix, Virasoro conjecture, Witten conjecture
Pages
v, 61 pages
Bibliography
Includes bibliographical references (pages 58-61).
Copyright
Copyright 2010 Da Xu
Recommended Citation
Xu, Da. "Classical groups, integrals and Virasoro constraints." PhD (Doctor of Philosophy) thesis, University of Iowa, 2010.
https://doi.org/10.17077/etd.erohf2xj