Document Type


Date of Degree

Summer 2019

Degree Name

PhD (Doctor of Philosophy)

Degree In


First Advisor

Jorgensen, Palle E. T.

First Committee Member

Muhly, Paul

Second Committee Member

Camillo, Victor

Third Committee Member

Baker, Richard

Fourth Committee Member

Chifan, Ionut


A reproducing kernel Hilbert space (RKHS) is a Hilbert space $\mathscr{H}$ of functions with the property that the values $f(x)$ for $f \in \mathscr{H}$ are reproduced from the inner product in $\mathscr{H}$. Recent applications are found in stochastic processes (Ito Calculus), harmonic analysis, complex analysis, learning theory, and machine learning algorithms. This research began with the study of RKHSs to areas such as learning theory, sampling theory, and harmonic analysis. From the Moore-Aronszajn theorem, we have an explicit correspondence between reproducing kernel Hilbert spaces (RKHS) and reproducing kernel functions—also called positive definite kernels or positive definite functions. The focus here is on the duality between positive definite functions and their boundary spaces; these boundary spaces often lead to the study of Gaussian processes or Brownian motion. It is known that every reproducing kernel Hilbert space has an associated generalized boundary probability space. The Arveson (reproducing) kernel is $K(z,w) = \frac{1}{1-_{\C^d}}, z,w \in \B_d$, and Arveson showed, \cite{Arveson}, that the Arveson kernel does not follow the boundary analysis we were finding in other RKHS. Thus, we were led to define a new reproducing kernel on the unit ball in complex $n$-space, and naturally this lead to the study of a new reproducing kernel Hilbert space. This reproducing kernel Hilbert space stems from boundary analysis of the Arveson kernel. The construction of the new RKHS resolves the problem we faced while researching “natural” boundary spaces (for the Drury-Arveson RKHS) that yield boundary factorizations:

\[K(z,w) = \int_{\mathcal{B}} K^{\mathcal{B}}_z(b)\overline{K^{\mathcal{B}}_w(b)}d\mu(b), \;\;\; z,w \in \B_d \text{ and } b \in \mathcal{B} \tag*{\it{(Factorization of} $K$).}\]

Results from classical harmonic analysis on the disk (the Hardy space) are generalized and extended to the new RKHS. Particularly, our main theorem proves that, relaxing the criteria to the contractive property, we can do the generalization that Arveson's paper showed (criteria being an isometry) is not possible.


Drury Arveson, Fock Space, Hilbert Function Space, Positive Definite Function, Reproducing Kernel, Reproducing Kernel Hilbert Space


x, 66 pages


Includes bibliographical references (pages 65-66).


Copyright © 2019 Aqeeb A. Sabree

Included in

Mathematics Commons