Document Type


Date of Degree

Summer 2010

Degree Name

MS (Master of Science)

Degree In

Industrial Engineering

First Advisor

Lee, John D.

Second Advisor

Thomas, Geb

First Committee Member

Schnell, Thomas

Second Committee Member

Stoner, James W.


Reductions in speed and, more critically, speed variability between vehicles are thought to reduce crash risk in work zones. Numerous factors, such as lane width and lateral clearance and activity level, have been shown to influence speed but very little research has considered how multiple factors might interact to affect driver performance in work zones. This study evaluated the effect of work zone barrier type, presence of a lateral buffer, and work zone activity level on measures of speed and lane position. Twelve middle aged and twelve senior subjects drove in a National Advanced Driving Simulator (NADS) MiniSim. The subjects drove faster and with less variability in work zones with concrete barriers. Measures of speed and lane position were more heterogeneous across groups with 42-inch channelizers compared to drums. Speed was reduced and more variable in work areas with a high level of activity than in areas with a low level of activity. On the whole, the presence of a lateral buffer reduced speed variability in the high activity areas but this response was not uniform across all drivers. This research demonstrates that driving simulators can be used to evaluate how work zone factors may interact with one another to affect driver performance for different driver groups. While the results from this study corresponded to observations from actual work zones, the driving simulator must be validated with on-road data before generalizations can be made.


driver behavior, driving simulator, work zone


viii, 62 pages


Includes bibliographical references (pages 51-54).


Copyright 2010 Michelle Lynn Reyes