Document Type


Date of Degree

Summer 2010

Degree Name

PhD (Doctor of Philosophy)

Degree In


First Advisor

Hell, Johannes W

First Committee Member

Lee, Amy

Second Committee Member

Strack, Stefan

Third Committee Member

Usachev, Yuriy

Fourth Committee Member

Wemmie, John A


Noradrenergic signaling has important functions in the central nervous system (CNS) with respect to emotion, learning and memory. Activation of β- adrenergic receptors (β ARs) stimulates protein kinase A via Gs-protein, adenylyl cyclase, and cAMP. Synaptic β←2 -adrenergic receptors, targets of the neurotransmitter norephinephrin, are associated with the GluA1 subunit of AMPA-type glutamate receptors, which mediate most excitatory synaptic transmission in mammalian CNS. PKA-mediated phosphorylation of GluA1 on Ser845 is important for GluA1 surface expression, activity induced postsynaptic accumulation, and synaptic plasticity. Postsynaptic localization of PKA is mediated by a major scaffolding protein `A kinase anchor protein 5 (AKAP5)'. AKAP5 associates with AMPA receptors via SAP97 and PSD95.

We have two strains of AKAP5 mutant mice: AKAP5 knockout and AKAP5 D36. AKAP5 KO mice have a complete loss of AKAP5 gene expression. D36 mice miss the last 36 residues (PKA binding site) of AKAP5 but without affecting other interactions. These mutant mice provide us with appropriate in vivo models for studying the functional roles of AKAP5.

We compared the functional and physical association of β2AR and AMPA receptors among wild type, AKAP5 KO, and AKAP5 D36 mice. Although AKAP5 was not necessary for the assembly of the β2AR / GluA1 complex, we found that AKAP5 anchored PKA activity was required for full β2AR stimulation-induced GluA1 Ser845 phosphorylation. Recording and analysis of field EPSPs (fEPSPs) of CA1 pyramidal neurons with brief bath perfusion of the β2AR agonist isoproterenol indicated a role of AKAP5 anchored PKA in the regulation of postsynaptic AMPAR responses by norephinephrin.

Moreover, we observed a delayed extinction of contextual fear memory in AKAP5 D36 mice, which suggests the involvement of AKAP5 anchored PKA in memory formation and modification.


AKAP5, AMPA receptors, beta2 adrenergic receptors, synaptic functions


xi, 109 pages


Includes bibliographical references (pages 99-109).


This thesis has been optimized for improved web viewing. If you require the original version, contact the University Archives at the University of Iowa:


Copyright © 2010 Mingxu Zhang

Included in

Pharmacology Commons