Document Type


Date of Degree

Fall 2010

Degree Name

PhD (Doctor of Philosophy)

Degree In

Civil and Environmental Engineering

First Advisor

Constantinescu, George

Second Advisor

Muste, Marian

First Committee Member

Ettema, Robert

Second Committee Member

Lin, Ching-Long

Third Committee Member

Odgaard, A. Jacob

Fourth Committee Member

Weber, Larry J.


The present study is an integral part of a broader study focused on the design and implementation of self-cleaning culverts, i.e., configurations that prevent the formation of sediment deposits after culvert construction or cleaning. Sediment deposition at culverts is influenced by many factors, including the size and characteristics of material of which the channel is composed, the hydraulic characteristics generated under different hydrologic events, the culvert geometry design, channel transition design, and the vegetation around the channel. The multitude of combinations produced by this set of variables makes the investigation of practical situations challenging.

In addition to the above considerations, the field observations, and the laboratory and numerical experiments have revealed additional complexities of the flow and sediment transport through culverts that further increase the dimensions of the investigation. The flow complexities investigated in this study entail: flow non-uniformity in the areas of transition to and from the culvert, flow unsteadiness due to the flood wave propagation, and the complex correlation between the flow and sediment hydrographs produced during storm events. To date, the literature contains no systematic studies on sediment transport through multi-box culverts. Similarly, there is limited knowledge about the non-uniform, unsteady sediment transport in channels of variable geometry. Furthermore, there are few readily useable numerical models that can reliably simulate flow and sediment transport in such complex situations.

Given the current state of knowledge, the main goal of the present study is to investigate the above flow complexities in order to provide the needed insights for optimizing the culvert design. The research was phased so that field observations were conducted first to understand the culvert behavior in Iowa landscape. Modeling through complementary hydraulic model and numerical experiments was subsequently carried out to gain the practical knowledge for the development of the self-cleaning culvert designs.


culvert, non-uniform flow, sediment transport, self-cleaning design, unsteady flow


xviii, 229 pages


Includes bibliographical references (pages 170-173).


Copyright 2010 Hao-Che Ho