Document Type


Date of Degree

Fall 2010

Degree Name

MS (Master of Science)

Degree In

Industrial Engineering

First Advisor

Kusiak, Andrew

First Committee Member

Chen, Yong

Second Committee Member

Zamba, Gideon


Heating, ventilating and air-conditioning (HVAC) system is complex non-linear system with multi-variables simultaneously contributing to the system process. It poses challenges for both system modeling and performance optimization. Traditional modeling methods based on statistical or mathematical functions limit the characteristics of system operation and management.

Data-driven models have shown powerful strength in non-linear system modeling and complex pattern recognition. Sufficient successful applications of data mining have proved its capability in extracting models accurately describing the relation of inner system. The heuristic techniques such as neural networks, support vector machine, and boosting tree have largely expanded to the modeling process of HVAC system.

Evolutionary computation has rapidly merged to the center stage of solving the multi-objective optimization problem. Inspired from the biology behavior, it has shown the tremendous power in finding the optimal solution of complex problem. Different applications of evolutionary computation can be found in business, marketing, medical and manufacturing domains. The focus of this thesis is to apply the evolutionary computation approach in optimizing the performance of HVAC system. The energy saving can be achieved by implementing the optimal control setpoints with IAQ maintained at an acceptable level. A trade-off between energy saving and indoor air quality maintenance is also investigated by assigning different weights to the corresponding objective function. The major contribution of this research is to provide the optimal settings for the existing system to improve its efficiency and different preference-based operation methods to optimally utilize the resources.


Data mining, Energy efficiency, Evolutionary computation, Intelligent systems, Multi-objective optimization


x, 92 pages


Includes bibliographical references (pages 89-92).


Copyright 2010 Fan Tang