Document Type


Date of Degree

Fall 2010

Degree Name

MS (Master of Science)

Degree In

Mechanical Engineering

First Advisor

Ratner, Albert

First Committee Member

Udaykumar, H.S.

Second Committee Member

Buchholz, James


Gasification of biomass has become an area of key interest as it is a reasonably quick and direct way of converting material into a fuel source that works in many industrial systems. The purpose of the present work is to explore biomass gasification and in particular pyrolysis behavior of corn kernels, oat hulls, and paper sludge. For the materials, low temperature gasification behavior was studied. Here, tests were performed with pyrolysis temperatures from 400 - 800°C, at 1 atm and a rapid heating rate. A small concentration of O2 was added to the gasification agent (N2) to enhance CO yields, similar to modern industrial gasifiers. The evolution of CO, CO2, CH4, H2, and O2 were measured throughout the pyrolysis process. Results show a direct correlation between temperature and the composition of the gas byproduct for all biomasses. CO production increases with an increase in temperature while CO2 shows no temperature correlation. O2 depletion mimics the CO evolution and increases with an increase in temperature. CH4 production was observed, however the results were rarely repeatable due to the sensor's sensitivity to moisture and tar in the gas byproduct. No hydrogen was observed, as would be expected for the short experimental residence time (0.2 seconds).


biomass, corn, gasification, oat hulls, pyrolysis


vi, 52 pages


Includes bibliographical references (pages 51-52).


Copyright 2010 James Steven Ulstad