Document Type


Peer Reviewed


Publication Date


Journal/Book/Conference Title

G3: Geochemistry, Geophysics, Geosystems

DOI of Published Version


Start Page


End Page



[I] Oxygen-isotope ratios of olivine and plagioclase phenocrysts in basalts and basaltic andesites from the Central American arc vary systematically with location, from a minimum 81S0olivinc value of 4.6 (below the range typical of terrestrial basalts) in Nicaragua near the center of the arc to a maximum 81S0olivinc value of 5.7 (above the typical range) in Guatemala near the northwest end of the arc. These oxygen-isotope variations correlate with major and trace element abundances and with Sr and Nd isotope compositions of host lavas, defining trends that suggest variations in 81S0 reflect slab contributions to the mantle sources of these lavas. These trends can be explained by a model in which both a low-81S0, water-rich component and a high-81S0, water-poor component are extracted from the subducting Cocos slab and flux melting in the overlying mantle wedge. The first of these components dominates slab fluxes beneath the center of the arc and is the principal control on the extent of melting of the mantle wedge (which is highest in the center of the arc); the second component dominates slab fluxes beneath the northwestern margin of the arc. Fluxes of both components are small or negligible beneath the southeastern margin of the arc. We suggest that the low-81S0 component is a solute-rich aqueous fluid produced by dehydration of hydrothermally altered rocks deep within the Cocos slab \Eerhaps serpentinites produced in deep normal faults offshore of Nicaragua) and that the high-81 0 component is a partial melt of subducted sediment on top of the plate.


arc, basalt, Central America, oxygen isotope

Journal Article Version

Version of Record

Published Article/Book Citation

Geochemistry, Geophysics, Geosystems (G3) , 6 (2005), pp.1-28.


Copyright © AGU and the Geochemical Society, 2005. Posted by permission.

Included in

Geology Commons