Title

MD-2-dependent pulmonary immune responses to inhaled lipooligosaccharides: effect of acylation state

Document Type

Article

Peer Reviewed

1

Publication Date

6-1-2008

Journal/Book/Conference Title

American Journal of Respiratory Cell and Molecular Biology

DOI of Published Version

10.1165/rcmb.2007-0418OC

Abstract

Endotoxins represent one of the most potent classes of microbial immunoactive components that can cause pulmonary inflammation. The aim of this study was to compare the inflammatory potency of two types of Neisseria meningitidis endotoxins (lipooligosaccharides) in lungs: wild type (hexaacylated, LOS(wt)) and mutant type (pentaacylated, LOS(msbB)), and to determine the importance of MD-2 in endotoxin responses in lungs in vivo. Endotoxin-normoresponsive mice (BALB/c) were exposed to selected doses of penta- and hexaacylated lipooligosaccharides (LOS) by nasal aspiration. Cellular and cytokine/chemokine inflammatory responses in bronchoalveolar lavage were measured at 1-, 4-, 8-, 16-, 24-, and 48-hour time points. MD-2-null mice were exposed to one dose of hexaacylated LOS and inflammatory responses were measured after 4 and 24 hours. Inhalation of hexaacylated LOS resulted in strong inflammatory responses, while pentaacylated LOS was much less potent in inducing increases of neutrophils, TNF-alpha, macrophage inflammatory protein-1 alpha, IL-6, granulocyte colony-stimulating factor, and IL-1 beta concentration in bronchoalveolar lavage. Similar kinetics of inflammatory responses in lungs were found in both types of endotoxin exposures. Inhalation of hexaacylated LOS in MD-2-null mice resulted in significantly lower numbers of neutrophils in bronchoalveolar lavage than in normoresponsive mice. Markedly lower inflammatory potency of pentaacylated LOS was observed compared with hexaacylated LOS. Hyporesponsiveness in MD-2-null mice after nasal aspiration of wild-type LOS indicate its essential role in airway responsiveness to endotoxin.

Keywords

Sustainability

Published Article/Book Citation

American Journal of Respiratory Cell and Molecular Biology, 38:6 (2008) pp.647-654. DOI:10.1165/rcmb.2007-0418OC.

This document is currently not available here.

Share

COinS
 

URL

https://ir.uiowa.edu/oeh_pubs/63